The photon energy spectrum in $B o X_s \gamma$ at $\mathrm{N}^3\mathrm{LL}'$

Ivan Novikov

in collaboration with Bahman Dehnadi and Frank Tackmann

2022-04-22

SCET 2022 workshop Bern, Switzerland

- ▶ How one can use SCET to understand $B \rightarrow X_s \gamma$, and why one would want to.
- ▶ We provide predictions for the photon energy spectrum in $B \rightarrow X_s \gamma$ at the 3-loop order, parameterizing the unknown 3-loop ingredients, which improves theoretical uncertainty.
- Impact of short-distance mass schemes, and why for $B \rightarrow X_s \gamma$ the MSR scheme is more appropriate than 1S scheme.

$B ightarrow X_s \gamma$ spectrum

In the peak region leading-power SCET allows us to factorize $B \rightarrow X_s \gamma$ spectrum into perturbative hard, jet, (partonic) soft functions, and nonperturbative shape function.

Motivation

The shape function can be extracted from $B \to X_s \gamma$ spectrum and used to describe other *B*-meson decays, for example the $B \to X_u l \bar{\nu}$, which is sensitive to $|V_{ub}|$. Matching

We match nonsingular contributions to reproduce full fixed-order QCD in the tail region, when resummation is turned off

Known perturbative ingredients

We implemented the $B \rightarrow X_s \gamma$ spectrum in SCETlib C++ library at $N^3LL'+N^3LO$, parameterizing unknown 3-loop ingredients in terms of nuisance parameters

The first moment of the shape function depends on the *b*-quark mass m_b . In order to get stable predictions it is essential to define m_b in a suitable short-distance mass scheme. At N³LO the mass correction $\delta m = m^{\text{pole}} - m^{\text{short-distance}}$ must be calculated up to α_s^3 .

Pole mass scheme

Pole mass scheme suffers from a renormalon ambiguity, and predictions in this scheme are not stable.

1S mass scheme

However, the 1S mass scheme, which has been used in the $\rm N^2LL' + NNLO$ shape function fit in [Bernlochner et al.: 2007.04320], starts to break down at $\rm N^3LO$

1S mass scheme

This is because the intrinsic scale of 1S scheme R^{1S} is small at the hard scale, but becomes too large at the soft scale

MSR mass scheme

The MSR mass $m_b^{\text{MSR}}(R)$ depends on scale R as a parameter. Masses at different R-scales are related by the R-evolution equation.

The MSR mass is a natural extension of the $\overline{\mathrm{MS}}$ mass for scales below the mass of the quark.

MSR mass scheme

The MSR scheme yields much more stable results because we can pick the R-scale $R \sim \mu_S$

$$\begin{aligned} R^{\text{MSR}} &= \mu & \sim \alpha_s &\sim \alpha_s^2 &\sim \alpha_s^3 \\ (m_b^{\text{MSR}} - m_b^{1S})(\mu = 4.2) &\approx -0.35 - 0.12 - 0.04 \leftarrow \text{converges} \\ (m_b^{\text{MSR}} - m_b^{1S})(\mu = 1.93) &\approx -0.15 - 0.06 + 0.02 \leftarrow \text{converges} \\ (m_b^{\text{MSR}} - m_b^{1S})(\mu = 1.3) &\approx -0.06 - 0.06 + 0.10 \leftarrow \text{does not converge} \\ (\text{all values in GeV}) \end{aligned}$$

The perturbative series of correction between MSR and 1S schemes seems to start diverging as we approach the soft scale.

