NLP Endpoint Factorization and Resummation of Off-Diagonal "Gluon" Thrust

Julian Strohm Technische Universität München

SCET 2022 21. April 2022

Joint Work with Martin Beneke, Mathias Garny, Sebastian Jaskiewicz, Robert Szafron, Leonardo Vernazza, and Jian Wang.

Motivation

Endpoint Divergences spoil Factorization Theorems at Next-to-Leading Power (NLP) preventing even the Resummation of Classic $2 \rightarrow 1$ and $1 \rightarrow 2$ Processes like Thrust, DIS and DY.

Only two Factorization Theorems for processes with endpoint divergences have been established so far, for $B\to\chi_{cJ}K$ and $h\to\gamma\gamma.$ [Beneke, Vernazza; 0810.3575]

[Liu, Mecaj, Neubert, Wang; 1912.08818, 2009.04456, 2009.06779]

We will present a NLP Factorization Theorem for Thrust in the Off-Diagonal Channel, which is free of endpoint divergences.

For off-diagonal channels, the leading logarithms already exhibit non-trivial structure in contrast to diagonal channels. [Moult, Stewart, Vita, Zhu; 1804.04665][Beneke et al.; 1809.10631] Thrust

$$T = \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum_i |\vec{p_i}|}$$

 \rightarrow Large Logarithms in the Two-Jet Region $\tau = 1 - T \rightarrow 0$.

 \rightarrow Two Hemispheres with Invariant Mass M^2_R and $M^2_L.$

Leading-Power Factorization Theorem

$$\frac{1}{\sigma_0}\frac{d\sigma}{dM_R^2 dM_L^2} = |C^{\rm A0}|^2 \times \mathcal{J}_c^{(q)} \otimes \mathcal{J}_{\bar{c}}^{(\bar{q})} \otimes S_{\rm LP}$$

[Schwartz; 0709.2709]

Next-to-Leading Power — Off-Diagonal Channel

$$e^+e^- \to \gamma^* \to [g]_c + [q\bar{q}]_{\bar{c}}$$

DL Accuracy: [Moult et al., 1910.14038] and [Beneke et al., 2008.04943]

Thrust — Off-Diagonal Channel

Matching of Electromagnetic Current in SCET

$$\begin{split} \bar{\psi}\gamma^{\mu}_{\perp}\psi(0) &= \int dt d\bar{t}\,\tilde{C}^{A0}(t,\bar{t}) \times \overline{\chi}_{c}(tn_{+})\gamma^{\mu}_{\perp}\chi_{\bar{c}}(\bar{t}n_{-}) + (c\leftrightarrow\bar{c}) \\ &+ \sum_{i=1,2} \int dt d\bar{t}_{1} d\bar{t}_{2}\,\tilde{C}^{B1}_{i}(t,\bar{t}_{1},\bar{t}_{2}) \overline{\chi}_{\bar{c}}(\bar{t}_{1}n_{-})\Gamma^{\mu\nu}_{i}\mathcal{A}_{c\perp\nu}(tn_{+})\chi_{\bar{c}}(\bar{t}_{2}n_{-}) + \dots \end{split}$$

The A0 operator contributes in a time-ordered product with the subleading interaction

$$\mathcal{L}_{\xi q}(x) = \bar{q}_s(x_-) \mathcal{A}_{c\perp}(x) \chi_c(x) + \text{h.c.}$$

Bare Factorization Theorem — A-Type Term

A-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_{0}} \frac{d\sigma}{dM_{R}^{2} dM_{L}^{2}} \bigg|_{\mathrm{A-type}} \sim \int_{0}^{\infty} d\omega d\omega' \left| C^{A0} \right|^{2} \times \mathcal{J}_{\bar{c}}^{(\bar{q})} \otimes \mathcal{J}_{c} \left(\omega, \omega' \right) \otimes S_{\mathrm{NLP}} \left(\omega, \omega' \right)$$

 \longrightarrow Focus on soft quark case.

