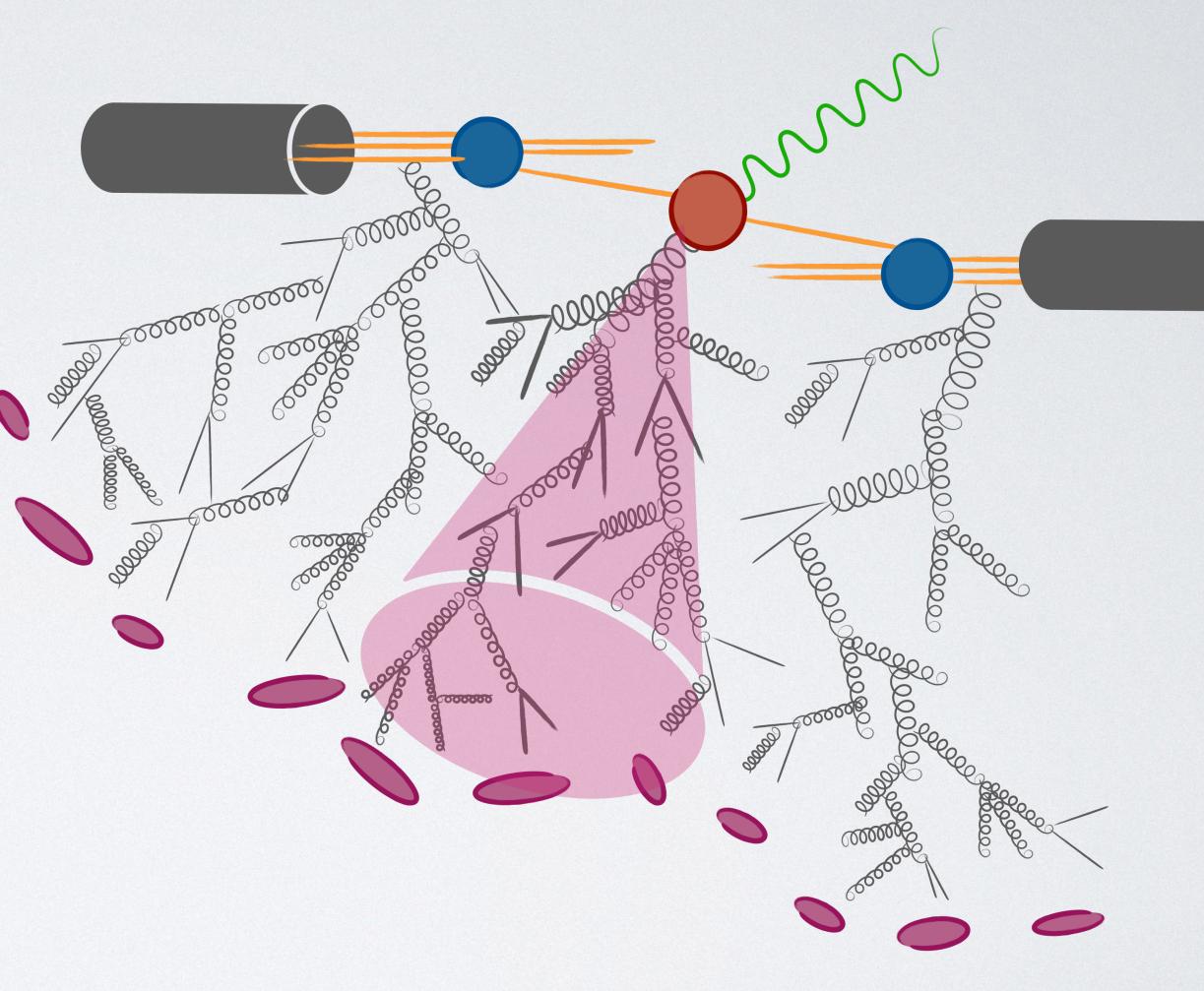
Effective Transverse Momentum For Multi-Jet Events At The LHC

Based on work with L. Buonocore, M. Grazzini, L. Rottoli, C. Savoini (2201.11519)

Jürg Haag

Introduction Goal: Extending q_T - subtraction to processes with jets.



- q_T subtraction and resummation
- Generalising q_T to processes involving jets
- Definition of $N k_T^{\text{ness}}$
- k_T^{ness} as a slicing variable
- All order and non-perturbative behaviour of k_T^{ness}

Jürg Haag / SCET 2022

Outline

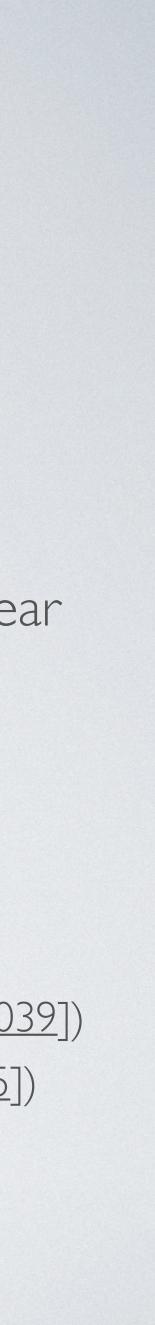
q_T - Subtraction And Resummation

- q_T = transverse momentum of resolved system (system already present at LO)
- Thus, q_T can be used as a slicing variable at NNLO. (Catani, Grazzini (2007) [0703012])
- MATRIX: $pp \rightarrow V, H, \gamma\gamma, V\gamma, VV, t\bar{t}, \gamma\gamma\gamma, HH, bb$ (Grazzini, Kallweit, Wiesemann (2017) [1711.06631])
- (Camarda, Cieri, Ferrera[<u>2103.04974</u>])
- BUT, if there are jets, q_T no longer regulates all NLO type IR-divergences!

