Antimony Status – February 2022

Simon Lechner

Overview

- Experiment results
- Electromagnetic moments and charge radii compared to theory
- Publication strategy

Experiment

Hyperfine spectra

- ¹¹²⁻¹³⁴Sb measured at COLLAPS
- Good agreement with literature for moments
- Analysis finished

isotope / A	π	μ/μ _Ν	Q/b	δ <r<sup>2>^{123,A'} / fm²</r<sup>
112	3+	1.198(7)[10]	0.308(9)	-0.8066 (7) [13] {1580}
113	5/2+	3.399(6)	-0.567(12)	-0.6928 (9) [12] {1378}
114	3+	1.347(5)[10]	0.322(7)	-0.6330 (3) [11] {1249}
115	5/2+	<mark>3.451(3)</mark>	-0.548(12)	-0.5289 (12) [9] {106}
116	3⁺	<mark>2.754(8)[2]</mark>	-0.520(11)	-0.4743 (11) [8] {942}
	8-	<mark>2.311(3)[8]</mark>	-0.918(19)	-0.4624 (3) [8] {927}
117	5/2 ⁺	<mark>3.502(3)</mark>	-0.526(11)	-0.3669 (4) [7] {757}
118	1+	<mark>2.464(10)[0]</mark>	-0.135(4)	-0.3128 (8) [6] {637}
	8-	<mark>2.358(2)[7]</mark>	-0.779(16)	-0.3124 (3) [6] {636}
119	5/2+	<mark>3.448(2)</mark>	-0.537(11)	-0.2135 (3) [5] {471}
120	1+	2.280(12)[1]	-0.166(5)	-0.1617 (7) [4] {353}
	8-	2.342(3)[7]	-0.693(14)	-0.1693 (4) [4] {360}
121	5/2 ⁺	3.357(4)	-0.541(11)	-0.0760 (4) [2] {220}
122	2⁻	<mark>-1.900(3)[4]</mark>	0.234(5)	-0.0609 (3) [2] {124}
	(8)-	1.426(6)[23]	-0.628(14)	-0.0739 (5) [2] {142}
123	7/2+	2.548(2)	-0.692(14)	0
124	3–	<mark>-1.195(6)[7]</mark>	0.474(10)	0.0447 (4) [1] {109}
	8-	1.174(3)[23]	-0.425(9)	0.0368 (4) [1] {108}
125	7/2+	<mark>2.637(4)[1]</mark>	-0.634(13)	0.1074 (10) [2] {230}
126	8-	1.129(2)[23]	-0.273(6)	0.1434 (3) [3] {328}
	5+	3.269(7)[0]	-0.634(14)	0.1336 (9) [3] {323}
127	7/2+	<mark>2.753(4)[1]</mark>	-0.576(12)	0.2056 (7) [4] {446}
128	8-	<mark>1.174(4)[22]</mark>	-0.142(3)	0.2431 (7) [5] {544}
	5⁺	3.441(7)[1]	-0.517(11)	0.2238 (12) [5] {532}
129	7/2+	<mark>2.868(4)[2]</mark>	-0.496(11)	0.2981 (6) [6] {654}
	19/2-	2.024(7)	-0.001(5)	0.2647 (7) [6] {633}
130	8-	1.253(2)[22]	-0.033(2)	0.3377 (4) [7] {752}
	4+	3.159(11)[8]	-0.354(8)	0.3246 (5) [7] {743}
131	7/2+	2.972(3)[3]	-0.401(9)	0.3842 (6) [8] {854}
132	4+	3.272(3)[8]	-0.330(8)	0.3940 (4) [9] {931}
	(8)-	1.366(5)[22]	0.043(4)	0.4361 (5) [9] {959}
133	7/2+	3.073(4)[3]	-0.304(7)	0.4693 (5) [10] {1048}
134	(7-)	1.747(8)[17]	-0.473(11)	0.5820 (6) [11] {1207}

