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Motivation

O Scale hierarchy M,f > m,f in H — yy(gg) induces large logarithms to be
resummed, which is relevant in precision studies.

O Next-to-leading power (NLP) problems are complicated from several
aspects, factorization, renormalization, solving RGEs and resummation.

€.g., [Beneke, et al 17" - '22; Moult, et al '18-'20; Liu, et al 19 - '22; Wang, 19’; Julian's and Yao's
talk and yesteday, and et al...]

O This work is to present the last piece for the H — yy. Specifically, we
study the consistency after RG evolutions in the "plus-type" subtraction
scheme.
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Factorization after renormalization
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U We choose to evolve operators, such that H; does not bother.

U Since operators in T, are zero at LO, in RG-improved LO, their RG solutions
are not exponentiated.



Resummation accuracy

Resummation of large logarithms can be achieved by solving RGEs order by order.

Two kinds of RG-functions are commonly used: So(T; v, 1)
/
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They usually appear as exponents in the exponential for Sudakov problems:
~ C(v)exp [S(T;v, 1) + a(vy; v, p)]

We find that for our case, it is systematic to do the counting in exponents,
i.e., the two RG functions above.

RG-improved LO ~ Cy(v)exp [So(L; v, i) + ag(v; v, p)]



Resummed 75
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Resummed 75

7LO, T _ Neoy yp(pn)

3, RGi T \/§
LO, 1T _ Neow, yp(pen)
3, RGi T \/i
7 LO, 1T _ Neay, yb(Mh)
3, RGi T \/5
TLO, IV _ Neay yp(pin)
3, RGi T \/5

my, (15.56 — 17.591),

: Neay, yu(pin) -
my (3.10 — 2.6074), TXO .. = mp (20.30 — 21.26 1),
b( ) 3, RGi T \/i b( )
‘ N, |
my, (1.66 — 1.071), TNLL _ TTe Yolln) (17,33 — 19.184)

T V2
my, (—0.0083 — 0.0033 7).

O NLL amplitude entirely comes from region I of T, resumming a/(L*"* 4+ L*"*1),
To achieve that, just expand the exponentials and the Meijer-G function.
O Without expansion, i.e., counting in the exponents, the corrections reaches 14%.



Renormalization Group Equation (RGE): 7,

dlcrilu \Oalzo ) = /0 d2'y22 (2,2') (02 (2, 1)) = 721(2) (O1(u))

dlcrll,u [(O2(z, 1)) = = /Ooo d 2" [y22 (2,2)][(O2 (2, 1))] — [721(2)] (O1(w)) -

With diagonal one-loop kernel:
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And mixing one-loop terms:

Vo1(2) = —




* How to solve the two integro-differential equations in the presence of mixing
terms systematically?

* [s endpoint divergence subtracted properly after seperate scale evolutions?



Solutions to (Os(z, 1))

O O O l ° l o °
752) (2,2) B 'Yé 2) (2, 2) ’ eGiegelzbaue.r po fynomlals w1tlh welﬁht 3/2 are
= , genfunctions for one loop kernel;
z(1—z) Z'(1—2') O Not true beyond one loop!

See e.g., Mikhailov and Radyushkin, '84
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Solutions to (O>(z, 1)) cont.

m = m = 10 m = 100 m = 1000

I 3.790 — 1.946 ¢ 2.389 — 0.8421 1.704 — 0.482¢ | 1.275 —0.3162
I1 0.208 — 0.0787 2.041 — 0.3751 3.563 — 0.322¢ | 4.904 — 0.193 ¢
—0.026 + 0.024¢ | —0.0182 +0.01352 | 0.008 — 0.0057 | 0.029 — 0.018+

The diagonal tWO-lOOp moments are derived from [Hayashigaki, Kanazawa, and Koike, '97;
Konig and Neubert, '15].
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Endpoint divergencein H; ® (O3) : enhanced term as an example

At RG-improved LO, we need the LO hard function H,, expanded upon
Gegenbauer polynomials, which are constants: 4,,, = yb(,uh)/\/i :

The endpoint divergence in the convolution manifests itself in the Gegenbauer
space as the divergence in the summation:

1 00
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Can thlS term be subtracted by the subtracted term

after scale evolutlon w1th a dlfferent kerneP
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Endpoint divergencein [H>] ® [(O2)] : enhanced term as an example

This subtracted operator is closely related to the radiative jet function by
a re-factorization formula, which has been proved to all orders.
The techniques to solve the jet function in (Liu, Neubert 20201 can be applied hereby.

Neag, 4 1 oy (1 —1)
[(0a(e: )] 2 2201 ) s o )

In the sense of Taylor expansion

The convolution with LO hard function, which is 1/z, is divergent, since we take
n — 0:

1
/ dz (2711 4 z7 1)
0

n=0
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Endpoint divergencein [H>] ® [(O2)] : enhanced term as an example

To compare with H, @ (O,), we convert the ill-defined integration into
a summation in by expansion upon Gegenbauer polynomials:
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,4 The summed term is the same as the divergent example in 4, up to 1/m Slnm

Hence, the answer is Yes. The subtraction scheme works as designed after );
| non- tr1v1al scale evolutlons .f
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A faster way out?