Jürg Haag / SCET 2022

• If no jets are present at LO then $q_T > 0$ ensures that at NⁿLO only IR divergences of Nⁿ⁻¹LO-type appear

• Has been used at N3LO for Higgs production (Billis, Dehnadi, Ebert, Michel, Tackmann (2021) and Drell-Yan[2102.08039]) (Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021) [2107.09085]) (Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli [2203.01565])



How To Deal With Jets

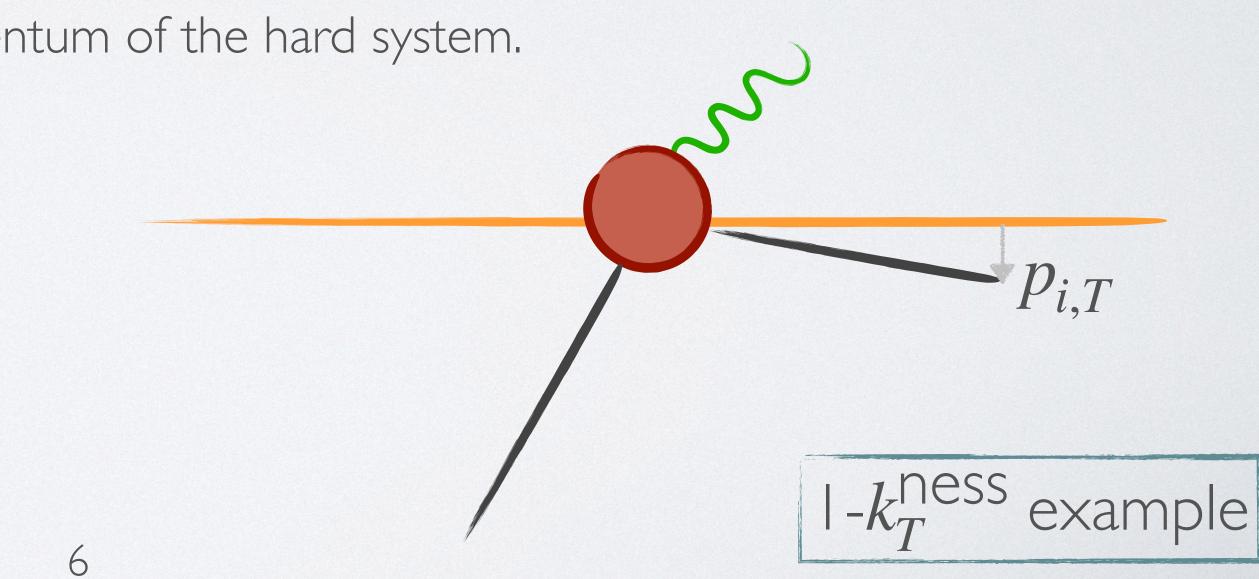
- We want something that smoothly captures the N to N+1 jet transition.
- We want a variable that is q_T for the 0 jet case and for ISC radiation
- We want the variable to scale like relative transverse momentum in all soft collinear regions
- We want something (continuously) global
- N-jettiness (Stewart, Tackmann, Waalewijn (2010)[1004.2489]) is the only well-studied player in the game, but 0-jettiness is not q_T and does not scale as a transverse momentum.
- N-jettiness-subtraction at NNLO (Gaunt, Stahlhofen, Tackmann, Walsh (2015)[1505.04794])
- I-jettiness at NNLO for V+jet (Boughezal, Focke, Liu, Petriello (2015) [1504.02131])(Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)[1512.01291])

- Remember the k_T jet clustering algorithm: $d_{ij} = \min(p_{i,T}, p_{j,T}) \sqrt{\Delta y^2 + \Delta \phi^2} \approx \tilde{k}_T$
- For a process where we require N or more jets we can define $N k_T^{\text{ness}}$ as follows:
- For ISC radiation $N k_T^{\text{ness}}$ is the transverse momentum of the hard system.

Jürg Haag / SCET 2022

Defining k_T^{ness}

• For a configuration of N + 1 massless coloured partons we can define $N - k_T^{\text{ness}} = \min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$



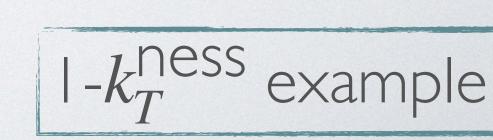
- For a process where we require N or more jets we can define $N k_T^{\text{ness}}$ as follows:
- For FSC radiation along a jet, $N k_T^{\text{ness}}$ is the relative transverse momentum of the hard system wrt that jet