Bare Factorization Theorem — A-Type Term

A-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_{0}} \frac{d\sigma}{dM_{R}^{2} dM_{L}^{2}} \bigg|_{\mathrm{A-type}} \sim \int_{0}^{\infty} d\omega d\omega' \left| C^{A0} \right|^{2} \times \mathcal{J}_{\bar{c}}^{(\bar{q})} \otimes \mathcal{J}_{c} \left(\omega, \omega' \right) \otimes S_{\mathrm{NLP}} \left(\omega, \omega' \right)$$

Hard Function

Anti-Collinear Function

 \longrightarrow Leading-Power Object

 $\longrightarrow \mathsf{Leading}\mathsf{-}\mathsf{Power}\ \mathsf{Object}$

Bare Factorization Theorem — A-Type Term

A-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_{0}} \frac{d\sigma}{dM_{R}^{2} dM_{L}^{2}} \bigg|_{\mathrm{A-type}} \sim \int_{0}^{\infty} d\omega d\omega' \left| C^{A0} \right|^{2} \times \mathcal{J}_{\bar{c}}^{(\bar{q})} \otimes \mathcal{J}_{c} \left(\omega, \omega' \right) \otimes S_{\mathrm{NLP}} \left(\omega, \omega' \right)$$

Collinear Function

 \longrightarrow New NLP Function

Bare Factorization Theorem — B-Type Term

B-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_0} \frac{d\sigma}{dM_R^2 dM_L^2} \Big|_{\rm B-type} \sim \int_0^1 dr dr' \ C^{B1}(r) C^{B1}(r')^* \times \mathcal{J}_c^{q\bar{q}}\left(r,r'\right) \otimes \mathcal{J}_c^{(g)} \otimes S^{(g)}$$

Bare Factorization Theorem — B-Type Term

B-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_0} \frac{d\sigma}{dM_R^2 dM_L^2} \Big|_{\rm B-type} \sim \int_0^1 dr dr' \ C^{B1}(r) C^{B1}(r')^* \times \mathcal{J}_{\bar{c}}^{q\bar{q}}\left(r,r'\right) \otimes \mathcal{J}_{c}^{(g)} \otimes \mathcal{S}^{(g)}$$

Collinear Function

Soft Function

 \longrightarrow Leading-Power Object

Bare Factorization Theorem — B-Type Term

B-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_0} \frac{d\sigma}{dM_R^2 dM_L^2} \bigg|_{\rm B-type} \sim \int_0^1 dr dr' \frac{C^{B1}(r)C^{B1}(r')^*}{C^{B1}(r')^*} \times \frac{\mathcal{J}_{\bar{c}}^{q\bar{q}}\left(r,r'\right)}{\mathcal{J}_{\bar{c}}^{q\bar{q}}\left(r,r'\right)} \otimes \frac{\mathcal{J}_{c}^{(g)}}{\mathcal{J}_{c}^{(g)}} \otimes \frac{\mathcal{J}_{c}^{(g)}}{\mathcal{J}_{c}^{(g)}}} \otimes \frac{\mathcal{J}_{c}^{(g)}}{\mathcal{J}_{c}^{(g)}} \otimes \frac{\mathcal{J}_{$$

Hard Function

Anti-Collinear Function

 \longrightarrow New NLP Function

\longrightarrow New NLP Function

A-Type Contribution

$$\frac{1}{\sigma_0} \frac{d\sigma}{dM_R^2 dM_L^2} \bigg|_{\rm A-type} \sim \int_{\frac{M_R^2}{Q}}^{\infty} d\omega \, \frac{1}{\omega^{1+\epsilon}} + \dots$$

Endpoint Divergence from $\omega, \omega' \to \infty$, i.e. when the **soft (anti-)quark** becomes soft-collinear.

B-Type Contribution

$$\frac{1}{\sigma_0} \frac{d\sigma}{dM_R^2 dM_L^2} \bigg|_{\mathrm{B-type}} \sim \int_0^1 dr \, \frac{1}{r^{1+\epsilon}} + \int_0^1 dr \, \frac{1}{\bar{r}^{1+\epsilon}} + \dots$$

Endpoint Divergences from $r \to 0$ and $r \to 1$, i.e. when the collinear (anti-)quark becomes soft-collinear.