Scale variations

We use the so-called profile functions to smoothly turn off the resummation away from the peak region by setting all scales to the same value. The profile functions depend on parameters e_{μ} , e_{ns} , e_J , μ_0 , E_1 , which are varied to estimate the perturbative uncertainty

OTT()

the only unknown term fixed by RGE
$$\frac{\partial H(\mu)}{\partial \ln \mu} = \gamma_H \times H$$

 $H(\mu) = 1 + \frac{\alpha_s(\mu)}{\pi} H^{(1)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 H^{(2)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 H^{(3)} + \text{terms with logs } \ln \frac{\mu}{m_b} + \mathcal{O}(\alpha_s^4)$

$$\frac{(H^{(2)})^2}{H^{(1)}} \approx \frac{19.3^2}{4.55} \approx 80 \implies H^{(3)} = 0 \pm 80$$

For the hard function H the only missing piece is the 3-loop constant $H^{(3)}$. We set its central value to 0 and use Padé approximation to estimate its possible magnitude.

Nonsingular terms

$$\begin{aligned} & \text{singular without resummation} \\ & W_{\text{s}}(x) = \frac{\alpha_s}{\pi} \sigma_{\text{s}}^{(1)}(x) + \left(\frac{\alpha_s}{\pi}\right)^2 \sigma_{\text{s}}^{(2)}(x) + \left(\frac{\alpha_s}{\pi}\right)^3 \sigma_{\text{s}}^{(3)}(x) + \text{terms with } \ln \frac{\mu}{m_b} + \mathcal{O}(\alpha_s^4) \\ & W_{\text{ns}}(x) = \frac{\alpha_s}{\pi} \sigma_{\text{ns}}^{(1)}(x) + \left(\frac{\alpha_s}{\pi}\right)^2 \sigma_{\text{ns}}^{(2)}(x) + \left(\frac{\alpha_s}{\pi}\right)^3 \sigma_{\text{ns}}^{(3)}(x) + \text{terms with } \ln \frac{\mu}{m_b} + \mathcal{O}(\alpha_s^4) \\ & & \text{nonsingular} \end{aligned}$$

parameterize
$$\sigma_{ns}^{(3)}(x) = -\sigma_{s}^{(3)}(1) + \sum_{k=0}^{5} c_{k}L^{k}(x)$$

model cancellation between
singular and nonsingular
in the tail region $(x \to 1)$
 $L(x) \coloneqq \frac{1}{4}\sigma_{ns}^{(1)}(x) - \frac{9}{16}$

For the nonsingular terms W_{ns} only the 3-loop function $\sigma_{ns}^{(3)}(x)$ is unknown. We parameterize it using six parameters $c_0 \dots c_5$.

Nonsingular terms

The function L(x) used in the parameterization is similar to $-\ln x$, but has a more realistic shape in the transition region 0 < x < 1.

Nonsingular terms

In the peak region, where $x \to 0$: $4x\sigma_{\rm s}^{(1)}(x) \approx -7.0 - 4\ln x$ $\sigma_{\rm ns}^{(1)}(x) \approx -3.8 - 4\ln x$ Similar $4x\sigma_{\rm s}^{(2)}(x) \approx 28.8 + 46.7\ln x + 26.5\ln^2 x + 2.7\ln^3 x$ $\sigma_{\rm ns}^{(2)}(x) \approx 16.1 + 33.9\ln x + 25\ln^2 x + 2.7\ln^3 x$ similar $4x\sigma_c^{(3)}(x) \approx 406.3 + 142.5\ln x - 113.2\ln^2 x - 125.5\ln^3 x - 21.7\ln^4 x - 0.9\ln^5 x$ $\approx 258.5 + 95.0L(x) + 189.0L^{2}(x) + 15.5L^{3}(x) - 15L^{4}(x) + 0.9L^{5}(x)$ $\sigma_{\rm ns}^{(3)}(x) = c_0 + c_1 L(x) + c_2 L^2(x) + c_3 L^3(x) + c_4 L^4(x) + c_5 L^5(x) - \sigma_{\rm s}^{(3)}(1)$ $c_0 = 0 \pm 20$ $c_1 = 0 \pm 100$ $c_2 = 0 \pm 80$ $c_3 = 0 \pm 10$ $c_4 = 0 \pm 5$ $c_5 = 0 \pm 0.9$ (estimated differently)

The asymptotics of nonsingular functions $\sigma_{ns}^{(k)}(x)$ are similar to asymptotics of $4x\sigma_s^{(k)}$. We exploit this to estimate the possible magnitude of model coefficients c_k .