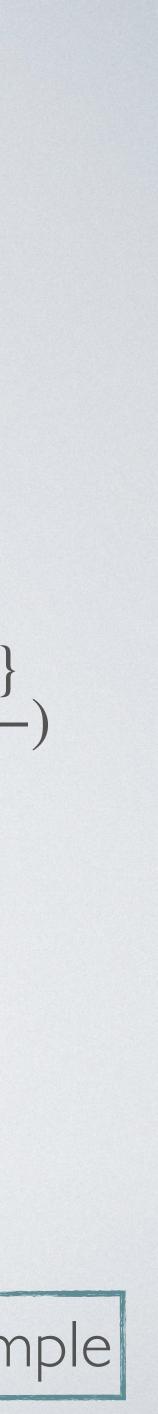
Defining k_T^{ness}

• Remember the k_T - jet clustering algorithm: $d_{ij} = \min(p_{i,T}, p_{j,T}) \sqrt{\Delta y^2 + \Delta \phi^2} \approx \tilde{k}_T$

• For a configuration of N + 1 massless coloured partons we can define $N - k_T^{\text{ness}} = \min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$

 d_{ii}





- Remember the k_T jet clustering algorithm: $d_{ii} = r$
- For a process where we require N or more jets we can define $N k_T^{\text{ness}}$ as follows:
- For a configuration of N + 1 massless coloured pa
- For ISC radiation $N k_T^{\text{ness}}$ is the transverse momentum of the hard system.
- For FSC radiation along a jet, $N k_T^{\text{ness}}$ is the relative transverse momentum of the hard system wrt that jet
- For soft radiation the situation is more involved

$$\min(p_{i,T}, p_{j,T})\sqrt{\Delta y^2 + \Delta \phi^2} \approx \tilde{k}_T$$

artons we can define
$$N - k_T^{\text{ness}} = \min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$$

• For a configuration of N + k partons, one runs the kt-algorithm until N + 1 partons remain.

Jürg Haag / SCET 2022

 $min(d_{ij}, d_{iB})$

 $\overrightarrow{p}_{T,rec}$

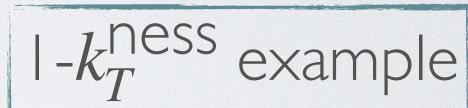
9

 $|-k_T^{\text{ness}}|$

• For a configuration of N + k partons, one runs the kt-algorithm until N+1 partons remain.

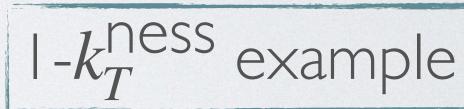
 $min(d_{ij}, d_{iB})$

• For a configuration of N + k partons, one runs the kt-algorithm until N+1 partons remain.



• For a configuration of N + k partons, one runs the kt-algorithm until N+1 partons remain.

 $\overrightarrow{p}_{T,rec}$

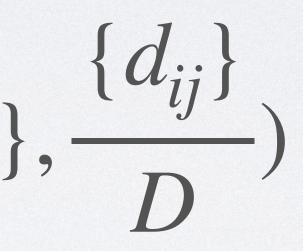


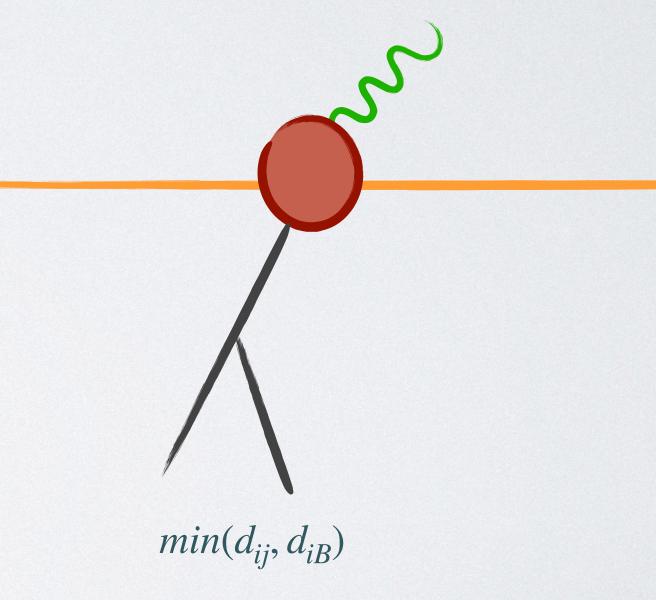
- N+1 partons remain.
- We again determine $\min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$

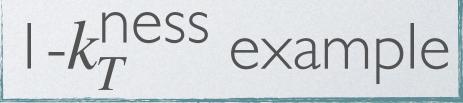
If it is a $\frac{d_{ij}}{D}$, define $k_T^{\text{ness}} = \frac{d_{ij}}{D}$

