

The HL-LHC High Order Correctors production status

Marco Statera
on behalf of the LASA team
INFN Milano - LASA

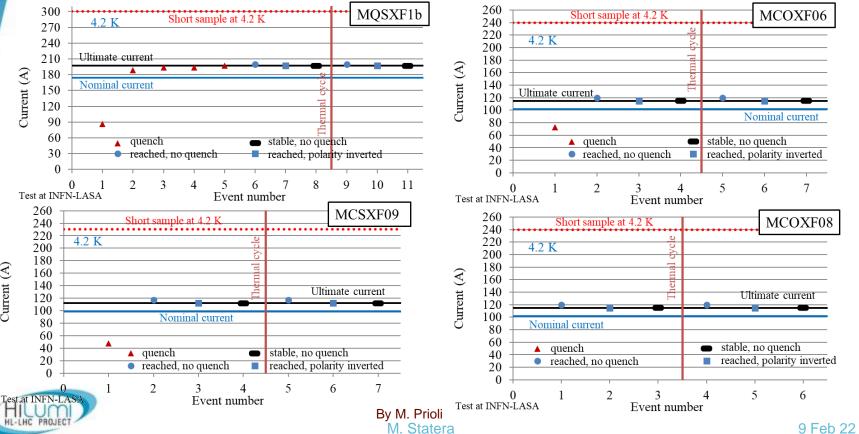
TEST 1

date	Magnets	Training and quench memory	Other results
Jul 2020	MQSXFP1c MCDXF01	compliant	First test on a series magnet
Nov 2020	MCDXF02 MCOXF01 MCSXF01 MCTXF01	compliant	Wedge movement observed (MCOXF01 MCTXF01) and feedback on assembly of batch1a First test on a long dodecapole
Jan 2021	MCDXF03 MCOXF03 MCSXF03 MCTXF2	compliant	MCOXF03 wedge movement – accepted (updated in Aug 2021)
Mar 2021	MCOXF02 MCOXF04 MCSXF02 MQSXF2	compliant	Wedge movement observed First test on a skew quadrupole

TEST 2

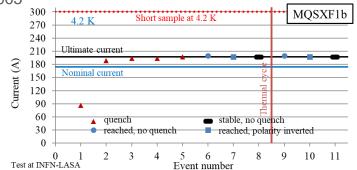
date	Magnets	Training and quench memory	Other results
Mar-Apr 2021 CERN	MCDXF02b MCDXF04 MCSXF01b MCDXF05 MCDXF06 MCSXF04 MCDXF01b MCTXF1b	compliant	Tested at CERN
Apr 2021	MQSXF1 MCSXF05 MCTSXF1 MCTSXF2	compliant	MQSXF1 performance ok but wedge supports not tightened after thermal cycles. Magnets is repaired and tested again First short dodecapole tested
Jun 2021	MCOXF04b MCOXF07 MCSXF06 MQSXF3	compliant	Added wedge supports for MCOXF04b and MCOXF07 Modified wedge supports for MQSXF3

TEST 3


date	Magnets	Training and quench memory	Other results
Sep 2021 CD7	MCDXF07 MCDXF08 MCSXF07 MCTXF3	compliant	
Nov 2021 CD8	MCOXF05 MCOXF01b MCSXF08 MCTXF4	compliant	
Dec 2021 CD9	MCOXF08 MCOXF06 MCSXF09 MQSXF1b	compliant	
Feb 2022 CD10	MCTSXF3 MCTSXF4 MCSXF10 MQSXF5	Test ongoing	


Powering test n9 HOC - training MCOXF08 MCOXF06 MCSXF09 MQSXF1b

M04_1 assemblies comparison



Second assembly due to unfastened supports for wedges EDMS 2611005 The coils have good memory

Several quench with all coils quenched (by S. Mariotto)

