Marburg Ionbeam-Therapycenter (MIT)

Innovations in Physics and Radiobiology

Dr. Ulrike Schötz Dr. Kilian Baumann Prof. Dr. Klemens Zink

Marburg Ionbeam-Therapycenter (MIT)

Prof. Dr. Klemens Zink
Medical Physicist
Technical and Scientific Director MIT

History of MIT

Constructed by Siemens Healthineers

2 facilities in operation: Marburg and Shanghai

Start of construction: 09/2007

End of construction: 04/2009

Installation accelerator: 08/2008

First beam in treatment room: 02/2010

First patient treatment: 2011

(planned)

Shut down: 2011

Restart (leadership HIT): 2015

First patient treated: 2015

Change ownership HIT -> UKGM: 08/2019

Technical Equipment

Synchrotron:

- up to 430 MeV/u 12C
- up to 250 MeV protons
- active raster scanning
- 3 treatment rooms with horizontal beam
- 1 treatment room with 45° beam line

Patient statistic

year	number of patients
2018	251
2019	293
2020	323
2021	311

Treatments:

- 66% Primary
- 34% Boost

Treatments:

- 40% ¹²C
- 60% Protonen

Patient statistic

year	number of patients
2018	251
2019	293
2020	323
2021	311

Treatments:

- 40% ¹²C
- 60% Protonen

Treated tumor entities

Clinical trials initiated by MIT

GliProPh (phase III)

Studienplan Phase III Studie zum Yergleich einer Protonen-vs. Photonen-Strahlentherapie für Patienten mit WHO Grad II-III Gliomen (GIProPh) Phase III trial of radiotherapy with protone vs. coventional radiotherapy with photons for patients with WHO grade II-II glioma (GIProPh) Vesion V.S. vom 25.06.2017

grade 2 and 3 glioma

protons vs. photons

multicentric

prospective randomised

recruiting

INSPIRE

registry

all patients out of prospective trials

monocentric prospective

recruiting

GIRO (phase III)

Re-Bestrahlung von <u>Gilobiastomrezidiyen</u> mit
Kohlenstoffionen (C12) versus stereotaktische Re-RT mit Photonen

(GIRO)

multizentrische zweiarmige prospektive Phase III Studie

recurrent glioblastoma

C¹² vs. photons

multicentric prospective randomised

start in Q3/2021

KOENIG (phase I/II)

Klinisches Studienprotokoll
Kohlenstoffionentherapie beim primären Glioblastom
Die KOENIG Studie

Version 1.0
26.6.2019

glioblastoma

 C^{12}

monocentric prospective one armed

start in Q1/2022

Research@MIT

- Since 2018 MIT hosted about 18 scientific projects and groups
 - Radiobiology
 - Medical physics
 - Particle physics
- Annual grants for beamtime for hessian research groups

Medical physic projects@MIT

Medical Physics Research at MIT

Kilian-Simon Baumann

- Postdoctoral Researcher at Philipps-University Marburg
- Medical Physicist at MIT

Research topics:

- Particle therapy of lung cancer patients
 - Investigation of lung modulation effects
 - Development of 3d range modulator
- Monte-Carlo based dosimetry on microscopic and macroscopic scales
 - Calculation of beam quality correction factors for air-filled ionization chambers
 - Track structure simulation on cellular scales using Geant4-DNA
- Optical range verification

Medical Physics Research at MIT – optical range verification

- CMOS camera is used to collect light emitted by protons
- Range of protons can be determined on the submillimetre scale
- Results verified against PTW
 Bragg peak chamber and IBA
 Giraffe
- Changes in energy smaller than
 0.5 MeV detectable
- Source of light:
 - Cherenkov radiation only at entrance region
 - Measurements of spectral fluence

Medical Physics Research at MIT – track structure simulations

- Geant4-DNA is able to simulate track structures on the nm scale and dose deposition down to several eV
- Simulation of chemical stage as well as biological scale
- Determination of quantity and quality of DNA damage
- Influence of FLASH irradiation
- Simulations will be used to support cell experiments
- Overall goal is optimization of RBE models

Medical Physics Research at MIT – macroscopic dosimetry

- Modelling of air-filled ionization chambers in FLUKA and Geant4
- Calculation of f_Q and k_Q factors as function of energy
- Update of IAEA TRS-398
- Intercode comparison:
 - Good agreement for low and medium energies

 f_{Q}

- Divergence for high energies
- Investigation of role of nuclear interactions

Medical Physics Research at MIT – PT of thoracic tumors

- Particle therapy promising alternative to photon-based radiotherapy for lung cancer patients
 - Conformal dose deposition in tumor and significantly better sparing of normal tissue
 - Higher biological effectiveness for carbon ion
- However: major challenges!
 - Motion
 - Lung modulation effects

