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Outline

I How one can use SCET to understand B → Xsγ, and why one would want to.

I We provide predictions for the photon energy spectrum in B → Xsγ at the 3-loop order,
parameterizing the unknown 3-loop ingredients, which improves theoretical uncertainty.

I Impact of short-distance mass schemes, and why for B → Xsγ the MSR scheme is more
appropriate than 1S scheme.
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B → Xsγ spectrum

tail region

fixed-order QCD+local OPE

peak region

SCET

Measurements of B → Xsγ spectrum are most precise in the peak region Eγ ∼ mb/2,
which is described by SCET.

[Bernlochner et al.: 2007.04320]
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https://arxiv.org/pdf/2007.04320.pdf


Factorization

perturbative

nonperturbative,

but universal

In the peak region leading-power SCET allows us to factorize B → Xsγ spectrum into
perturbative hard, jet, (partonic) soft functions, and nonperturbative shape function.
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Motivation

F
shape function

measure

measure

use to

describe

The shape function can be extracted from B → Xsγ spectrum and used to describe other
B-meson decays, for example the B → Xu l ν̄, which is sensitive to |Vub|.
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Matching

singular

(resummed)

nonsingular

(fixed-order)

We match nonsingular contributions to reproduce full fixed-order QCD in the tail region,
when resummation is turned off
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Known perturbative ingredients

hard anomalous dimension

is known from the

consistency relation

nonsingular is derived 

by matching to

fixed-order QCD

(references in backup)

We implemented the B → Xsγ spectrum in SCETlib C++ library at N3LL′+N3LO,
parameterizing unknown 3-loop ingredients in terms of nuisance parameters

recently calculated by

R.Brüser, Z.L.Liu, M.Stahlhofen

1804.09722, 1911.04494

R.Brüser, A.Grozin,

J.M.Henn, M.Stahlhofen

1902.05076
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https://arxiv.org/pdf/1804.09722.pdf
https://arxiv.org/pdf/1911.04494.pdf
https://arxiv.org/pdf/1902.05076.pdf


Short-distance schemes

Fnormalization:

first moment:

B-meson

mass

b-quark

mass

(in which scheme?)

shape function

The first moment of the shape function depends on the b-quark mass mb. In order to get
stable predictions it is essential to define mb in a suitable short-distance mass scheme.

At N3LO the mass correction δm = mpole −mshort−distance must be calculated up to α3
s .
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Pole mass scheme

Pole mass scheme suffers from a renormalon ambiguity,
and predictions in this scheme are not stable.
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1S mass scheme

However, the 1S mass scheme, which has been used in the N2LL′ + NNLO shape function fit
in [Bernlochner et al.: 2007.04320], starts to break down at N3LO

9

https://arxiv.org/pdf/2007.04320.pdf


1S mass scheme

intrinsic scale of 1S mass scheme

(all values in GeV)

ok!

too large!

This is because the intrinsic scale of 1S scheme R1S

is small at the hard scale, but becomes too large at the soft scale

[K.Melnikov, A.Yelkhovsky: hep-ph/9805270]

[A.Pineda, F.J.Ynduráin: hep-ph/9711287]
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https://arxiv.org/pdf/hep-ph/9805270.pdf
https://arxiv.org/pdf/hep-ph/9711287.pdf


MSR mass scheme

R-scale is a parameter

The MSR mass mMSR
b (R) depends on scale R as a parameter. Masses at different R-scales are

related by the R-evolution equation.
The MSR mass is a natural extension of the MS mass for scales below the mass of the quark.