 $\Delta_{\text{resum}} = \text{envelope of } (e_H, e_J, \mu_0) \text{ variations}$ = scale variations in resummed terms $\Delta_{\text{nonsingular}} = \Delta_{e_{\text{ns}}} = \text{scale variations in nonsingular terms}$ $\Delta_{\text{matching}} = \Delta_{E_1} = \text{variations of peak region edge}$

We add in quadrature uncertainties from variations of scales and nuisance parameters.

Results

The predictions at different orders are converging well, and the uncertainties are under control.

Relative uncertainty from different sources

As expected, unknown 3-loop nonsingular terms are not relevant in the peak region, but increase the uncertainty towards the tail

- ► Theoretical uncertainties are improved by extending $B \rightarrow X_s \gamma$ spectrum predictions to 3-loop level, in spite of the fact that some 3-loop ingredients are not known.
- > At 3-loop order the 1S mass scheme does not work for scales much lower than m_b
- MSR mass scheme is appropriate for this process
- Not discussed: starting at 3-loop order the pole mass must be consistently expanded in hard and jet functions to resum a formally-subleading, but nevertheless singular term
- Not discussed: short-distance schemes for hadronic parameters λ_1, ρ_1

Thank you for your attention!

Backup slides

1-loop hard function	[C.W.Bauer, S.Fleming, D.Pirjol, I.W.Stewart: hep-ph/0011336]
1-loop jet and soft functions	[C.W.Bauer, A.V.Manohar: hep-ph/0312109]
	[S.W.Bosch, B.O.Lange, M.Neubert, G.Paz: hep-ph/0402094]
2-loop full QCD	[K.Melnikov, A.Mitov: hep-ph/0505097]
2-loop soft function	[T.Becher, M.Neubert: hep-ph/0512208]
2-loop jet function	[T.Becher, M.Neubert: hep-ph/0603140]
3-loop jet function	[R.Brüser, Z.L.Liu, M.Stahlhofen: 1804.09722]
• 4-loop Γ_{cusp} [A.Manteuffel,	E.Panzer, R.M.Schabinger: 2002.04617] and references therein
3-loop soft function	[R.Brüser, Z.L.Liu, M.Stahlhofen: 1911.04494]

$$\int_{0}^{\infty} F(k)dk = 1$$

$$\int_{0}^{\infty} F(k)kdk = m_B - m_b$$

$$\int_{0}^{\infty} F(k)kdk = m_B - m_b$$

$$\int_{0}^{\infty} F(k)k^2dk = (m_B - m_b)^2 - \frac{\lambda_1}{3}$$

$$\int_{0}^{\infty} F(k)k^3dk = (m_B - m_b)^3 - \lambda_1(m_B - m_b) + \frac{\rho_1}{3}$$
Hadronic soft:
Hadronic parameters:

$$\langle B|\bar{b}_v(iD_\alpha)(iD_\mu)(iD_\beta)b_v|B\rangle = \frac{\rho_1}{3}(g_{\alpha\beta} - v_\alpha v_\beta)v_\mu$$

$$\langle B|\bar{b}_v(iD)^2b_v|B\rangle = \lambda_1$$

$$\begin{aligned} \sigma_{\rm s}^{(1)}(1) + \sigma_{\rm ns}^{(1)}(1) &= \frac{9}{4} - \frac{7}{4} = \frac{1}{2} \\ \sigma_{\rm s}^{(2)}(1) + \sigma_{\rm ns}^{(2)}(1) &\approx 7.20 - 4.28 = 2.92 \\ \mathbf{c_0} &= \sigma_{\rm s}^{(3)}(1) + \sigma_{\rm ns}^{(3)}(1) \approx 101.57 + ? \quad \text{expect } \mathbf{c_0} \approx \frac{2.92^2}{0.5} \approx 20 \end{aligned}$$

There's a somewhat large finite cancellation between singular and nonsingular in the tail region, where $x \to 1$