Endpoint Factorization — B1 Matching Coefficients

Endpoint Factorization of the B1 Matching Coefficient

[Beneke, Garny, Jaskiewicz, Szafron, Vernazza, Wang; 2008.04943]

 \underline{D}^{B1} **Coefficient**: **Universal Object** describing the splitting of a collinear quark into a collinear gluon and a soft-collinear quark.

$$\langle g^a_c(p_c)q_{\overline{sc}}(p_{\overline{sc}})|\int d^4x\,T\big\{\bar{\chi}_c(0),\mathcal{L}_{\xi q}(x)\big\}\,|0\rangle = g_s\bar{u}(p_{\overline{sc}})t^a \phi_{c\perp}(p_c)\frac{in_+p_c}{p^2}\frac{\#_-}{2}\,D^{\mathrm{B1}}(p^2)$$

Appears in a non-abelian version for $h \rightarrow \gamma \gamma$. Calculated at two loop including one-loop renormalization by [Liu, Neubert, Schnubel, Wang; 2112.00018].

Endpoint Factorization

We expect the integrands of the A-type and B-type terms to have **identical asymptotic limits**. This gives us two **additional endpoint factorization relations**.

I A-Type Collinear Function

II A-Type Soft Function and B-Type Anti-Collinear Function

$$Q \, \widetilde{\mathcal{J}}_{\bar{c}}^{(\bar{q})}(s_R) \, \left[\!\!\left[\widetilde{S}_{\mathrm{NLP}}\left(s_R, s_L, \omega, \omega'\right)\right]\!\!\right] = \left[\!\!\left[\widetilde{\mathcal{J}}_{\bar{c}}^{q\bar{q}(8)}\left(s_R, \frac{\omega}{Q}, \frac{\omega'}{Q}\right)\right]\!\!\right]_0 \widetilde{S}^{(g)}(s_R, s_L)$$

Rearrangement of the Factorization Theorem

Add the scaleless integral:

$$\begin{array}{c} \omega' \\ Q \\ \Lambda \\ \tau Q \\ \tau Q \\ \tau Q \\ \tau Q \\ \Lambda \\ \tau Q \\ \Lambda \\ \tau Q \\ \omega \end{array}$$

Split the integral into two, I_1 and I_2 .

Then subtract I_2 from the A-type term and I_1 from the B-type term.

Renormalized Factorization Theorem

A-Type Contribution

$$\begin{split} \frac{1}{\sigma_0} \frac{\widetilde{d\sigma}}{ds_R ds_L} \bigg|_{\mathbf{A}-\text{type}} &= \frac{2C_F}{Q} |f(\epsilon)| C^{\mathbf{A}0}(Q^2)|^2 |\widetilde{\mathcal{J}}_{\bar{c}}^{(\bar{q})}(s_R) \int_0^\infty d\omega d\omega' \\ & \times \Big\{ |\widetilde{\mathcal{J}}_c(s_L, \omega, \omega') |\widetilde{S}_{\text{NLP}}(s_R, s_L, \omega, \omega') \\ & - \theta(\omega - \Lambda) \theta(\omega' - \Lambda) \, [\![\widetilde{\mathcal{J}}_c(s_L, \omega, \omega')]\!] [\![\widetilde{S}_{\text{NLP}}(s_R, s_L, \omega, \omega')]\!] \\ & + |\widetilde{\tilde{\mathcal{J}}}_c(s_L, \omega, \omega') \, \widetilde{\tilde{S}}_{\text{NLP}}(s_R, s_L, \omega, \omega') \Big\} \end{split}$$

B-Type Contribution

$$\begin{split} \frac{1}{\sigma_0} \frac{\widetilde{d\sigma}}{ds_R ds_L} \Big|_{\substack{\mathbf{B} - \mathrm{type}\\ \mathbf{i} = \mathbf{i}' = 1}} &= \frac{2C_F}{Q^2} f(\epsilon) \, \widetilde{\mathcal{J}}_c^{(g)}(s_L) \, \widetilde{S}^{(g)}(s_R, s_L) \, \int_0^\infty dr dr' \\ &\times \left[\, \theta(1-r)\theta(1-r') \, C_1^{\mathrm{B1}*}(Q^2, r') C_1^{\mathrm{B1}}(Q^2, r) \, \widetilde{\mathcal{J}}_c^{q\bar{q}}(\mathbf{8})(s_R, r, r') \right. \\ &\left. - \left[1 - \theta(r - \Lambda/Q)\theta(r' - \Lambda/Q) \right] \\ &\left. \times \left[C_1^{\mathrm{B1}*}(Q^2, r') \right]_0 \, \left[C_1^{\mathrm{B1}}(Q^2, r) \right]_0 \, \left[\widetilde{\mathcal{J}}_c^{q\bar{q}}(\mathbf{8})(s_R, r, r') \right]_0 \right] \end{split}$$

Resummation

Rearrange the Factorization Theorem such that the **logarithmically enhanced endpoint contributions** are separated.