Medical Physics Research at MIT – lung modulation effects

- Heterogeneous structure of lung tissue leads to degradation of Bragg peak
- Potential underdosage of target volume and overdosage of distal normal tissue
- Effect should be considered in treatment planning
- Problem: Structure of lung tissue is not sufficiently resolved in treatment-planning CTs
 - More homogeneous
 - Consideration of effects hardly possible

Medical Physics Research at MIT – lung modulation effects

- Mathematical description of Bragg peak degradation by convolution with normal distribution
- Definition of material characteristics modulation power P_{mod}
- Modulation power can be determined experimentally
 - Applicability for human lung tissue?
- Estimation of modulation power on basis of clinical CT-images with the help of a histogram analysis

Medical Physics Research at MIT - lung modulation effects

- Monte-Carlo based solution to reproduce lung modulation effects on clinical CT-images
- Modulation of physical density of lung voxels
- Investigation of dose uncertainties for clinical treatment plan
- Different tumor volumes, positions within the lung, and irradiation strategies

Binary density distribution

Heterogeneous fine structure not depicted in CT-images

Modulation of mass density

Rougher

structure

Medical Physics Research at MIT – lung modulation effects

- Lung modulation effects lead to smaller region of high dose
 - Range uncertainties of up to 10 mm
- The region of low dose is smaller and reaches farther
 - Range uncertainties of up to 5 mm
- Underdosage of CTV up to -5% for protons
- Effects significantly more pronounced for carbon ions

Patient	Underdosage in terms of average dose in CTV
1	-2.1%
2	-3.1%
3	-1.8%
4	-2.2%
5	-4.9%

Medical Physics Research at MIT – lung modulation effects

- Consideration of lung modulation effects in treatment planning
- Degradation of base data depth dose curves for dose calculation and optimization
 - Reference plan optimized without consideration of lung modulation effects
 - Lung modulation effects lead to underdosage of target volume
 - Improved optimization reduces dose uncertainties to <0.5%

- Background: Particle therapy of lung cancer patients
- For active scanning interference between tumor motion and movement of the particle beam
 - → Interplay effects
- Potential hot and cold spots negatively influencing therapy outcome

C. Graeff, GSI

Can we achieve a sufficient reduction in irradiation time enabling an irradiation under breath hold?

- For synchrotron-based facilities an acceleration of particles is necessary for each iso-energy layer that is being irradiated
- Acceleration takes time in the order of seconds
- For an exemplary treatment plan with 16 iso-energy layers, the total irradiation time is 78 seconds
- Is there a possibility to enlarge high-dose region of depth dose curve?

With courtesy of IBA

- Approach: Use passive Range Modulator similar to Ripple Filter to enlarge Bragg Peak
- Range Modulator consists of Pins
- Energy loss and hence range depend on the particle's trajectory through the pin
- Length of Pin defines width of Spread-Out Bragg Peak
- Only 1 energy needed to apply Spread-Out Bragg Peak

- By arranging different pins, 3D dose distributions can be created
- 3D Range Modulators can easily be 3d-printed
- Verification with measurements at MIT

3D Range Modulator for complex tumor geometries designed patient individually

- Reduction in treatment time due to 3D Range Modulator:
 - 78 seconds without RM
 - 3 seconds with RM

Pencil Beam Scanning	3D Range modulator
Very good dose conformity	Dose conformity comparable to PBS
Slow due to energy switching	Only one energy needed
Interplay effects in moving target	Treatment time in order of seconds

3D Range Modulator also essential for FLASH irradiation with active scanning and "slow" energy selection!

Radiobiology projects@MIT

Radiobiology - Projects

Ulrike Schötz

Photon and carbon ion irradiation

Parameter:

Molecular mechanisms of radioresistance HPV infection DNA damage response

NSCLC

Radioresistance

Mechanisms Targeting Biomarker

Particle Irradiation

Mechanisms

Improved treatment response

Photon and carbon ion irradiation

in vitro (2D, 3D)

in vivo

Parameter:

Molecular mechanisms of radioresistance Hypoxia Pulmonary infection

Pathogenesis of head and neck squamous cell carcinoma (HNSCC)

Incidence:

Male: 6. most prominent

Tumor disease

Female: 15.

