

IWHSS 2022

International Workshop on Hadron Structure and Spectroscopy CERN - August 29-31, 2022

HERMES view on the nucleon's spin \& 3d structure

$$
\underbrace{*}_{i} \operatorname{Congratulations}_{\frac{i}{x}}^{i z} \text {. }
$$

2022 - so many anniversaries!

- 25 years of COMPASS approval
- 20 years of COMPASS data taking

2022 - so many anniversaries!

- 25 years of COMPASS approval
- 20 years of COMPASS data taking
- 35 years of spin crisis/puzzle

- 30 years of HERA and (conditional) HERMES approval
- 15 years of HERA shutdown

HERMES (1995-2007) @ HERA

27.6 GeV polarized e^{+} / e^{-}beam scattered off ...

- unpolarized (H, D, He,..., Xe) as well as
- transversely (H) or
- longitudinally (H, D, He) polarized pure gas targets

HERMES publication statistics (08/2022)

- Total number of published HERMES papers: 83
- Total number of citations: 10,135
- Average citations per paper:
- 2 top-cite 500+ \& 9 topcite 250+ [inspirehep.net as of Aug. 28, 2022]

HERMES Publications122

HERMES publication statistics (08/2022)

- Total number of published HERMES papers: 83
- Total number of citations:
- Average citations per paper:
- 2 top-cite 500+ \& 9 topcite 250+
[inspirehep.net as of Aug. 28, 2022]
HERMES Publications
- Total number of citations:
10,135

HERMES publication statistics (08/2022)

- Total number of published HERMES papers: 83
- Total number of citations: 10,135
- Average citations per paper:
- 2 top-cite $500+\& 9$ topcite 250+ [inspirehep.net as of Aug. 28, 2022]

HERMES Publications

Total number of published HERMES paper
10,135
122
Published \square Submitted \square Submit (est.)

HERMES publication statistics (08/2022)

- Total number of published HERMES papers: 83

HERMES Publications

- Total number of citations: 10,135
- Average citations per paper:
- 2 top-cite 500+ \& 9 topcite 250+
[inspirehep.net as of Aug. 28, 2022]

Publication schedule for 2012 priority analyses (08/2022)

- despite tremendous drop in analysis manpower, almost all priority analyses identified finished
- two analyses dropped
- one still ongoing in advanced state
- at same time new ideas; partially already published, others ... waiting for manpower
- only possible thanks to tremendous datapreservation efforts

semi-inclusive one-hadron production (ep $\rightarrow e h X$)

semi-inclusive one-hadron production (ep $\rightarrow e h X$)

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

$$
A_{U L}=\frac{1}{\left|P_{B}\right|} \frac{N^{\rightarrow}(\phi)-N^{\leftarrow}(\phi)}{N^{\leftrightarrows}(\phi)+N^{\leftarrow}(\phi)}
$$

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

transverse-momentum distributions (TMDs)

3d spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
\text { quark pol. } & \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

3d spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
\text { helicity quark pol. } & \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

$\begin{aligned} & 0 \\ & 0 \\ & \text { a } \\ & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Boer-Mulders

Sivers

transversity

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

quark polarimetry

- unpolarized quarks: easy - "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam

quark polarimetry

- unpolarized quarks: easy - "just" hit them (and count)
- longitudinally polarized quarks: use polarized beam

- transversely polarized quarks: need final-state polarimetry, e.g.

TMDs in hadronization

	quark pol.			
		U	L	T
$\stackrel{\circ}{2}$	U	D_{1}		H_{1}^{\perp}
E	L		G_{1}	$H_{1 L}^{\perp}$
$\stackrel{\square}{\sim}$	T	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1} H_{1 T}^{\perp}$

TMDs in hadronization

quark pol.					- relevant for unpolarized final state
		U	L	T	
\%	U	D_{1}		H_{1}^{\perp}	
항	L		G_{1}	$H_{1 L}^{\perp}$	
-	T	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1} H_{1 T}^{\perp}$	