Jürg Haag / SCET 2022

• For a configuration of N + k partons, one runs the kt-algorithm until





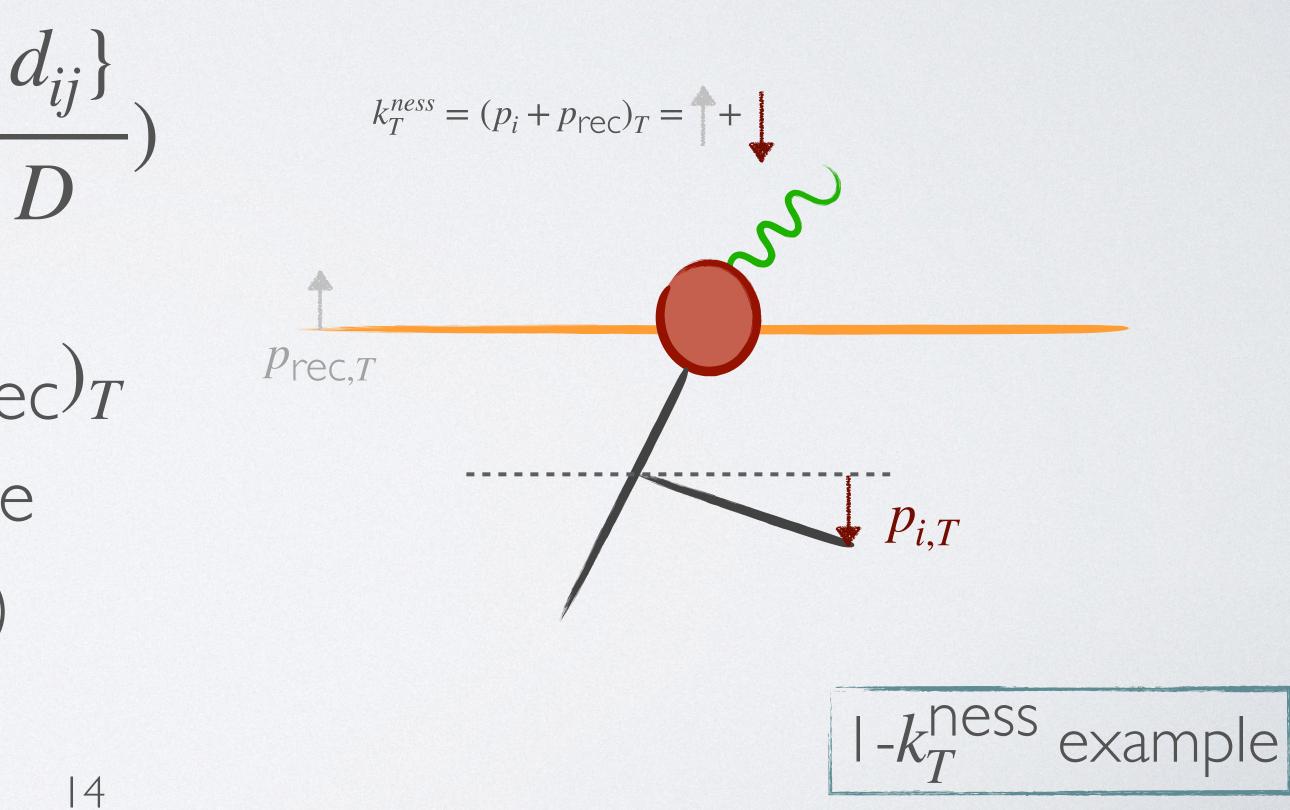


• For a configuration of N + k parto partons remain.

• We again determine $\min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$

• If it is a $p_{i,t}$ define $k_T^{ness} = (p_i + p_{rec})_T$ (p_{rec} is the total momentum of the particles clustered with the beam)

• For a configuration of N + k partons, one runs the kt-algorithm until N + 1



Defining k_T^{ness}

- For a configuration of N + k partons, one runs the kt-algorithm until N + 1 partons remain.
- We again determine $\min(\{p_{i,T}\}, \frac{\{d_{ij}\}}{D})$

If it is a
$$\frac{d_{ij}}{D}$$
, define $k_T^{\text{ness}} = \frac{d_{ij}}{D}$

- the beam)
- Note: If all emissions are ISC, k_T^{ness} is again the $|q_T|$ of the hard system! Jürg Haag / SCET 2022

• If it is a $p_{i,t}$ define $k_T^{ness} = (p_i + p_{rec})_T (p_{rec})_T$ is the total momentum of the particles clustered with

- $pp \rightarrow N$ jets + colorless
- The pieces containing powers of log(r) give rise to the k_T^{ness} -slicing counter-terms

$$d\hat{\sigma}_{\text{NLO}ab}^{\text{CT,F+Njets}} = \frac{\alpha_{\text{S}}}{\pi} \frac{dk_{T}^{\text{Hess}}}{k_{T}^{\text{ness}}} \text{Tr} \left\{ \left[\ln \frac{Q^{2}}{\left(k_{T}^{\text{ness}}\right)^{2}} \sum_{\alpha} C_{\alpha} - \sum_{\alpha} \gamma_{\alpha} - \sum_{i} C_{i} \ln \left(D^{2}\right) - \sum_{\alpha \neq \beta} \mathbf{T}_{\alpha} \cdot \mathbf{T}_{\beta} \ln \left(\frac{2p_{\alpha} \cdot \mathbf{T}_{\beta}}{Q^{2}}\right) \right\} \times \delta_{ac} \delta_{bd} \delta\left(1 - z_{1}\right) \delta\left(1 - z_{2}\right) + 2\delta\left(1 - z_{2}\right) \delta_{bd} P_{ca}^{(1)}\left(z_{1}\right) + 2\delta\left(1 - z_{1}\right) \delta_{ac} P_{db}^{(1)}\left(z_{2}\right) \right\} \otimes d\hat{\sigma}_{\text{LOcd}}^{\text{F+N jets}}$$

$$\gamma_g = \frac{(11C_A - 2n_F)}{6}, \gamma_q = \frac{3C_F}{2}$$

Jürg Haag / SCET 2022

k_T^{ness} as a slicing variable

• We have analysed the small r behaviour of $\int d\Pi_R d\sigma_R \Theta(r - \frac{k_T^{\text{ness}}}{O})$ for general processes of the type

