Phenomenological Analyses of TMD processes: a focus on rapidity and thrust dependences

M. Boglione

In collaboration with O. Gonzalez and A. Simonelli
QCD

Asymptotic Freedom
Confinement

Perturbative regime (computable but process dependent terms)
Non perturbative regime (non computable but universal terms)

Strong interactions: hadron structure is a playground for studying QCD

Long distance physics, non-perturbative structure functions.

Short distance effects, perturbative QCD

HADRONIZATION
CONFINEMENT
The interplay between **perturbative** and **non-perturbative** regimes is currently one of the most challenging aspects in phenomenology.

Factorization allows to separate the perturbative content of an observable from its non-perturbative content. At large Q and small m, the non-perturbative contributions are separated out from anything that can be computed by using perturbative techniques, and identified with universal quantities (structure functions).

Factorization restores the predictive power of QCD.
Particles are classified according to how they propagate in space, i.e. according to their virtuality.

Momentum regions:

- **HARD**
 \[k \sim (Q, Q, Q) \]
 - Short-distance contributions
 - Large virtuality

- **SOFT**
 \[k \sim (\lambda_S, \lambda_S, \lambda_S) \]
 - Long-distance contributions
 - Low virtuality

- **COLLINEAR**
 \[k \sim (Q, \lambda^2/Q, \lambda) \]

\[\lambda_S = \lambda^2/Q \]
Particles are classified according to how they propagate in space, i.e. according to their virtuality.

Momentum regions:

- **HARD**
 \[k \sim (Q, Q, Q) \]
 - Short-distance contributions
 - Large virtuality

- **SOFT**
 \[k \sim (\lambda_S, \lambda_S, \lambda_S) \]
 \[\lambda_S = \frac{\lambda^2}{Q} \]
 - Long-distance contributions
 - Low virtuality

- **COLLINEAR**
 \[k \sim (Q, \frac{\lambda^2}{Q}, \lambda) \]
 - Encodes the correlation among collinear parts
 - Encodes the essence of the TMD

J. Collins, Foundations of perturbative QCD (Cambridge University Press, 2011)
General structure of a generic factorization theorem:

\[\mathcal{O} = H \times S \times \prod_j C_j + p.s. \]

- Each term is equipped with proper subtractions.
- The soft factor S encodes the correlation among the various collinear parts.
- While H can be computed in pQCD, S and C have to be determined using non-perturbative methods. For instance, they can be modeled and extracted from experimental data, or computed in lattice QCD.
Soft factor and soft/collinear subtraction

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{\text{proc.}} \int \frac{d^2\vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} \ F(b_T) \ S(b_T) \ D(b_T)
\]

TMDs are defined through the **factorization definition**:

\[
D(z, b_T, y_1) = \lim_{\hat{y} \to -\infty} \frac{D_{\text{uns.}}(z, b_T, y_P - \hat{y})}{S(b_T, y_1 - \hat{y})}
\]

The soft factor (included the subtraction term) is defined as:

\[
S(b_T, y_1 - y_2) = \frac{\text{Tr}}{N_C} \langle 0 | W_{n_2}^{\dagger} [b_T/2, \infty] W_{n_1} [b_T/2, \infty] \times W_{n_2} [-b_T/2, \infty] W_{n_1}^{\dagger} [-b_T/2, \infty] | 0 \rangle
\]

The soft factor of the process and the soft factor of subtractions are the same function!
Square root definition of TMDs

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{\text{proc.}} \int \frac{d^2 b_T}{(2\pi)^2} e^{i \vec{q}_T \cdot \vec{b}_T} F(b_T) S_{2-h}(b_T) D(b_T) = \sqrt{\text{Recasting terms}}
\]

Parton model-like

\[
= \mathcal{H}_{\text{proc.}} \int \frac{d^2 b_T}{(2\pi)^2} e^{i \vec{q}_T \cdot \vec{b}_T} F^{\text{sqrt}}(b_T) D^{\text{sqrt}}(b_T)
\]

Square-root definition of the TMD:

\[
D^{\text{sqrt}}(z, b_T, y_n) = \lim_{\hat{y}_1 \to +\infty, \hat{y}_2 \to -\infty} D^{\text{uns.}}(z, b_T, y_P - \hat{y}_2) \sqrt{\frac{S(b_T, \hat{y}_1 - y_n)}{S(b_T, \hat{y}_1 - \hat{y}_2) S(b_T, y_n - \hat{y}_2)}}
\]
Where do we learn about TMDs?