A-Type Contribution

$$\begin{split} \frac{1}{\sigma_{0}} \frac{\widetilde{\mathrm{d}\sigma}}{\mathrm{d}s_{R} \mathrm{d}s_{L}} |_{\mathrm{A-type}} &= \frac{2C_{F}}{Q} \left| C^{\mathrm{A}0} \right|^{2} \tilde{\mathcal{J}}_{c}^{\left(\bar{q} \right)} \int_{0}^{\infty} \mathrm{d}\omega \mathrm{d}\omega' \times \left\{ \\ & \left[\left[\sigma(\omega, \omega') - \theta\left(\omega - \Lambda \right) \theta\left(\omega' - \Lambda \right) \right] \left[\left[\tilde{\mathcal{J}}_{c}\left(\omega, \omega' \right) \right] \right] \left[\left[\tilde{\mathcal{S}}_{\mathrm{NLP}}\left(\omega, \omega' \right) \right] \right] \right] \\ & + \left[\left[\widetilde{\mathcal{J}}_{c}\left(\omega, \omega' \right) \tilde{\mathcal{S}}_{\mathrm{NLP}}\left(\omega, \omega' \right) - \sigma(\omega, \omega') \left[\left[\tilde{\mathcal{J}}_{c}\left(\omega, \omega' \right) \right] \right] \right] \right] \\ & + \left[\widetilde{\mathcal{J}}_{c}\left(\omega, \omega' \right) \tilde{\mathcal{S}}_{\mathrm{NLP}}\left(\omega, \omega' \right) \right] \right] \end{split}$$

B-Type Contribution

$$\begin{split} &\frac{1}{\sigma_{0}}\frac{\tilde{\mathrm{d}\sigma}}{\mathrm{d}s_{R}\mathrm{d}s_{L}}\Big|_{\substack{\mathrm{B-type}\\i=i'=1}}=\frac{2C_{F}}{Q^{2}}\;j_{c}^{(g)}\tilde{g}^{(g)}\times\Big\{\\ &\int_{0}^{\infty}\mathrm{d}r\mathrm{d}r'\left[\theta\left(\bar{r}\right)\theta\left(\bar{r'}\right)-1+\theta\left(r-\frac{\Lambda}{Q}\right)\theta\left(r'-\frac{\Lambda}{Q}\right)\right]\left[\!\left[C_{1}^{\mathrm{B1}*}\left(r'\right)\right]_{0}\left[\!\left[C_{1}^{\mathrm{B1}}\left(r\right)\right]_{0}\left[\!\left[\tilde{\mathcal{J}}_{\bar{c}}^{q\bar{q}}(8)\left(r,r'\right)\right]\!\right]_{0}\right]\\ &+\int_{0}^{1}\mathrm{d}r\mathrm{d}r'\left[C_{1}^{\mathrm{B1}*}\left(r'\right)C_{1}^{\mathrm{B1}}\left(r\right)\tilde{\mathcal{J}}_{\bar{c}}^{q\bar{q}}(8)\left(r,r'\right)-\left[\!\left[C_{1}^{\mathrm{B1}*}\left(r'\right)\right]_{0}\left[\!\left[C_{1}^{\mathrm{B1}}\left(r\right)\right]_{0}\left[\!\left[\tilde{\mathcal{J}}_{\bar{c}}^{q\bar{q}}(8)\left(r,r'\right)\right]\!\right]_{0}\right]\right]\right\} \end{split}$$

Renormalization Group Equations — A-Type Contribution

A-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_{0}} \frac{\widetilde{d\sigma}}{ds_{R} ds_{L}} \Big|_{\mathrm{A-type}} \sim \int d\omega d\omega' \left| C^{A0} \right|^{2} \times \widetilde{\mathcal{J}}_{\overline{c}}^{(\overline{q})} \otimes \left[\widetilde{\mathcal{J}}_{c} \left(\omega, \omega' \right) \right] \otimes \left[\widetilde{\mathcal{S}}_{\mathrm{NLP}} \left(\omega, \omega' \right) \right]$$