new values

increased precision

Theory calculations

- Shell model calculations for ¹¹²⁻¹³³Sb, including excited states
 - performed by Utsuno using KSHELL
 - including all orbits of the 50-82 shell for protons and neutrons
- **ab initio VS-IMSRG** calculations for ¹⁰¹⁻¹³³Sb, including excited states
 - by Jason Holt and Takayuki Miyagi
 - interactions: EM1.8/2.0 and N2LOgo
 - calculations are converged
 - first ab initio calculation of whole isotopic chain above Z = 50
- **DFT** calculations on the way by Paul-Gerhard Reinhard and Witek Nazarewicz
- **additivity rule** used for odd-odd moments by myself:

$$\mu(J) = \frac{J}{2} \left[\frac{\mu(J_{\pi})}{J_{\pi}} + \frac{\mu(J_{\nu})}{J_{\nu}} + \left(\frac{\mu(J_{\pi})}{J_{\pi}} - \frac{\mu(J_{\nu})}{J_{\nu}} \right) \frac{J_{\pi}(J_{\pi}+1) - J_{\nu}(J_{\nu}+1)}{J(J+1)} \right] \\ \times \left[\begin{cases} J_{\pi} & J & J_{\nu} \\ J & J_{\pi} & 2 \end{cases} \frac{Q_{s}(J_{\pi})}{\begin{pmatrix} J_{\pi} & 2 & J_{\pi} \\ -J_{\pi} & 0 & J_{\pi} \end{pmatrix}} + \begin{pmatrix} J_{\nu} & J & J_{\pi} \\ J & J_{\nu} & 2 \end{pmatrix} \frac{Q_{s}(J_{\nu})}{\begin{pmatrix} J_{\mu} & 2 & J_{\mu} \\ -J_{\mu} & 0 & J_{\mu} \end{pmatrix}} \right]$$

Theory calculations

- Shell model calculations for ¹¹²⁻¹³³Sb, including excited states
 - including all orbits of the 50-82 shell for protons and neutrons
- **ab initio VS-IMSRG** calculations for ¹⁰¹⁻¹³³Sb, including excited states
 - neutrons: full N=50-82 shell

Shell model calculations for 133 Sb: N.J. Stone et al., PRL 78-5 (1997) predict meson-exchange current contribution to be 0.52 $u_{\rm N}$

Quadrupole moments

odd even

odd odd

lower curves multiplied by factor 2.5

Electromagnetic moments shell model

Charge radii

Charge radii

- only ground states included
- comparison to ab-initio

Publication strategy

- 1) Electromagnetic moments of ^{133,134m}Sb published in PRC
- 2) Comparison of electromagnetic moments with VS-IMSRG (and shell model)
 - ab-initio calculations are available the first time for a full isotopic chain above Z=50
 - magnetic moments:
 - new data for ^{113,122,124,130,132}Sb
 - · proton orbit change clearly visible in odd-even as well as odd-odd isotopes
 - · good agreement on neutron-deficient side with ab initio theory
 - · possible explanation for disagreement on neutron rich side
 - quadrupole moments:
 - new experimental data across the isotopic chain
 - parabolic trend in odd-even isotopes, similar to In
 - good agreement of trend, but factor 2.5 in amplitude missing (similar to In)
 - overall pretty good agreement with shell model
 - spin assignment as supplementary material
 - A first draft is in preparation to see if ab initio and shell model can be combined in one article
- 3) Charge radii in respect to neighboring elements and ab-initio (and DFT) calculations
 - Kink at N=82 is not clearly identified experimentally, odd-even staggering is similar to other elements
 - re-evaluation of charge radii of ^{121,123}Sb
 - agreement with theory is good for differential charge radius, not so much for absolute radii and OES
 - ¹³⁴Sb is missing in calculations
 - DFT calculations on the way by Paul-Gerhard Reinhard and Witek Nazarewicz