Unpolarized and Polarized Drell-Yan scattering

Unpolarized and Polarized SIDIS scattering

Unpolarized and Polarized Drell-Yan scattering

$\sigma_{\text{Drell-Yan}} = f_q(x, k_\perp) \otimes f_{\bar{q}}(x, k_\perp) \otimes \hat{\sigma}^{q\bar{q} \rightarrow f\bar{f}}$

Allows extraction of distribution functions

Allows extraction of distribution and fragmentation functions

$\sigma_{\text{SIDIS}} = f_q(x) \otimes \hat{\sigma} \otimes D_{h/4}(z)$

$e^+ e^- \rightarrow h_1 h_2 X$

$\sigma_{h_1 h_2} \propto D(z_1) \otimes D(z_2) \otimes \hat{\sigma}$

Allows extraction of fragmentation functions
Where do we learn about TMDs?

Unpolarized and Polarized SIDIS scattering

\[\sigma_{\text{SIDIS}} = f_{x}(x) \otimes \hat{\sigma} \otimes D_{h/q}(z) \]

Allows extraction of distribution and fragmentation functions

\[\sigma_{h_1 h_2} \propto D(z_1) \otimes D(z_2) \otimes \hat{\sigma} \]

Allows extraction of fragmentation functions
SIDIS: \(e p \rightarrow h X \)

In e\(^+\)e\(^-\) cross sections, distribution and fragmentation TMDs are convoluted. How can they be disentangled?

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{\text{sidis}} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} F(b_T) D(b_T)
\]

3D-picture of partons inside the target hadron

3D-picture of partons hadronizing into the detected hadron
e^+e^- annihilations in two hadrons: \(e^+ e^- \rightarrow h_1 h_2 X \)

In e^+e^- cross sections, distribution and fragmentation TMDs are convoluted. How can they be disentangled?

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{2-h} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} D_1(b_T) D_2(b_T)
\]

3D-picture of the hadronization of partons into hadrons
e^+e^- annihiliations in one hadron: \(e^+ e^- \rightarrow h X \)

In \(e^+ e^- \rightarrow h X \) cross sections, only one fragmentation TMD appears.

One of the cleanest ways to access TMD Fragmentation Functions* is

\[\frac{d\sigma}{dP_T} = d\hat{\sigma} \otimes D^*(P_T) \]

3D-picture of the **hadronization** of partons into hadrons

BUT

\(D^*(P_T) \) is not the same as \(D(P_T) \) !!!
Soft Gluon contribution

SIDIS

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{\text{sidis}} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} F(b_T) D(b_T)
\]

Double hadron production

\[
\frac{d\sigma}{dq_T} = \mathcal{H}_{2-h} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} D_1(b_T) D_2(b_T)
\]

Soft Gluon Factor:

Non-Perturbative contribution

Evenly shared by the TMDs
Soft Gluons

Soft Gluon Factor:

- Perturbative contribution
- The TMD FF* is free from any soft gluon contributions

\[\frac{d\sigma}{dP_T} = d\hat{\sigma} \otimes D^*(P_T) \]

D(P_T) and D*(P_T) are different, BUT the relation between D and D* is known!

We can perform combined analyses and disentangle non-perturbative terms.
Relation between FF and FF*

\[D = D^* \sqrt{M_S} \]

SQUARE ROOT DEFINITION

Usual definition of TMDs. Soft Gluon Factor contributing to the cross section are included in the two TMDs and equally shared between them.