- We calculated the constant pieces in terms of two-fold integrals
- We have implemented k_T^{ness} slicing at NLO for general $pp \rightarrow N$ jets + colorless processes in MATRIX

k_T^{ness} as a slicing variable

0.30

$$Higgs + jet = 0.20$$

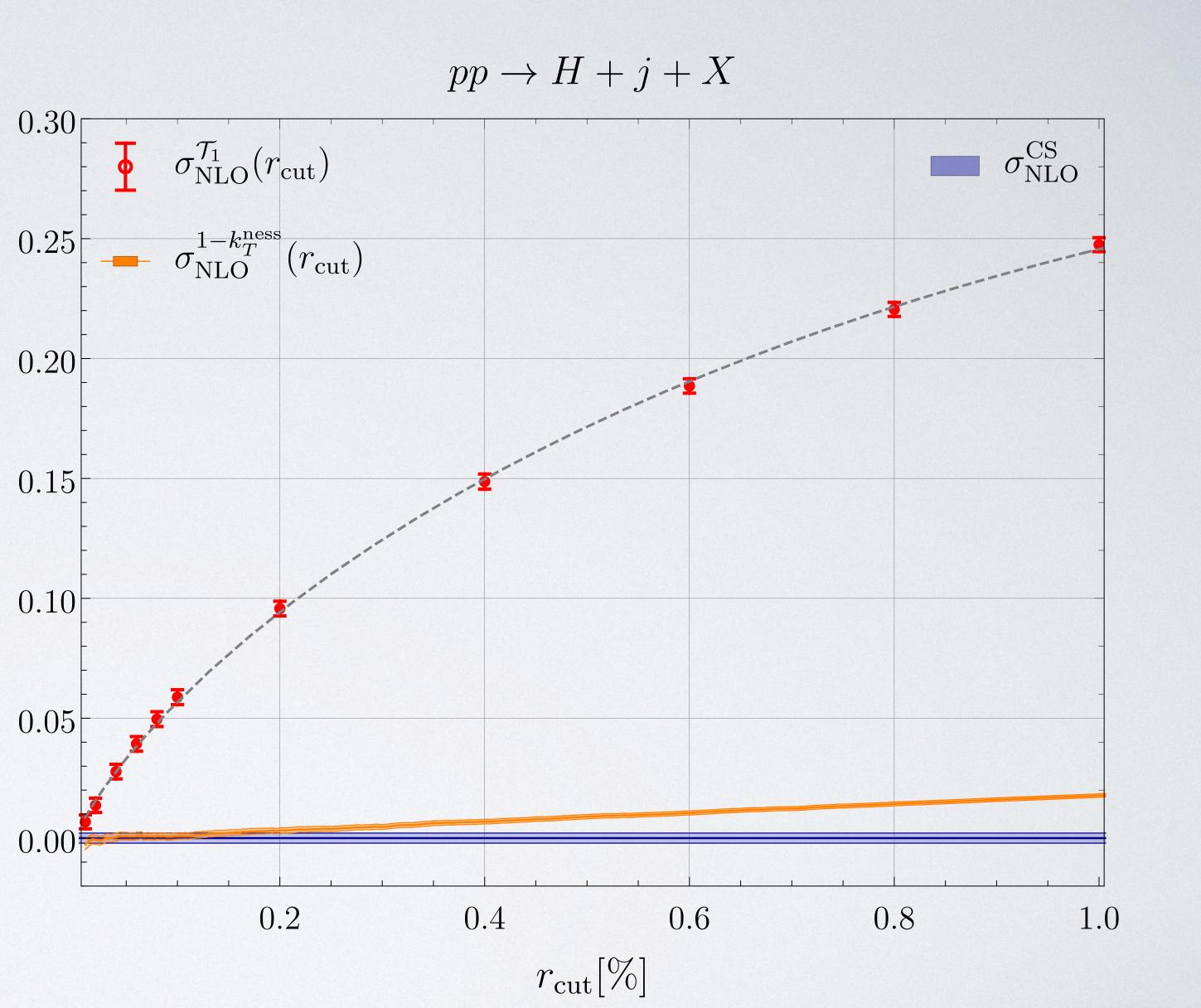
$$r_{cut}-dependence of = \frac{\tau_1}{\tau_1} \text{ and } 0.15$$

$$r = \frac{\tau_1}{\sqrt{m_H^2 + (p_T^j)^2}} \text{ and } 0.10$$

$$r = \frac{k_T^{ness}}{\sqrt{m_H^2 + (p_T^j)^2}} = 0.05$$

$$r = \frac{0.00}{\sqrt{m_H^2 + (p_T^j)^2}}$$

Jürg Haag / SCET 2022



CS and I-jettiness obtained with MCFM (Campbell, Neumann 1909.09117)