Quench N	Current	Measured b3 Phase.Std b3 Phulated P		ulated Ph	ch Coil No	/A /\/B OD	VA/VB MN
Quencii N	[A]	gradi (°)	gradi (°)	gradi (°)	CII COII NU	A) VB QD.	A) V B IVIIV
1	86	359,52	1,1	360	2	Va	Va
2	189	45,65	1,1	45	1 and 2	Vb	Va e Vb
3	194	30,51	23,2	-	All	Vb	Va e Vb
4	193,5	240,79	26,9	-	All	Vb	Va e Vb
5	197	19,87	67,3	-	All	Va	Va e Vb

9 Feb 22

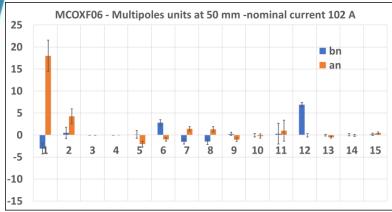
Powering test n9 HOC – MM field integral

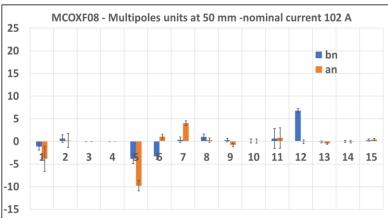
High reproducibility wrt simulations

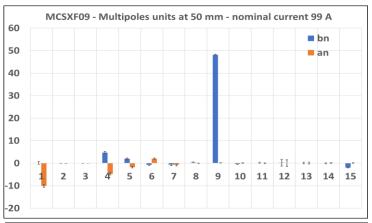
MCOXF06	Measured (Calculated)
Nominal current I _{nom}	102 A
Integrated field @ I _{nom} @ 50 mm	71.8 T mm (70.7 T mm)
Difference with calculated data @ Inom	1.6 %

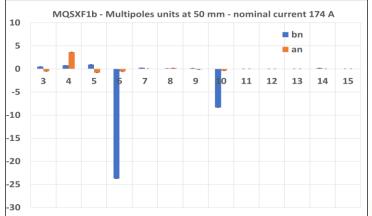
MCSXF09	Measured (Calculated)
Nominal current I _{nom}	99 A
Integrated field @ I _{nom} @ 50 mm	95.4 T mm (93.5 T mm)
Difference with calculated data @ I _{nom}	2.0 %

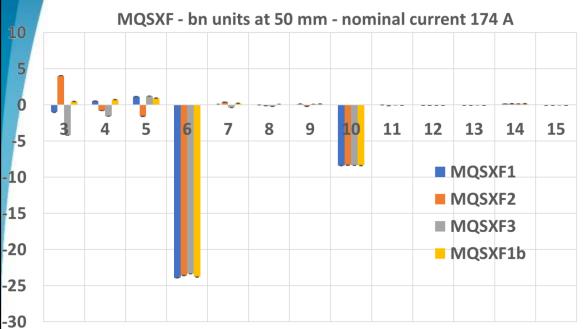
MCOXF08	Measured (Calculated)
Nominal current I _{nom}	102 A
Integrated field @ I _{nom} @ 50 mm	71.7 T mm (70.7 T mm)
Difference with calculated data @ I _{nom}	1.4 %


MQSXF1b	Measured (Calculated)
Nominal current I _{nom}	174 A
Integrated field @ I _{nom} @ 50 mm	719.0 T mm (700.0 T mm)
Difference with calculated data @ I _{nom}	2.7 %