Hard & Anti-Collinear Functions

Leading-Power Objects with well-known RGEs. [Becher, Neubert, Pecjak; hep-ph/0607228]

Collinear Function

 \longrightarrow Asymptotic Evolution from Endpoint Factorization

$$\left[\!\left[\mathcal{J}_{c}\left(p^{2},\omega,\omega'\right)\right]\!\right] = \mathcal{J}_{c}^{\left(g\right)}\left(p^{2}\right)\frac{D^{\mathrm{B1}}(\omega Q)}{\omega}\frac{D^{\mathrm{B1}*}(\omega' Q)}{\omega'}$$

Soft Function

 \longrightarrow Asymptotic Evolution from RGE Consistency

Renormalization Group Equations — B-Type Contribution

B-Type Contribution — Schematic Representation

$$\frac{1}{\sigma_0} \frac{\widetilde{d\sigma}}{ds_R ds_L} \Big|_{\mathbf{B}-\text{type}} \sim \int dr dr' \left[\left[C_1^{B1}(r) \right]_0 \left[\left[C_1^{B1}(r')^* \right] \right] \times \left[\left[\tilde{\mathcal{J}}_c^{q\bar{q}}\left(r, r' \right) \right] \right] \otimes \left[\tilde{\mathcal{J}}_c^{(g)} \otimes \tilde{\mathcal{S}}^{(g)} \right] \right]$$

Collinear & Soft Functions

Leading-Power Objects with well-known RGEs. [Becher, Schwartz; 0911.0681; Berger et al., 1012.4480]

Hard Function

 \longrightarrow We obtained the full one-loop ADM via an analogous calculation to [Beneke, Garny, Szafron, Wang; 1712.04416, 1808.04742].

 \longrightarrow The Asymptotic Evolution can be derived from the full ADM.

Anti-Collinear Function

 $\longrightarrow \mathsf{RGE}\ \mathsf{Consistency}$

Asymptotic RGEs and Resummation of Initial Conditions

The NLP functions become two-scale objects in the endpoint region.

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu} \left[C_1^{\mathrm{B1}} \left(Q^2, r, \mu^2 \right) \right]_0$$
$$= \left[C_F \gamma_{\mathrm{cusp}} \left(\alpha_s \right) \ln \frac{-Q^2}{\mu^2} - \left(C_F - C_A \right) \gamma_{\mathrm{cusp}} \left(\alpha_s \right) \ln \frac{-rQ^2}{\mu^2} \right] \left[C_1^{\mathrm{B1}} \left(Q^2, r, \mu^2 \right) \right]_0$$

Choosing the hard scale as initial scale is not enough to cancel all logarithms in the fixed-order coefficient — it would still contain large logarithms in \mathbf{r} .

Need two initial scales — the hard scale Q^2 and a dynamical scale rQ^2 .

Like the B1 coefficients, the other NLP functions also become **two-scale objects**. Their resummation requires four **dynamical scales** in addition to the standard scales.

Initial Scales

$$\begin{split} \mu_h^2 \sim Q^2 & \mu_c^2 \sim \frac{Q}{s_L} & \mu_{\bar{c}}^2 \sim \frac{Q}{s_R} & \mu_s^2 \sim \frac{1}{s_L s_R} \\ \mu_{h\Lambda}^2 \sim rQ^2 & \mu_{c\Lambda}^2 \sim \omega Q & \mu_{\bar{c}\Lambda}^2 \sim \frac{rQ}{s_R} & \mu_{s\Lambda}^2 \sim \frac{\omega}{s_R} \end{split}$$

Apart from this new feature, the thrust distribution can be resummed with **standard methods**. We obtain resummed functions in terms of

$$\begin{split} S\left(\nu,\mu\right) &= -\int_{\alpha_{S}\left(\nu\right)}^{\alpha_{S}\left(\mu\right)} \mathrm{d}\alpha \; \frac{\gamma_{\mathrm{cusp}}\left(\alpha\right)}{\beta\left(\alpha\right)} \int_{\alpha_{S}\left(\nu\right)}^{\alpha} \mathrm{d}\alpha' \frac{1}{\beta\left(\alpha'\right)},\\ A\left(\nu,\mu\right) &= -\int_{\alpha_{S}\left(\nu\right)}^{\alpha_{S}\left(\mu\right)} \mathrm{d}\alpha \; \frac{\gamma_{\mathrm{cusp}}\left(\alpha\right)}{\beta\left(\alpha\right)}. \end{split}$$

