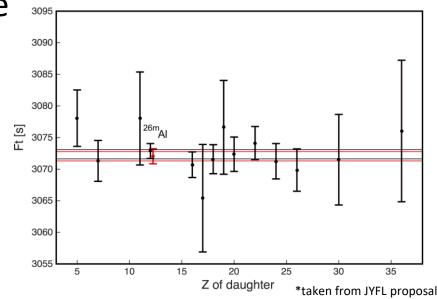


Aluminium Measurement Status

COLLAPS collaboration meeting

Peter Plattner

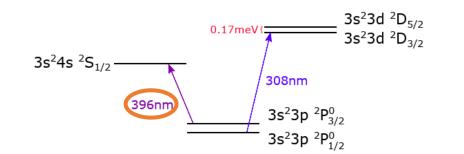

10.2.2022

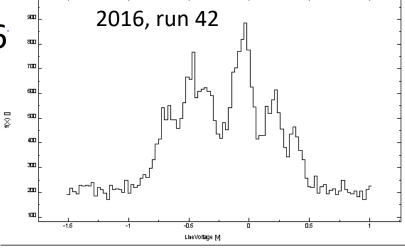
Importance of ^{26m}Al

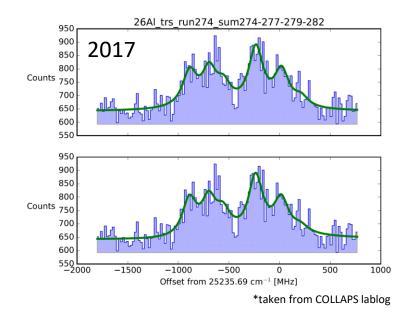
- Superallowed $0^+ \rightarrow 0^+ \beta$ emitters are used in the determination of V_{ud} in CKM matrix to test predicted unitarity of CKM
- 15 precision cases used in determination of V_{ud}
- ^{26m}Al is the most accurately known such case

Importance of ^{26m}AI

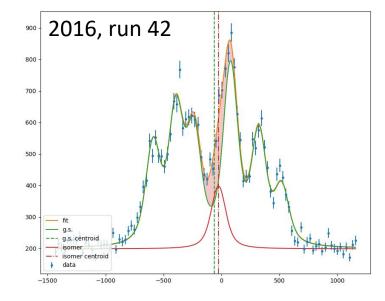
- The charge radii of these emitters play a role in (small) theoretical corrections in regards to radial overlap corrections of the isospin-symmetry-breaking corrections based on the underlying model spaces
- Charge radius of ^{26m}Al unknown and was extrapolated as 3.04(2) fm in the past
- Measurements at COLLAPS hinted at higher value than the extrapolated one




Previous Measurements @COLLAPS

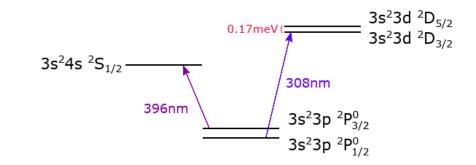

- Two aluminium beamtimes at COLLAPS in 2016 and 2017 for ²⁶⁻³²Al
- Lower statistics in measurements of ²⁶Al in 2017 and far less runs than in 2016

PRC publication of ²⁷⁻³²Al



Very(!) Preliminary Results

- Racah intensities have been fixed
- Simultaneous fits with shared HF parameters
- No in-depth sidepeak/constraint analysis yet
- Agreement with literature for HF parameters:


	Parameter	Fit value [MHz]	Lit. value [MHz]
	A(P3/2)	37.9(2)	36.53(48) ⁺
²⁶ AI	A(S1/2)	169.9(4)	-
	B(P3/2)	39.0(18)	33.2(37) ⁺
	Parameter	Fit value [MHz]	Lit. value [MHz]
	Parameter A(P3/2)	Fit value [MHz] 94.2(1)	Lit. value [MHz] 94.33(4) ⁺⁺
²⁷ Al			

JYFL Proposal

- COLLAPS data of ^{26m}Al hinted at higher charge radius than what was used for corrections in V_{ud} determination
- Proposal to measure ²⁴⁻²⁸Al at JYFL submitted by Hanne at IGISOL
- More favourable isomer:g.s. production ratio for ^{26,26m}Al at IGISOL (~5-25 times larger)
- Same transition that was used for the COLLAPS experiment

JYFL Beamtime

²⁶A| ²⁷A|

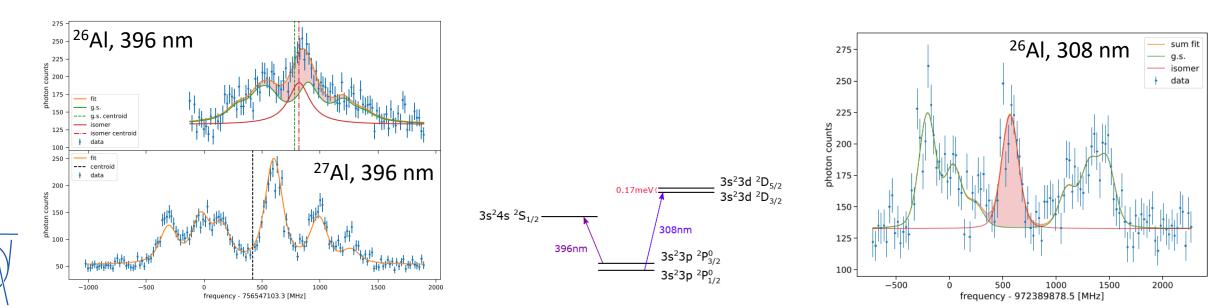
1

2

time [d]