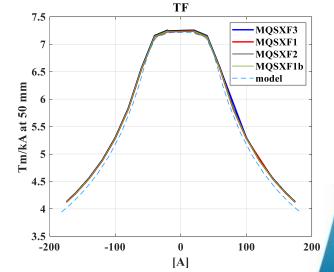



By E. De Matteis

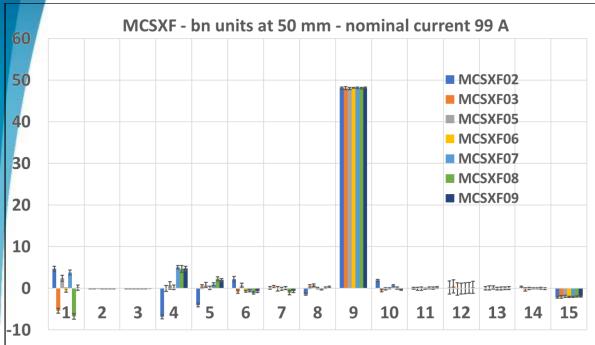

Powering test n9 HOC – MM harmonics



By E. De Matteis M. Statera


MM results – **MSQXF** Family

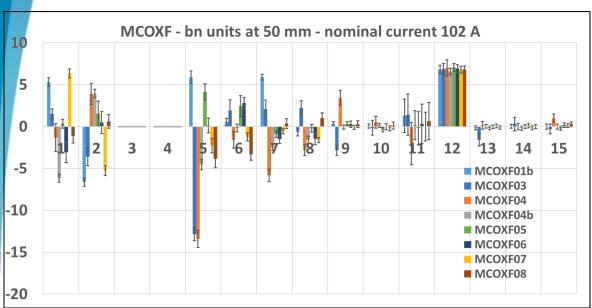
Multipoles in the specs	(< 100 units)


Order	Magnet		Specification	Calculations	Measured at LASA	
		Current [A]	BdL [T mm]	BdL [T mm]	BdL [T mm]	diff [%]
	MSQXF1	174	700	718.8 719.0 720.36 719.6	718.8	2.7
2	MQSXF1b				719.0	2.7
2	MSQXF2	1/4	700		720.36	2.8
	MSQXF3				719.6	2.8

MM results – MCSXF Family

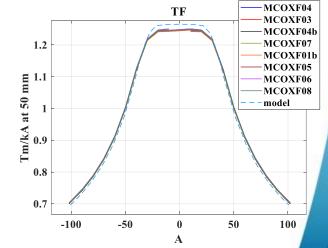
Multipoles in the specs	(< 100 units)
-------------------------	---------------

l	Order	Magnet		Specification	Calculations	Measure	d at LASA
			Current [A]	BdL [T mm]	BdL [T mm]	BdL [T mm]	diff [%]
l		MCSXF02				95.22	1.8
l		MCSXF03				95.22	1.8
l		MCSXF05				95.31	1.9
l	3	MCSXF06	99	93.5	93.5	95.27	1.9
		MCSXF07				95.34	2.0
l		MCSXF08				95.29	1.9
١		MCSXF09				95.37	2.0



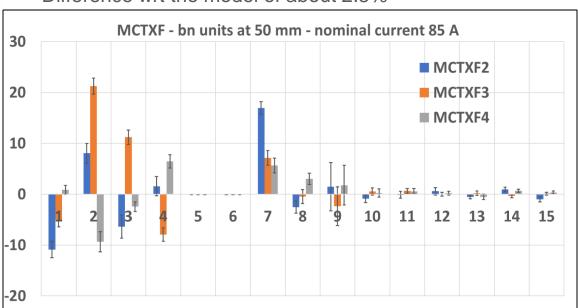
9 Feb 22

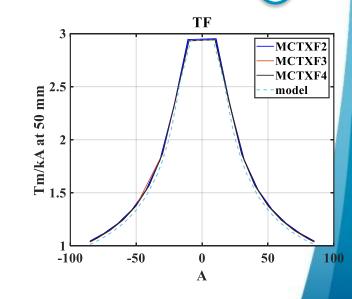
10


MM results – MCOXF Family

Multipoles in the specs (< 100 units)