The subtraction scheme works at the renormalized scale u. We can evolve
(02) and [(O2)] slice by slice in scale integration. Since the Lange-Neubert kernel
captures the limiting behaviour of the Brodsky-Lepage kernel, no divergence develops.
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Slicing method for 7,

it |
| (O2(2, pit1)) =(02(z, i) — / %(722(272') ® (O2(2', pi) + 721(2)(01(1))), |

102 )] =[Oazsi)] = [ ([t )] @ [O2(s )] + Bn (1101 (1),

U We start from the initial scale y, = m,, where the two operators are zero at LO.
Thus, the RG-improved LO result starts from mixings.

O The mixing term is trivially solved by plugging the expressions therein
and do the subtraction:
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Slicing method for 7,

41

 {Oa(z i) = Oz i) — / %“(m(z,z’) ® (a2, i) +121(2) (01 (1)),
m+1d,u / /
[(O2(z, pit1))] = [(O2(z, ps))] — / 7([[’722(272’ ) ®oo [{O2(2", )] + [721(2)[{01 (1))

The second line can also be solved iteratively. It is due to the fact that
the functional dependence is always logarithmic.

[(02(z 140 = [(Oa(e: )] + 5 In C“;iﬁ;ﬁ 159 (2, 2)] @oc O (</, 1s)] — mixing(=: i, 1),

Ne . . .
2 iy (n) [3.47 — 1.62i — (0.31 — 0.213) In z + (0.07 — 0.04d) In? z + - -
.

[(O2(z, pn))]| =
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Slicing method for 7,

i ‘
| (O2(2, prig1)) = (O2(z, pi)) — d—u(%z(z,Z’) @ (O2(2, i) + 721 (2)(O1 (1)), |
7 |

[(Oa (2 pis1))] = [(Oa(z )] — / %(umu,z’)u D00 [(O2(, )] + [y ()1 (01 (1)),

U The situation is different for (O,) during itetations, since the functional form
is not uniform.
O But the contribution from the Brodsky-Lepage kernel has to be convoluted with

L.O hard function  (z(1 — z))~!, which is always zero by definition.
O In the second line, the convolution between LO hard function and the plus
distribution can be re-expressed as:
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Slicing method for 7,

41

|
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O Take a difference between the two lines, A(Os(z, 1)) = (O2(z, 1)) e — [(O2(z, 1))]
a "uniform” RGE follows:
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Slicing method for 7,
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Full results

T is trivial, since it is just the running quark mass effect:

TRGL _ Ne ay, yy(pn)
1,LO T \/§

mp (—1.40 — 0.16 1)

TLO
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1 V2
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MEO = mp (14.38 — 20.5114),
T NG b ( )
N, .
MNLO e y”(“h)mb (15.29 — 18.801%),

It is not hard to including NLO results at the matching scales in the future to
compare with NLO results.
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Summary

U We count in the RG exponents and evaluate 75 in all regions to go beyond
NLL resummation.
0 We show that the subtraction scheme works well after evolving operators

in T, separatively.
U The RGE in T, is non-trivial in the presence of operator mixing

and moments mixing.
O We find that corrections beyond NLL are big.

Thank youl
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Recollections from SCET 2020&2021: Factorization

« Endpoint divergences occur whenz — 0,1 and £, — oo.
' o Some are regularized by DR, while others are rapidity divergences.
« Rapidity divergences are cancelled additively, not like LP!

h h

[Becher, Neubert, '10]
_|_ [Chiu, Jain, Neil, Rothstein, '11]

C : h H2<z>®C© ﬂ 20/1 dZH§O)<Z><0§O)&Z> (HQ{O)(Z):%>

| “Cancellation of rapidity divergences indicates close

: + gelation between the two integrands in the endpoint region (next slide)
he he — : . — — -
df dl_
- %&‘ = H, <O(O)> HY / ; i / - JO (=M, e4) JO (Mye_) SO (0,0
| +
0

_ 0 _ "plus-type” subtraction
infinity bin . _—
[Liu, Neubert, 1912.08318] = (10 FBED) 0 +2 [ a: [0 )) - [P EIEPEN = E GNP @)
0
infinity bin + lim HY [Tl Al 1) (gl ) JO (“mpt) SO (0,0.)
o—=—1 0 l_ 0 £+ leading power

* [f(2)] means that one retains only the leading terms of the function f(2).
* Cutoffs are emergent after adding back the subtraction and double counting is removed, which is AHI(O).
* Rapidity regulator is no longer needed due to plus-type subtraction, but cutoffs are non-trivial when renormalizing.
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NLL
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iterations

1 0(z —2)
2(1—2") z—2
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/0 dz Z(l—Z) [z’(1—2’> o o Z(l—z’) .

25