199192

5

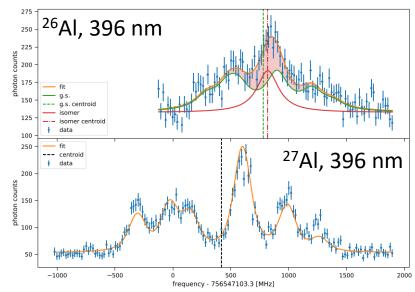

second

transition

Beamtime started with ^{26,27}Al

CERN

- Two separate sodium blockages of the laser beam necessitated venting of the CLS beamline
- Decision was made to measure second transition (@308 nm) over the weekend instead of changing target for ^{24,25}Al


JYFL Results for 396nm transition

- Independent cross confirmation of results with Bradley, Ross and Elliott still in progress
- A-ratio was fixed to the precise value established in the COLLAPS experiment
- Racah intensities have been fixed
- Results for HF parameters show agreement with literature

values:

_		Parameter	Fit value [MHz]	Lit. value [MHz]
		$A(P_{3/2})$	36.54(50)	$36.53(48)^{\dagger}$
	²⁶ Al	$A(S_{1/2})$	$166.8(23)^{a}$	-
		$B(P_{3/2})$	44(8)	$33.2(37)^{\dagger}$
_		Parameter	Fit value [MHz]	Lit. value [MHz]
_		$A(P_{2/2})$	94.79(35)	$94.33(4)^{\dagger\dagger}$

	$A(P_{3/2})$	94.79(35)	$94.33(4)^{\dagger\dagger}$
²⁷ Al	$A(S_{1/2})$	-	$431.11(9)^{\dagger\dagger}$
	$B(P_{3/2})$	16.3(33)	$18.1(2)^{\dagger\dagger}$

190122

⁺ DOI: 10.1088/0954-3899/23/9/015 ⁺⁺ Hanne's paper

8

Comparison for 396nm COLLAPS & JYFL

Results and prelim. results agree very well within statistical uncertainties:

Isotope	$\delta u^{27,A}$ COLLAPS	$\delta u^{27,A}$ JYFL	$\sqrt{\langle r^2 angle^A}$ COLLAPS	$\sqrt{\langle r^2 angle^A}$ JYFL
²⁶ Al	359.3(30)	360.7(36)	3.092(6)	3.095(11){12}
^{26m} Al	378.1(160)	378.8(65)	3.132(34)	3.133(16){12}
	(stat. unc.)	(stat. unc.)	(stat. unc.)	(stat.+sys.]{phys. calc

 Charge radius of ^{26m}Al ~4.5 standard deviations larger than the assumed value of 3.04(2) fm

Next Steps

JYFL data

Finish cross-check with Liverpool group

> Employ second transition to constrain isomer:g.s. ratio to improve stat. error

COLLAPS data

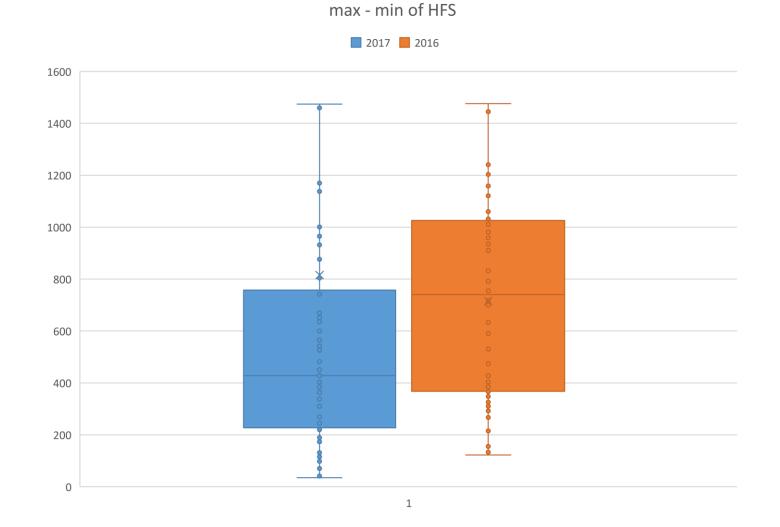
In-depth analysis of COLLAPS data on ^{26,26m}Al regarding the isotope shifts and charge radii

Publication

With combined data

Status Summary

Item	Responsible	Status
JYFL analysis	Peter	Done
JYFL cross-check	Elliott, Ross, Peter	In progress
COLLAPS ^{26,26m,27} Al analysis	Peter	In progress
COLLAPS cross-check	Wouter, Hanne	
Publication	Peter	



Discussion

Reference Signal in 2016/2017