TMDs in hadronization

TMDs in hadronization

quark pol.					
		U	L	T	
$\stackrel{\square}{2}$	U	D_{1}		H_{1}^{\perp}	- relevant for unpolarized final state
\%	L		G_{1}	$H_{1 L}^{\perp}$	$\}$ polarized final-state hadrons
荘	T	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1} H_{1 T}^{\perp}$) (e.g., hyperons)

probing TMDs in semi-inclusive DIS

$\quad " \rightarrow$ give rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
\left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h}\right. \\
+\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
+\sqrt{2 \epsilon}\left[\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}+\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{gathered}
$$

$$
F_{X Y}^{h, \bmod }=F_{X Y}^{h, \bmod }\left(x, Q^{2}, z, P_{h \perp}\right)
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h} \\
& +\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
& +\sqrt{2 \epsilon}\left[\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}+\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
& \quad+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{aligned}
$$

$$
F_{X Y}^{h, \bmod }=F_{X Y}^{h, \bmod }\left(x, Q^{2}, z, P_{h \perp}\right)
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h}\right. \\
& +\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
& +\sqrt{2 \epsilon}\left[\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}+\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
& \left.\quad+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi\right\}
\end{aligned}
$$

- double-spin asymmetry:

$$
A_{L L}^{h} \equiv \frac{\sigma_{++}^{h}-\sigma_{+-}^{h}+\sigma_{--}^{h}-\sigma_{-+}^{h}}{\sigma_{++}^{h}+\sigma_{+-}^{h}+\sigma_{--}^{h}+\sigma_{-+}^{h}}
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{\begin{array}{l}
F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h} \\
+\sqrt{2 \epsilon} \underbrace{\ln }_{\sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}} \sin \phi \\
+\sqrt{2 \epsilon}\left[\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}+\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
\quad+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{array}\right\}
\end{aligned}
$$

- double-spin asymmetry:

$$
A_{L L}^{h} \equiv \frac{\sigma_{++}^{h}-\sigma_{+-}^{h}+\sigma_{--}^{h}-\sigma_{-+}^{h}}{\sigma_{++}^{h}+\sigma_{+-}^{h}+\sigma_{--}^{h}+\sigma_{-+}^{h}}
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h}\right. \\
& +\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
& \left.+\sqrt{2 \epsilon} \lambda^{\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}}>\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
& +\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{aligned}
$$

- double-spin asymmetry:

$$
A_{L L}^{h} \equiv \frac{\sigma_{++}^{h}-\sigma_{+-}^{h}+\sigma_{--}^{h}-\sigma_{-+}^{h}}{\sigma_{++}^{h}+\sigma_{+-}^{h}+\sigma_{--}^{h}+\sigma_{-+}^{h}}
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
\left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h}\right. \\
+\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
+\sqrt{2 \epsilon} \lambda^{\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}>\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}} \cos \phi \\
\quad+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{gathered}
$$

- double-spin asymmetry:

$$
A_{L L}^{h} \equiv \frac{\sigma_{++}^{h}-\sigma_{+-}^{h}+\sigma_{--}^{h}-\sigma_{-+}^{h}}{\sigma_{++}^{h}+\sigma_{+-}^{h}+\sigma_{--}^{h}+\sigma_{-+}^{h}}
$$

semi-inclusive DIS

- excluding transverse polarization:

$$
\left.\begin{array}{c}
\frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
\left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\lambda \Lambda \sqrt{1-\epsilon^{2}} F_{L L}^{h}\right. \\
+\sqrt{2 \epsilon}\left[\lambda \sqrt{1-\epsilon} F_{L U}^{h, \sin \phi}+\Lambda \sqrt{1+\epsilon} F_{U L}^{h, \sin \phi}\right] \sin \phi \\
+\sqrt{2 \epsilon}\left[\lambda \Lambda \sqrt{1-\epsilon} F_{L L}^{h, \cos \phi}+\sqrt{1+\epsilon} F_{U U}^{h, \cos \phi}\right] \cos \phi \\
\quad+\Lambda \epsilon F_{U L}^{h, \sin 2 \phi} \sin 2 \phi+\epsilon F_{U U}^{h, \cos 2 \phi} \cos 2 \phi
\end{array}\right\}
$$

- single-spin asymmetry:

$$
A_{L U}^{h} \equiv \frac{\sigma_{+-}^{h}+\sigma_{++}^{h}-\sigma_{-+}^{h}-\sigma_{--}^{h}}{\sigma_{+-}^{h}+\sigma_{++}^{h}+\sigma_{-+}^{h}+\sigma_{--}^{h}}
$$