 $\begin{bmatrix} 500 \\ 400 \\ 400 \\ 300 \\ 200 \end{bmatrix} \frac{1}{i_{f}} dp / op$ 500200

Z+2 jets

 p_T - distribution of leading jet

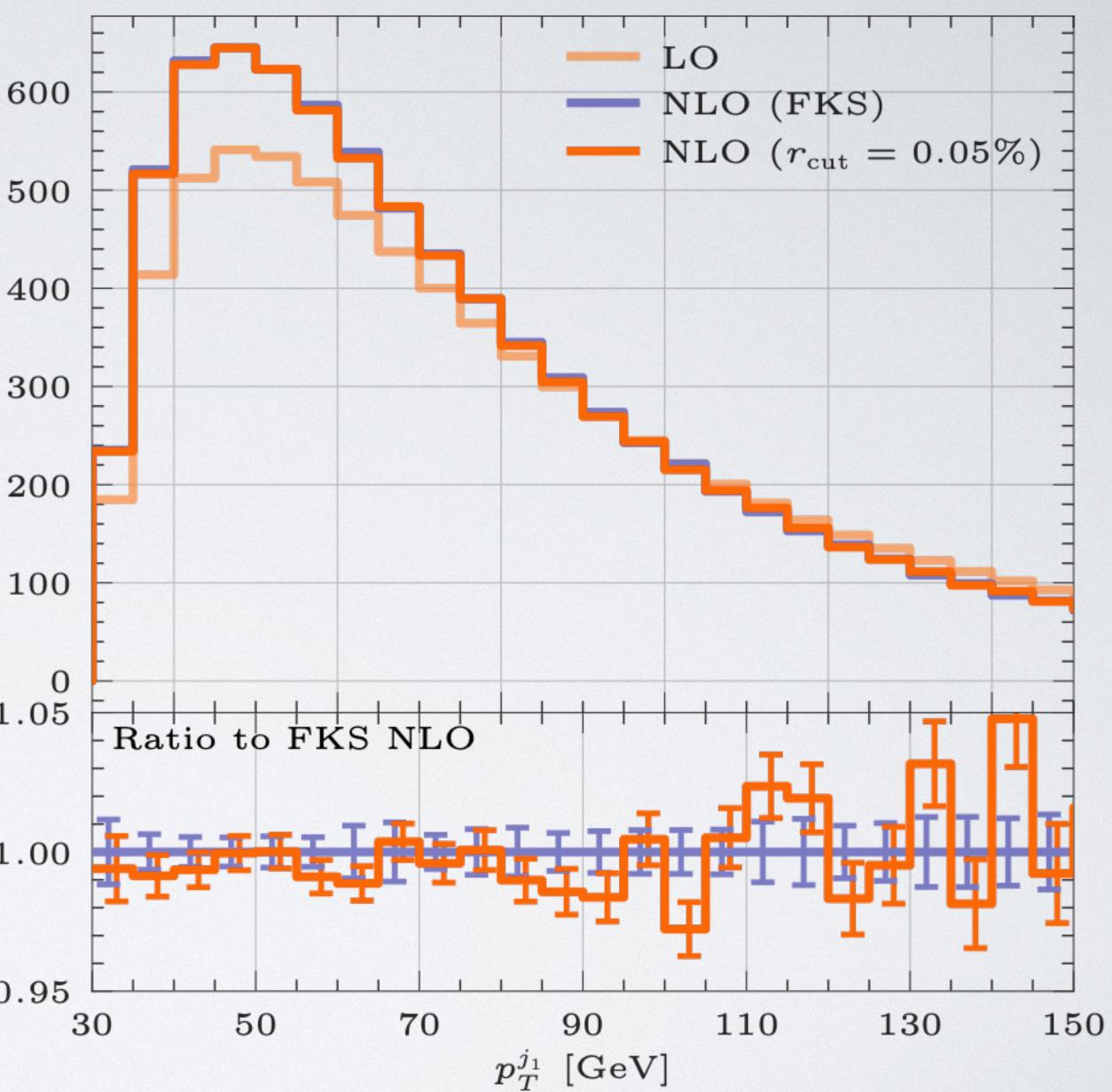
1.05

1.00