[A.H.Hoang, A.Jain, C.Lepenik, V.Mateu, M.Preisser, I.Scimemi, I.W.Stewart: 1704.01580]

[A.H.Hoang, A.Jain, I.Scimemi, I.W.Stewart: 0803.4214]
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https://arxiv.org/pdf/1704.01580.pdf
https://arxiv.org/pdf/0803.4214.pdf


MSR mass scheme

The MSR scheme yields much more stable results because we can pick the R-scale R ∼ µS
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1S vs MSR numerically

(all values in GeV)

converges

converges

does not converge

The perturbative series of correction between MSR and 1S schemes seems to start diverging as
we approach the soft scale.
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Scale variations

We use the so-called profile functions to smoothly turn off the resummation away from the
peak region by setting all scales to the same value. The profile functions depend on parameters

eH , ens, eJ , µ0,E 1, which are varied to estimate the perturbative uncertainty
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Hard function

fixed by RGEthe only unknown term

For the hard function H the only missing piece is the 3-loop constant H(3).
We set its central value to 0 and use Padé approximation to estimate its possible magnitude.
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Nonsingular terms

model cancellation between

singular and nonsingular

in the tail region (        )

parameterize

singular without resummation

nonsingular unknown function

For the nonsingular terms Wns only the 3-loop function σ
(3)
ns (x) is unknown.

We parameterize it using six parameters c0 . . . c5.
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Nonsingular terms

peak region tail region

behaves like a log

in the peak region

shape in the tail similar to known

nonsingular functions

The function L(x) used in the parameterization is similar to − ln x , but has a more realistic
shape in the transition region 0 < x < 1.
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Nonsingular terms

similar

similar

(estimated differently)

The asymptotics of nonsingular functions σ
(k)
ns (x) are similar to asymptotics of 4xσ

(k)
s .

We exploit this to estimate the possible magnitude of model coefficients ck .
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Components of perturbative uncertainty

variations of

nuisance parameters

We add in quadrature uncertainties from variations of scales and nuisance parameters.
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Results

The predictions at different orders are converging well, and the uncertainties are under control.
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Relative uncertainty from different sources

As expected, unknown 3-loop nonsingular terms are not relevant in the peak region,
but increase the uncertainty towards the tail
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Conclusions

I Theoretical uncertainties are improved by extending B → Xsγ spectrum predictions
to 3-loop level, in spite of the fact that some 3-loop ingredients are not known.

I At 3-loop order the 1S mass scheme does not work for scales much lower than mb

I MSR mass scheme is appropriate for this process

I Not discussed: starting at 3-loop order the pole mass must be consistently expanded in hard and jet

functions to resum a formally-subleading, but nevertheless singular term

I Not discussed: short-distance schemes for hadronic parameters λ1, ρ1

Thank you for your attention!
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Backup slides



Known perturbative ingredients

I 1-loop hard function [C.W.Bauer, S.Fleming, D.Pirjol, I.W.Stewart: hep-ph/0011336]

I 1-loop jet and soft functions [C.W.Bauer, A.V.Manohar: hep-ph/0312109]

[S.W.Bosch, B.O.Lange, M.Neubert, G.Paz: hep-ph/0402094]

I 2-loop full QCD [K.Melnikov, A.Mitov: hep-ph/0505097]

I 2-loop soft function [T.Becher, M.Neubert: hep-ph/0512208]

I 2-loop jet function [T.Becher, M.Neubert: hep-ph/0603140]

I 3-loop jet function [R.Brüser, Z.L.Liu, M.Stahlhofen: 1804.09722]

I 4-loop Γcusp [A.Manteuffel, E.Panzer, R.M.Schabinger: 2002.04617] and references therein

I 3-loop soft function [R.Brüser, Z.L.Liu, M.Stahlhofen: 1911.04494]
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https://arxiv.org/pdf/hep-ph/0011336.pdf
https://arxiv.org/pdf/hep-ph/0312109.pdf
https://arxiv.org/pdf/hep-ph/0402094.pdf
https://arxiv.org/pdf/hep-ph/0505097.pdf
https://arxiv.org/pdf/hep-ph/0512208.pdf
https://arxiv.org/pdf/hep-ph/0603140.pdf
https://arxiv.org/pdf/1804.09722.pdf
https://arxiv.org/pdf/2002.04617.pdf
https://arxiv.org/pdf/1911.04494.pdf
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Hadronic soft:

Hadronic parameters:
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There’s a somewhat large finite cancellation between singular and nonsingular in the tail region,
where x → 1
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