LL Resummed Off-Diagonal Thrust Distribution

$$\begin{split} \frac{1}{\sigma_0} \frac{\widetilde{\mathrm{d}\sigma}}{\mathrm{d}s_R \mathrm{d}s_L} |_{\mathrm{LL}} &= \frac{\alpha_s (Q/(s_L e^{\gamma_E})) C_F}{\pi} \frac{1}{Qs_R} \\ & \times \exp\left[4C_F S\left(Q^2, \frac{Q}{s_R e^{\gamma_E}}\right) + 4C_A S\left(\frac{1}{s_L s_R e^{2\gamma_E}}, \frac{Q}{s_L e^{\gamma_E}}\right) \right] \\ & \times \int_{\sigma}^{Q} \frac{d\omega}{\omega} \exp\left[-4\left(C_F - C_A\right) S\left(\omega Q, \frac{\omega}{s_R e^{\gamma_E}}\right) \right] \\ & \times \left(s_R e^{\gamma_E} Q\right)^{2C_F A\left(\omega/(s_R e^{\gamma_E}), Q/(s_R e^{\gamma_E})\right) + 2C_A A\left(Q/(s_L e^{\gamma_E}), \omega/(s_R e^{\gamma_E})\right)} \end{split}$$

Thrust Distribution: Set $s_L\to s$ and $s_R\to s,$ insert $\sigma=1/(se^{\gamma_E})$ and take inverse Laplace transform.

Double-Logarithmic Limit

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \frac{C_F}{C_F - C_A} \frac{1}{\ln(1/\tau)} e^{-\frac{\alpha_s C_A}{\pi} \ln^2 \tau} \left\{ 1 - e^{-\frac{\alpha_s}{\pi} (C_F - C_A) \ln^2 \tau} \right\}$$

 \rightarrow Agrees with [Moult et al., 1910.14038] and [Beneke et al., 2008.04943].

NLP Off-Diagonal Thrust Distribution

We presented a **NLP Factorization Theorem** for Thrust in the off-diagonal channel, which is **free of endpoint divergences**.

Novel **endpoint factorization relations** allow us to rearrange the factorization theorem such that the A-type and B-type contributions are **individually free of endpoint divergences**.

We see similarities to the rearrangement for $h \rightarrow \gamma \gamma$ by Neubert et al. even though thrust is a cross-section level SCET_I process.

The off-diagonal thrust distribution can now be **resummed with standard RGE methods**.

We obtained **explicit results** for the off-diagonal thrust distribution **at LL accuracy**.

Back-Up Slides

$$\begin{split} &\frac{1}{2\pi} \sum_{X_{\bar{c}}} \int d\mathsf{PS}_{X_{\bar{c}}} \langle 0 | \bar{\chi}_{\bar{c}}(x)_{b\beta} | X_{\bar{c}} \rangle \langle X_{\bar{c}} | \chi_{\bar{c}}(0)_{a\alpha} | 0 \rangle \\ &\equiv \delta_{ab} \int \frac{d^d p}{(2\pi)^d} \, n_- p \, e^{-ipx} \mathcal{J}_{\bar{c}}^{(\bar{q})}(p^2) \left(\frac{\not h_+}{2}\right)_{\alpha\beta} \end{split}$$

A-Type Collinear Function

$$\begin{split} \frac{1}{2\pi} \sum_{X_c} \int d\mathsf{PS}_{X_c} \, \frac{1}{g_s^2} \left\langle 0 \right| \, \mathcal{O}_{b'\beta';a'\alpha'}^{\dagger}(\omega',x) \left| X_c \right\rangle \, \left[\frac{\not h_+}{2} \right]_{\alpha'\alpha} \langle X_c \right| \, \mathcal{O}_{a\alpha;b\beta}(\omega,0) \left| 0 \right\rangle \\ &= \left(d-2 \right) \, \left[\frac{\not h_-}{2} \right]_{\beta'\beta} \, \int \frac{d^d p}{(2\pi)^d} \, e^{-ipx} \left\{ \left[t^A \right]_{ab} \left[t^A \right]_{b'a'} \, \mathcal{J}_c(p^2,\omega,\omega') \right. \\ &+ \left[t^A \right]_{aa'} \left[t^A \right]_{b'b} \, \hat{\mathcal{J}}_c(p^2,\omega,\omega') \Big\}, \end{split}$$