Order	Magnet		Specification	Calculations	Measure	d at LASA
		Current [A]	BdL [T mm]	BdL [T mm]	BdL [T mm]	diff [%]
	MCOXF01b				71.57	1.2
	MCOXF03				71.59	1.3
	MCOXF04				71.54	1.2
4	MCOXF04b	102	69	70.7	71.48	1.1
4	MCOXF05	102	09	70.7	71.67	1.4
	MCOXF06				71.81	1.6
	MCOXF07				71.59	1.3
	MCOXF08				71.70	1.4


MM results – **MCTXF** Family


Magnet-to-magnet Magnet-to-magnet repeatability is 0.3% Difference wrt the model of about 2.5%

repeatability is 0.3%

Difference wrt the model of about 2.5%

Order	Magnet		Model	Measured at LASA	
		Current	BdL	BdL	diff
		[A]	[T mm]	[T mm]	[%]
	MCTXF2			88.82	3.1
6L	MCTXF3	85	86.1	88.20	2.4
	MCTXF4			88.41	2.7

HILUMI)

Tested Magnets

More than 50% tested magnets End of testing Sep 2021

5 Cool Down + spares

12P 1 tested @CERN

Protection w/o dump R crosscheck

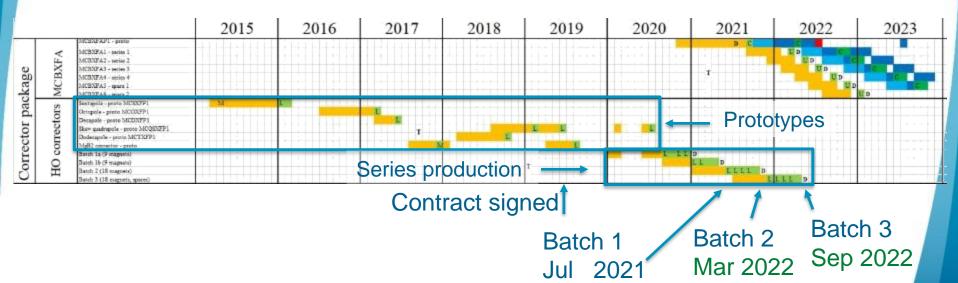
Tested Magnets 2

IN	F	Ń
_		

	Batch	Serial	TEST
	1 a	1	
	10	2	
	1b	3	
	10	4	
		5	
M06	2	6	
10100	-	7	
		8	
		9	
	3	10	
	,	11	
		12	
	1 a	1	
		2	
	1b	3	
		4	
	2	5	
M08		6	
14100	_	7	
		8	
		9	
	3	10	
	,	11	
		12	

	Batch	Serial	TEST
	1 a	1	
		2	
	1b	3	
	10	4	
		5	
M10	2	6	
IVIIO	_	7	
		8	
		9	
	2	10	
	3	11	
		12	
	1 a	1	
	1b	2	
M12	2	3	
IVITZ		4	
	3	5	
		6	
	1a	1	
N412	1b	2	
	2	3	
M13	2	4	
	3	5	
		6	

	Batch	Serial	TEST
M04	1 a	1	
	1b	2	
	2	3	
	4	_	
	3	5	
		6	


TESTED REPAIRED TO BE RE-TESTED NEXT TEST / ONGOING

Today shipping to CERN M08_05 M08_06 M08_08 M06_08 M12_1c (from SRV) and M12_4

Schedule

- Completion of assembly expected in Oct 2021. Done
- Expected end of testing at LASA Aug 2022 / Sep 2022

Conclusion

- HO Correctors series production test ongoing
 - 54 HO Correctors produced by SAES Rial Vacuum
 - 33 magnets compliant
 - Quench protection crosscheck ongoing
- 24 magnets at CERN
- 6 magnets travelling this week to CERN

THANK

LASA team

F. Broggi, E. De Matteis, S. Mariotto,

A. Paccalini, A. Palmisano, A. Pasini,

D. Pedrini, A. Leone, M. Quadrio, M. Prioli,

M. Sorbi, M. Statera, M. Todero, C. Uva