FACTORIZATION DEFINITION

Purely collinear TMD, totally free from any soft gluon contribution.

SOFT MODEL

The Soft Gluon Factor appearing in the cross section (process dependent) is **not** included in the TMD

- Same for Drell-Yan, SIDIS and 2-hadron production. (2-h class universality).
- Non-perturbative function (phenomenology).
The $e^+ e^- \rightarrow h X$ process

The cross section is differential in:

$$z_h = \frac{E}{Q/2}, \quad T = \frac{\sum_i |\vec{P}_{(c.m.),i} \cdot \hat{n}|}{\sum_i |\vec{P}_{(c.m.),i}|}, \quad P_T \text{ w.r.t } \hat{n}$$

Spherical distribution

$0.5 \leq T \leq 1$

2-jet limit

2-jet final state is the most probable topology configuration

All particles inside the jet in which h is detected must have:

- Small transverse momentum: $P_T \ll P^+ = z_h \frac{Q}{\sqrt{2}}$

- Large rapidity: $y_P = \frac{1}{2} \log \frac{2(P^+)^2}{P_T^2 + M_h^2} \gg 0$
ISSUES FROM TREATMENT OF RAPIDITY DIVERGENCES

- Peculiar interplay between soft and collinear contributions ⇒ some of the rapidity divergences are naturally regulated by the thrust, T, but those associated to strictly TMD parts of the cross section need an extra artificial regulator, which is a rapidity cut-off.

- This induces a redundancy, which generates an additional relation between the regulator, the transverse momentum and thrust.

- This relation inevitably spoils the picture in which the cross section factorizes into the convolution of a partonic cross section (encoding the whole T dependence) with a TMD FF (which encapsulates the whole P_T dependence).

- Thrust resummation is intertwined with the transverse momentum dependence, making the treatment of the large T behavior highly non-trivial.

- A proper phenomenological analysis of Region 2 must rely on a factorized cross section where the regularization of rapidity divergences is properly taken into account. All difficulties encountered in the theoretical treatment get magnified in the phenomenological applications.

- In this analysis we adopt some approximations, in order to simplify the structure of the factorization theorem without altering its main architecture.
The hadronic cross section is written as a convolution of a **partonic cross section** with a **TMD FF**

\[
\frac{d\sigma}{dz_h \, dT \, dP_T^2} = \pi \sum_f \int_{z_h}^{1} \frac{dz}{z} \frac{d\hat{\sigma_f}}{dz_h / z \, dT} \, D_{1,\pi^+/f}(z, P_T, Q, (1-T) Q^2)
\]

The TMD FF acquires a dependence on **thrust** through its **rapidity cut-off**.

\[e^+ e^- \rightarrow hX \] cross section

2-jet limit
\[T \rightarrow 1 \]
Partonic cross section (NLO)

\[
\frac{d\sigma}{dz_h \, dT \, dP_T^2} = \pi \sum_f \int_{z_h}^{1} \frac{dz}{z} \frac{d\hat{\sigma}_f}{dz_h / z \, dT} \, D_{1, \pi^+/f}(z, P_T, Q, (1 - T) Q^2)
\]

\[
\frac{d\hat{\sigma}_f}{dz \, dT} = \left[-\sigma_B e_f^2 N_C \frac{\alpha_S(Q)}{4\pi} C_F \delta(1 - z) \left[\frac{3 + 8 \log \tau}{\tau}\right] + \mathcal{O}(\alpha_S(Q)^2)\right] e^{-\frac{\alpha_S(Q)}{4\pi} 3C_F (\log \tau)^2 + \mathcal{O}(\alpha_S(Q)^2)}
\]
TMD Fragmentation Function

\[
\frac{d\sigma}{dz_h dT dP_T^2} = \pi \sum_f \int_{z_h}^1 \frac{dz}{z} \frac{d\sigma_f}{dz_h/z dT} D_{1,\pi^+/f}(z, P_T, Q, (1-T)Q^2)
\]