- explicit angular dependence to be analyzed

semi-inclusive DIS

- with transverse target polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi \mathrm{~d} \phi_{s}}=\frac{2 \pi \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\right.\text { terms not involving transv. polarization } \\
& +S_{T}\left[\left(F_{U T, T}^{h, \sin \left(\phi-\phi_{s}\right)}+\epsilon F_{U T, L}^{h, \sin \left(\phi-\phi_{s}\right)}\right) \sin \left(\phi-\phi_{s}\right)\right. \\
& +\epsilon F_{U T}^{h, \sin \left(\phi+\phi_{s}\right)} \sin \left(\phi+\phi_{s}\right)+\epsilon F_{U T}^{h, \sin \left(3 \phi-\phi_{s}\right)} \sin \left(3 \phi-\phi_{s}\right) \\
& \left.+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{h, \sin \phi_{s}} \sin \phi_{s}+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{h, \sin \left(2 \phi-\phi_{s}\right)} \sin \left(2 \phi-\phi_{s}\right)\right] \\
& +S_{T} \lambda\left[\sqrt{1-\epsilon^{2}} F_{L T}^{h, \cos \left(\phi-\phi_{s}\right)} \cos \left(\phi-\phi_{s}\right)\right. \\
& \left.\left.+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{h, \cos \phi_{s}} \cos \phi_{s}+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{h, \cos \left(2 \phi-\phi_{s}\right)} \cos \left(2 \phi-\phi_{s}\right)\right]\right\}
\end{aligned}
$$

semi-inclusive DIS

- with transverse target polarization:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} P_{h \perp}^{2} \mathrm{~d} \phi \mathrm{~d} \phi_{s}}-\operatorname{Sivers}^{2 \pi \alpha^{2}} \frac{y^{2}}{(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \left\{F_{U U, T}^{h}+\epsilon F_{U U, L}^{h}+\right.\text { serms not involving transv. polarization } \\
& \quad+S_{T}\left[\left(F_{U T, T}^{h, \sin \left(\phi-\phi_{s}\right)}+\epsilon F_{U T, L}^{h, \sin \left(\phi-\phi_{s}\right)}\right) \sin \left(\phi-\phi_{s}\right)\right.
\end{aligned}
$$

$$
+\epsilon F_{U T}^{h, \sin \left(\phi+\phi_{s}\right)} \sin \left(\phi+\phi_{s}\right)+\epsilon F_{U T}^{h, \sin \left(3 \phi-\phi_{s}\right)} \sin \left(3 \phi-\phi_{s}\right)
$$

$$
\text { transversity } \left.+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{h, \sin \phi_{s}} \sin \phi_{s}+\sqrt{2 \epsilon(1+\epsilon)} F_{U T}^{h, \sin \left(2 \phi-\phi_{s}\right)} \sin \left(2 \phi-\phi_{s}\right)\right]
$$

$$
\begin{aligned}
+S_{T} \lambda[& \sqrt{1-\epsilon^{2}} F_{L T}^{h, \cos \left(\phi-\phi_{s}\right)} \cos \left(\phi-\phi_{s}\right) \\
& \text { worm-gear } \\
& \left.\left.+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{h, \cos \phi_{s}} \cos \phi_{s}+\sqrt{2 \epsilon(1-\epsilon)} F_{L T}^{h, \cos \left(2 \phi-\phi_{s}\right)} \cos \left(2 \phi-\phi_{s}\right)\right]\right\}
\end{aligned}
$$

$2 d$ kinematic phase space

$2 d$ kinematic phase space

Scattered lepton:		Q^{2}	$>1 \mathrm{GeV}^{2}$
		W^{2}	$>10 \mathrm{GeV}^{2}$
	$0.023<$	x	<0.6
	$0.1<$	y	<0.95
Detected hadrons:	$2 \mathrm{GeV}<$	$\left\|\mathbf{P}_{h}\right\|$	$<15 \mathrm{GeV}$ charged mesons
	$4 \mathrm{GeV}<$	$\left\|\mathbf{P}_{h}\right\|$	$<15 \mathrm{GeV}$ (anti)protons
		$\left\|\mathbf{P}_{h}\right\|$	$>2 \mathrm{GeV}$ neutral pions
		$P_{h \perp}$	$<2 \mathrm{GeV}$
	$0.2<$	z	<0.7 (1.2 for the "semi-exclusive" region)

Table 3. Restrictions on selected kinematics variables. The upper limit on z of 1.2 applies only to the analysis of the z dependence.