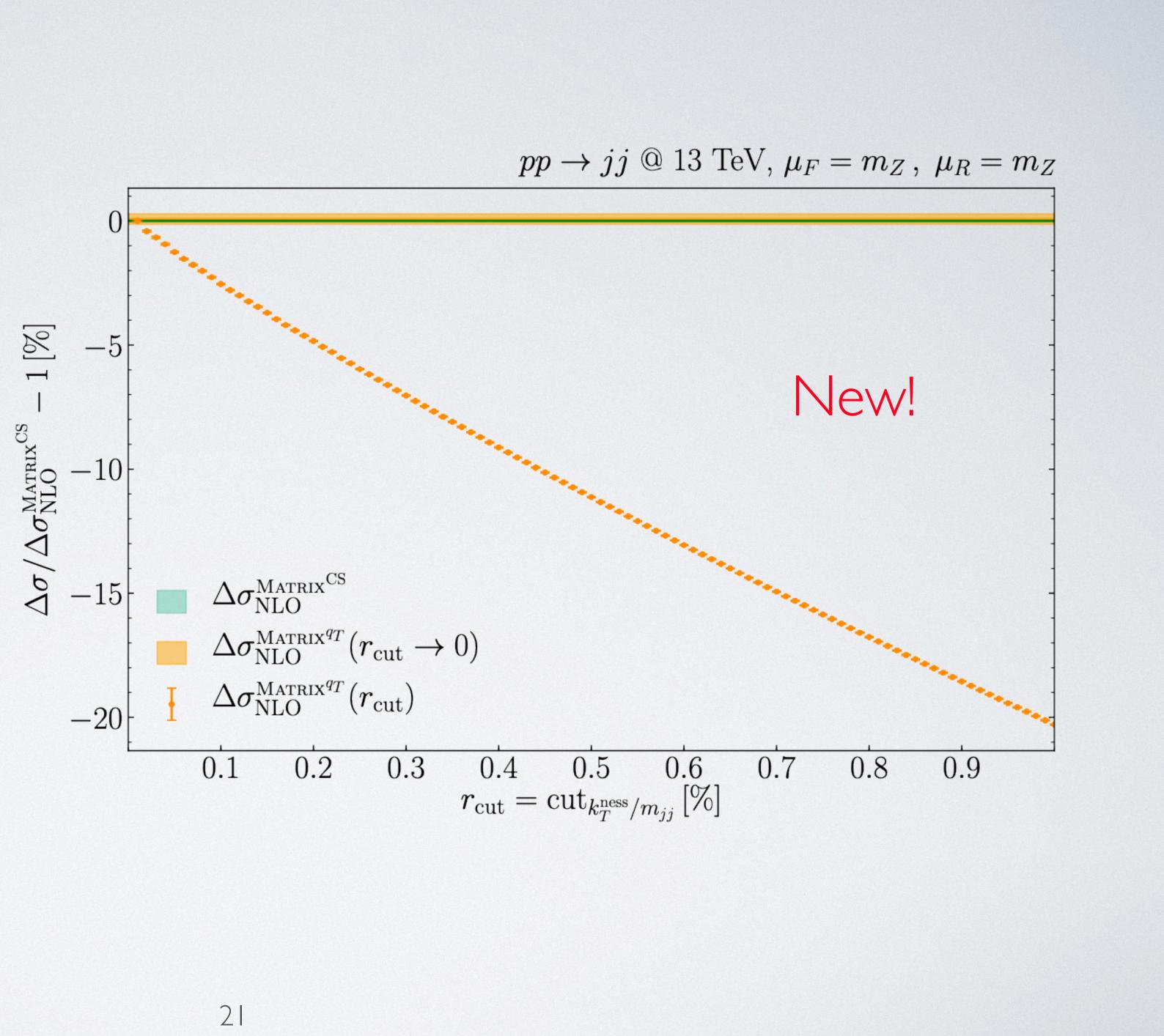
0.95

Jürg Haag / SCET 2022

 $pp \rightarrow \ell^+ \ell^- + 2j + X$



20

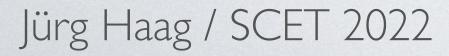


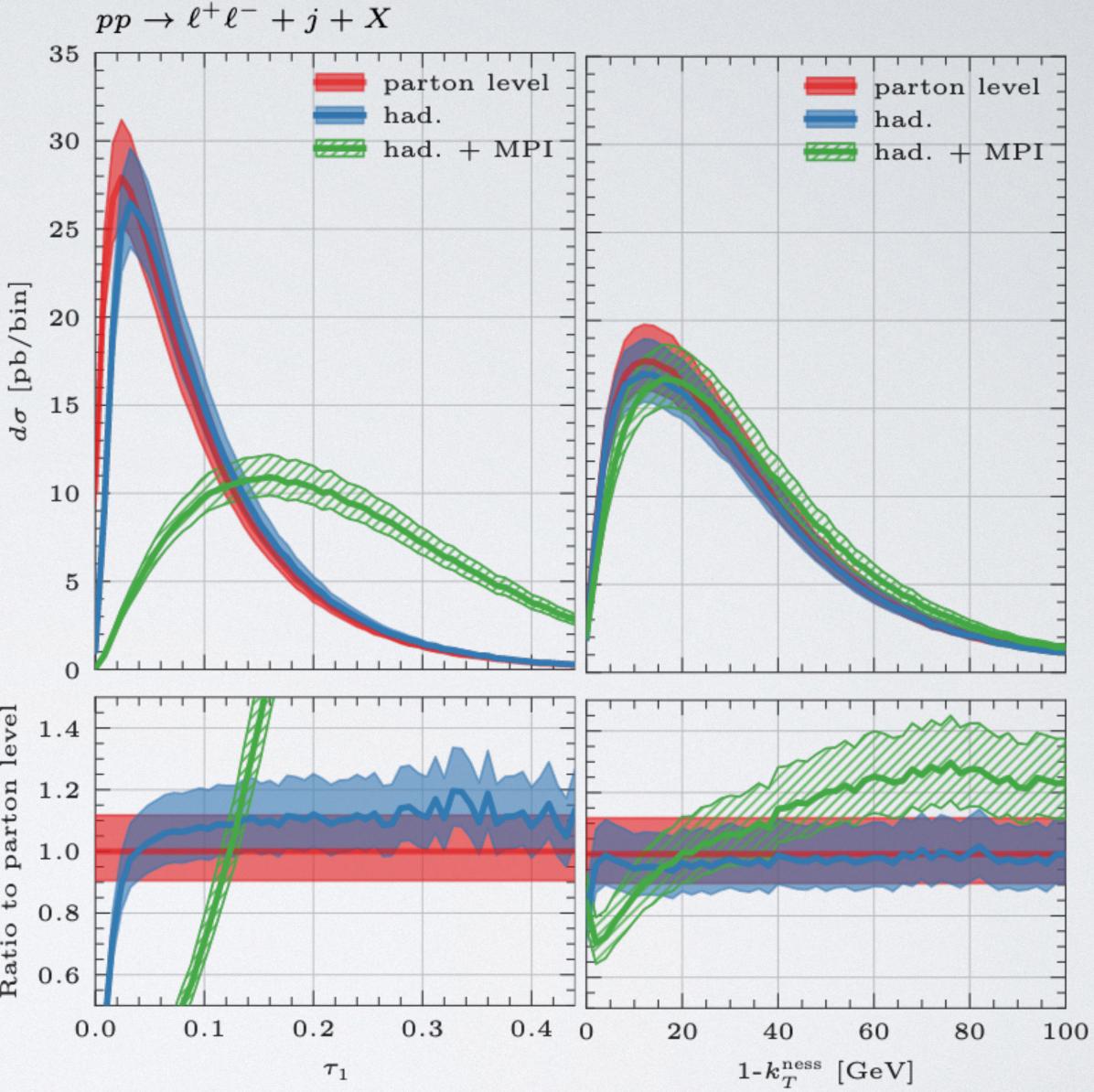
Di-jet (in MATRIX)