Fourier Transform of:

\[
\tilde{D}_{1,\pi^+/f}(z, b_T; Q, \tau Q^2) = \frac{1}{z^2} \sum_k \left[d_{\pi^+/k} \otimes C_{k/f} \right] (\mu_b) \times
\]

\[
\times \exp\left\{ \frac{1}{4} \tilde{K} \log \frac{\tau Q^2}{\mu_b^2} + \int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[\gamma_D - \frac{1}{4} \gamma_K \log \frac{\tau Q^2}{\mu'^2} \right] \right\} \times
\]

\[
\times (M_D)_{f,\pi^+}(z, b_T) \exp\left\{ -\frac{1}{4} g_K (b_T) \log \left(\frac{\tau Q^2}{M_H^2} \right) \right\}
\]

Embeds the non-perturbative, long-range behavior of the TMD FF

Universal, independent of the TMD definition used
Phenomenological parametrization: M_D

\[
M_D = \frac{2^{2-p}(b_T M)^{p-1}}{\Gamma(p-1)} K_{p-1}(b_T M) \times F(b_T, z_h)
\]

- **Power-law model**
 \[\mathcal{FT}\{M_D\} \text{ reminiscent of a propagator in } k_T \text{ space}\]

 \[
 \frac{1}{(k_T^2 + M^2)^p}
 \]

- **Multiplicative function modulating the z dependence**

Exponential behaviour at $b_T \to \infty$

Preliminary fits at fixed z show that

- the M and p parameters are VERY strongly correlated
- M requires some z-dependence while p does not vary much with z
Phenomenological parametrization: M_D

$$M_D = \frac{2^{2-p}(b_T M_0)^{p-1}}{\Gamma(p-1)} K_{p-1}(b_T M_0) \times F(b_T, z_h)$$

BK parameters do not depend on z

M_D MODEL 1

<table>
<thead>
<tr>
<th>ID</th>
<th>M_D model</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$F = \left(\frac{1 + \log \left(1 + \left(b_T M_z \right)^2 \right)}{1 + \left(b_T M_z \right)^2} \right)^q$</td>
</tr>
<tr>
<td></td>
<td>$M_z = -M_1 \log(z_h)$</td>
</tr>
</tbody>
</table>

z-dependence controlled by the function F, through M_z
Phenomenological parametrization: M_D

\[
M_D = \frac{2^{2-p_z (b_T M_z)} p_z^{-1}}{\Gamma(p_z - 1)} K_{p_z-1} (b_T M_z) \times F(b_T, z_h)
\]

- BK parameters depend on z
- $F = 1$

M_D MODEL 2

\[
\begin{align*}
M_z &= M_h \frac{1}{z f(z)^2} \sqrt{\frac{3}{1 - f(z)}} \\
p_z &= 1 + \frac{3}{2} \frac{f(z)}{1 - f(z)} \\
f(z) &= 1 - (1 - z)^\beta, \quad \beta = \frac{1 - z_0}{z_0}
\end{align*}
\]

The z behaviour of M_D is constrained by requiring that the theory lines appropriately reproduce the peak and the width of the measured cross sections, at each value of z.

In this analysis we consider two different hypothesis for g_K for which, asymptotically, we have $g_K = o(b_T)$

<table>
<thead>
<tr>
<th>g_K model</th>
<th>M_K, p_K^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$g_K = \log (1 + (b_T M_K)^{p_K})$</td>
</tr>
<tr>
<td>B</td>
<td>$g_K = M_K b_T^{(1-2p_K)}$</td>
</tr>
</tbody>
</table>

Testing different b_T behaviors of g_K allows us to give a reliable estimate of the uncertainties affecting our analysis.
Phenomenological results – correlations