where the non-local operator $\ensuremath{\mathcal{O}}$ is defined as

$$\mathcal{O}_{a\alpha;b\beta}(\omega,x) = \int d^d y \, e^{iy_-\omega} \, T\left\{\bar{\chi}_{c,b\beta}(x), [\mathcal{A}_{\perp c}\chi_c]_{a\alpha} \, (x+y)\right\}.$$

$$\begin{split} g_{s}^{2} &\int \frac{dx_{-}}{2\pi} \frac{dx'_{-}}{2\pi} e^{-i(x_{-}\omega - x'_{-}\omega')} \langle 0 | \,\overline{T} \left\{ \left[Y_{n_{+}}^{\dagger}(0)Y_{n_{-}}(0) \right]_{cb'} \left[Y_{n_{-}}^{\dagger} q_{s} \right]_{\alpha' a'} (x'_{-}) \right\} \\ &\times \mathcal{P}_{s}(l_{+}, l_{-}) \,T \left\{ \left[\bar{q}_{s}Y_{n_{-}} \right]_{\alpha a} (x_{-}) \left[Y_{n_{-}}^{\dagger}(0) \,Y_{n_{+}}(0) \right]_{bc} \right\} | 0 \rangle \\ &= \left(\frac{\not h_{+}}{2} \right)_{\alpha' \alpha} \left\{ \delta_{a'a} \delta_{bb'} \,S_{\mathsf{NLP}}(l_{+}, l_{-}, \omega, \omega') + \delta_{ba} \delta_{a'b'} \,\widehat{S}_{\mathsf{NLP}}(l_{+}, l_{-}, \omega, \omega') \right\} + \dots \end{split}$$

$$\begin{split} &\frac{g_{s}^{2}}{2\pi}\sum_{X_{\bar{c}}}\int d\mathsf{PS}_{X_{\bar{c}}}\left\langle 0|\mathcal{Q}_{i'\mu\nu}^{\dagger B}(x,r')|X_{\bar{c}}\right\rangle \langle X_{\bar{c}}|\mathcal{Q}_{i}^{A\mu\nu}(0,r)|0\rangle \\ &= \delta^{AB}\left(d-2\right)^{2}\int \frac{d^{d}p}{(2\pi)^{d}}\,e^{-ipx}\left\{\delta_{ii'}\mathcal{J}_{\bar{c}}^{q\bar{q}(8)}(p^{2},r,r') + (1-\delta_{ii'})\,\hat{\mathcal{J}}_{\bar{c}}^{q\bar{q}(8)}(p^{2},r,r')\right\} \end{split}$$

where the non-local operator $\ensuremath{\mathcal{Q}}$ is defined as

$$Q_i^{A\mu\nu}(x,r) = \frac{1}{2\pi} \int_0^\infty d\bar{t} \, e^{-ir\bar{t}n_- \cdot p_{\bar{c}}} \, \bar{\chi}_{\bar{c}}(x+\bar{t}n_-) t^A \, \Gamma_i^{\mu\nu} \chi_{\bar{c}}(x) \, .$$

$$\begin{split} &\frac{1}{2\pi} \frac{1}{g_s^2} \sum_{X_c} \int d\mathsf{PS}_{X_c} \left\langle 0 | \mathcal{A}_{c\perp\mu}^B(x) | X_c \right\rangle \left\langle X_c | \mathcal{A}_{c\perp\nu}^C(0) | 0 \right\rangle \\ &\equiv \delta^{BC} \left(-g_{\mu\nu}^{\perp} \right) \int \frac{d^d p}{(2\pi)^d} \, e^{-ipx} \mathcal{J}_c^{(g)}(p^2) \end{split}$$

$$S^{(g)}(l_{+},l_{-}) = \frac{1}{N_{c}^{2}-1} \langle 0|\overline{T} \left\{ \mathcal{Y}_{n_{+}}^{BD}(0)\mathcal{Y}_{n_{-}}^{DA}(0) \right\} \mathcal{P}_{s}(l_{+},l_{-}) T \left\{ \mathcal{Y}_{n_{-}}^{AC}(0)\mathcal{Y}_{n_{+}}^{CB}(0) \right\} |0\rangle$$