Beyond NLO

Hadronisation and MPI

 k_T - like variables behave well under hadronisation and MPI (see also Banfi, Salam and Zanderighi [1001.4082])





LO events generated with POWHEG [0709.2092] and showered with PYTHIA8 [1410.3012] using the A14 tune. Jets and k_T^{ness} defined with FASTJET [1111.6097] 23

- NLO: k_T^{ness} -subtraction will soon work in MATRIX for general NLO QCD corrections.
- Resummation: Some technicalities need to be understood: b-space for IS radiation? Clustering logarithms (especially beyond NLL)?
- Currently working on Z+j at NNLO
- (and mixed corrections)

Jürg Haag / SCET 2022

Outlook

Ultimate long term goal: Make MATRIX a general NNLO provider for QCD corrections

Backup

Setups for NLO calculations

• Higgs + jet:
$$p_T^j > 30 GeV$$

 $D = 1$

• Z+2jets: $p_T^j > 30 GeV, \eta_j < 4.5$ $p_T^l > 20 GeV, \eta_l < 2.5, 66 GeV < m_{ll} < 116 GeV, R_{jl} > 0.5, R_{ll} > 0.2$ D = 0.1

• Dijet:
$$p_T^j > 30 GeV$$

 $D = 1$

Jürg Haag / SCET 2022

 $\sqrt{s_{had}} = 13 \text{TeV}$ NNPDF31_nlo_as_0118 with $\alpha_s(m_7) = 0.118$ G_{μ} – scheme $G_F = 1.16639 \times 10^{-5} \text{GeV}^{-2}$ $m_W = 80.386 \text{GeV}$ $m_{Z} = 91.1876 \text{GeV}$ $\Gamma_{z} = 2.4952 \text{GeV}$ anti- k_T -clustering with R = 0.4

The Finite Piece

$$J_{g} = 1 + \frac{\alpha_{s}(\mu_{R})}{\pi} \left\{ C_{A} \left[\frac{131}{72} - \frac{\pi^{2}}{4} - \frac{11}{6} \log(2) - \log(D) \left(\frac{11}{6} + \log\left(\frac{Q^{2}}{4p_{i}^{2}}\right) \right) - \log^{2}(D) \right] + T_{R}n_{f} \left[-\frac{17}{36} + \frac{2}{3} \log(2D) \right] \right\} + O\left(\alpha_{s}^{2}\right)$$

$$J_{q} = 1 + \frac{\alpha_{s}(\mu_{R})}{\pi} C_{F} \left[\frac{7}{4} - \frac{\pi^{2}}{4} - \frac{3}{2} \log(2) - \log(D) \left(\frac{3}{2} + \log\left(\frac{Q^{2}}{4p_{i}^{2}}\right) \right) - \log^{2}(D) \right] + O\left(\alpha_{s}^{2}\right)$$

$$J_{sub}^{2} = \left(-T_{1} \cdot T_{2}\omega_{12} - \sum_{i} \left(T_{1} \cdot T_{i}\omega_{1i} + (1 \leftrightarrow 2) \right) - \sum_{i \neq j} T_{i} \cdot T_{j}\omega_{ij} \right) \Theta\left(r_{cut} - k_{T}^{ness,soft} / Q \right)$$

$$- \left(T_{1}^{2}\omega_{2}^{1} + (1 \leftrightarrow 2) \right) \Theta\left(r_{cut} - k_{t} / Q \right) - \sum_{i} T_{i}^{2}\omega_{FS \rightarrow S}^{2} \Theta\left(r_{cut} - q_{t,ik} / Q \right)$$