Model I

3 parameter fit

\[
\begin{array}{l}
q_T/Q < 0.15 \text{ (pts = 168)} \\
\hline
\chi^2_{d.o.f.} & 1.25 & 1.19 \\
M_0(\text{GeV}) & 0.300_{-0.062}^{+0.075} & 0.003_{-0.003}^{+0.089} \\
M_1(\text{GeV}) & 0.522_{-0.041}^{+0.037} & 0.520_{-0.040}^{+0.027} \\
p^* & 1.51 & 1.51 \\
q^* & 8 & 8 \\
M_K(\text{GeV}) & 1.305_{-0.146}^{+0.139} & 0.904_{-0.086}^{+0.037} \\
p^*_K & 0.609 & 0.229
\end{array}
\]

Data selection

\[
0.375 \leq z_h \leq 0.725, \quad 0.750 \leq T \leq 0.875, \\
q_T/Q \leq 0.15
\]
Phenomenological results – correlations

Model II

3 parameter fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>II A</th>
<th>II B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_T/Q < 0.15$</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>$\chi^2_{d.o.f.}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_0</td>
<td>0.574±0.039</td>
<td>0.556±0.047</td>
</tr>
<tr>
<td>$M_K (GeV)$</td>
<td>1.633±0.103</td>
<td>0.687±0.114</td>
</tr>
<tr>
<td>p_k</td>
<td>0.588±0.127</td>
<td>0.293±0.047</td>
</tr>
</tbody>
</table>

Data selection

- $0.375 \leq z_h \leq 0.725$
- $0.750 \leq T \leq 0.875$
- $q_T/Q \leq 0.15$
Phenomenological results – T dependence

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]
Phenomenological results

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]
M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

\[\zeta = Q^2 (1-T) \]
\[T = 0.875 \]
\[Q = 10.58 \text{ GeV} \]
\[z_h = 0.475 \]

Phenomenological results

MD (bT)

gK (bT)

TMD FF (kT)
Collins-Soper kernel: comparison to other analyses

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Our extraction of the Collins-Soper Kernel compared to corresponding lattice computations

-1.8
-1.2
-0.6
0.0
0.2
0.4
0.6
0.8

µ=2.0 GeV

\(\bar{K}(b_T, \mu) \)

IA

IB

IIA

IIB

LPC22

ETMC/PKU

SWZ21

SVZES

M.-H. Chu et al. (LPC22), arXiv:2204.00200 [hep-lat]

P. Shanahan et al. (SVZ21) Phys. Rev. D 104, 114502 (2021),

M. Schlemmer et al. (SVZES) JHEP 08, 004 (2021),

Our extraction of the Collins-Soper Kernel compared to other phenomenological analyses

-1.8
-1.2
-0.6
0.0
0.2
0.4
0.6
0.8

µ=2.0 GeV

\(\bar{K}(b_T, \mu) \)

IA

IB

IIA

IIB

PV 19

SV 19

I. Scimemi and A. Vladimirov, (SV19) JHEP 06, 137 (2020)

A. Bacchetta, et al. (PV19) JHEP 07, 117 (2020)
Outlook

1. $e^+ e^- \rightarrow h X$
 Extraction of the unpolarized TMD FF, D^*, for charged pions from BELLE data (using factorization definition)

2. $e^+ e^- \rightarrow h_1 h_2 X$
 Two non-perturbative functions:
 - D^*, known from step 1
 - Soft Model M_S, obtained as ratio: $M_S = D/D^*$

3. $SIDIS$ (this is where COMPASS, HERMES, JLAB and EIC data play a crucial role!)
 Three non-perturbative functions in the cross section
 - D^*, known from step 1.
 - Soft Model M_S, known from step 2.
 Extraction of the TMD PDF, F^* (in the factorization definition, $F^* \neq F$).
Conclusions and Outlook

The Soft Factor acquires a central role

The focus of phenomenological analyses moves from the TMDs considered as a whole, to the Soft Factor contribution (which encloses the full process dependent part of the TMD).

The Collins-Soper kernel acquires a central role

The focus of phenomenological analyses moves from the TMDs considered as a whole, to the g_κ function (which embeds the non-perturbative essence of the TMD evolution).