Risk factors:

- → Smoking / alcohol (HPV-negative)
- → HPV-16 (Oropharynx) (HPV-positiv)
- → Increasing incidence (app. 30%)

First line therapy, curative intention

Surgery

complete resection (R0)

Radiotherapy

- 60 Gy to 74 Gy
- Fractions, 6-8 weeks

Concomitant chemotherapy

Common: Cisplatin / 5-FU

Pathology

- p16-status (histology) is surrogate marker for HPVinfection
- prognostic marker
- No influence on therapy

Standard Treatment in Germany: DKTK-HNSCC

Lokal tumor control

HPV-negative:

- in 20% of cases no sufficient
- HPV-positive:
 - Good

Overall Survival

Optimization of therapy is needed!!

- HPV-negative:
 - Overall Survival 60%
- HPV-positive:
 - Overall Survival 80%

Linge and Schötz et al., Radiotherapy and Oncology, 127 (2018)

Particle irradiation is an alternative treatment option

Standard therapy

- Maximum Dose is reached already
- No escalation feasible due to high normal tissue complications
- Therapy sensitizer / current optional therapy concepts are not superior to standard therapy

HPV negative

- Low survival rate requires therapy optimization
- Strong side effects needs to be reduced

HPV positive

Deescalation concepts are discussed to reduce normal tissue complications

Particle irradiation of HPV-positive and HPV-negative HNSCC

We have to understand, why

HPV-positive show good response towards photon therapy, whereas HPV-negative often do not.

We want to clarify,
How the two entities behave
towards particle therapy with
Carbon ions (12C).

HPV-positive cells show a higher radiosensitivity towards photon irradiation than HPV-negative do

Radiosensitivity after Carbon Ion Therapy

HPV-positive show a lower RBE than HPV-negative

The difference in radioresistance observed after photons, decreases after 12C.

DNA DSB repair after Carbon Ion Therapy

Photons: significant difference in the amount of residual foci

12C: no significant difference between HPV-positive and HPV-negative HNSCC cells

In contrast to photon irradiation, after 12C irradiation there is no significant difference in radiosensitivity and DSB repair capacity between

HPV-positive and HPV-negative

How can the apparent higher radioresistance of HPV-positive cells towards 12C be explained?

Dikomey et al. (2016), Elsevier

HNSCC cells

HPV-positive cells have a defect in Rad51 recruitment

Ziemann et al., Oncotarget 8 (2017)

HPV-positive HNSCC-cells

shift their repair pathways from

Homologous Recombination towards

Alt- End Joining

HPV-positive cells

Considering 12C-ion induced DNA lesions:

There is a predominant End Resection taking place

Major repair mechanisms are not entirely clarified

Hypothesis considering 12C-ion irradiation of HPV-positive HNSCC-cells:

HPV-positive HNSCC-cells

Exhibit a survival advantage
due to improved
Alt- End Joining
in combination with
a predominant
End Resection
observed after 12C

Carbon Ion Irradiation of HNSCC cells

Conclusion:

- The impact of HR in repair of 12C-induced lesions is low in HNSCC cells.
- While HPV pos. cells are significantly more radiosensitive to photons than HPV neg. cells, no significant difference was seen after 12C.
- This needs to be considered when planning new protocols for the treatment of HPV pos. tumors with 12C.

Outlook:

The lab proceeds with further 12C irradiation experiments:

- Characterization of HR via Rad51 knockdown and of replication-associated HR
- Examination of alt-Endjoining capacity after 12C

Thanks for your attention!

Physicians:

- Prof. Dr. Rita Engenhart-Cabillic
- Dr. Fabian Eberle
- Dr. Markus Schymalla

Physicists:

- Prof. Dr. Klemens Zink
- Dr. Kilian Baumann
- Dr. Veronika Flatten
- Dr. Sonja Lahrmann
- M.Sc. Yannik Senger
- M.Sc. Yuri Simeonov
- M.Sc. Petar Penchev
- M.Sc. Matthias Witt

Biologists:

- Dr. Ulrike Schötz
- Prof. Dr. Ekkehard Dikomey
- PD Dr. Florentine Subtil
- Stefanie Preising
- Leoni Piepke
- Sibylla Kohl

- Dr. U. Weber (GSI)
- Dr. Ch. Schuy (GSI)
- PD Dr. W. Mansour (UKE)