$2 d$ kinematic phase space

2d ($x-Q^{2}$) kinematic space not the only relevant one for SIDIS interpretation

current vs. target fragmentation

virtual-photon-nucleon c.m.s

$P_{h}^{ \pm}$... light-cone momenta

current vs. target fragmentation

virtual-photon-nucleon c.m.s

$P_{h}^{ \pm}$... light-cone momenta

current vs. target fragmentation

selected hadrons at HERMES mainly forward-going in photon-nucleon c.m.s.
virtual-photon-nucleon c.m.s

$P_{h}^{ \pm}$... light-cone momenta

Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons

A. Airapetian, ${ }^{13,16}$ N. Akopov, ${ }^{26}$ Z. Akopov, ${ }^{6}$ E. C. Aschenauer, ${ }^{7}$ W. Augustyniak, ${ }^{25}$ R. Avakian, ${ }^{26}$ A. Avetissian, ${ }^{26}$
S. Belostotski, ${ }^{19}$ H. P. Blok, ${ }^{18,24}$ A. Borissov, ${ }^{6}$ V. Bryzgalov, ${ }^{20}$ G. P. Capitani, ${ }^{11}$ E. Cisbani, ${ }^{21}$ G. Ciullo, ${ }^{10}$
M. Contalbrigo, ${ }^{10}$ P. F. Dalpiaz, ${ }^{10}$ W. Deconinck, ${ }^{6}$ R. De Leo, ${ }^{2}$ L. De Nardo, ${ }^{6,12,22}$ E. De Sanctis, ${ }^{11}$ M. Diefenthaler, ${ }^{9}$ P. Di Nezza, ${ }^{11}$ M. Düren, ${ }^{13}$ G. Elbakian, ${ }^{26}$ F. Ellinghaus, ${ }^{5}$ A. Fantoni, ${ }^{11}$ L. Felawka, ${ }^{22}$ S. Frullani, ${ }^{21,{ }^{*}}$ G. Gavrilov, ${ }^{6,19,22}$
V. Gharibyan, ${ }^{26}$ F. Giordano, ${ }^{10}$ S. Gliske, ${ }^{16}$ D. Hasch, ${ }^{11}$ Y. Holler, ${ }^{6}$ A. Ivanilov, ${ }^{20}$ H. E. Jackson, ${ }^{1}$ S. Joosten, ${ }^{12}$
R. Kaiser, ${ }^{14}$ G. Karyan, ${ }^{26}$ T. Keri, ${ }^{13,14}$ E. Kinney, ${ }^{5}$ A. Kisselev, ${ }^{19}$ V. Korotkov, ${ }^{20,{ }^{3}}$ V. Kozlov, ${ }^{17}$ P. Kravchenko, ${ }^{14}{ }^{9} 19$
V. G. Krivokhijine, ${ }^{8}$ L. Lagamba, ${ }^{2}$ L. Lapikás, ${ }^{18}$ I. Lehmann, ${ }^{14}$ W. Lorenzon, ${ }^{16}$ B.-Q. Ma, ${ }^{3}$ D. Mahon, ${ }^{14}$
S. I. Manaenkov, ${ }^{19}$ Y. Mao, ${ }^{3}$ B. Marianski, ${ }^{25}$ H. Marukyan, ${ }^{26}$ Y. Miyachi, ${ }^{23}$ A. Movsisyan, ${ }^{10,26}$ V. Muccifora, ${ }^{11}$ A. Mussgiller, ${ }^{6,9}$ Y. Naryshkin, ${ }^{19}$ A. Nass, ${ }^{9}$ G. Nazaryan, ${ }^{26}$ W.-D. Nowak, ${ }^{7}$ L. L. Pappalardo, ${ }^{10}$ R. Perez-Benito, ${ }^{13}$
A. Petrosyan, ${ }^{26}$ P. E. Reimer, ${ }^{1}$ A. R. Reolon, ${ }^{11}$ C. Riedl, ${ }^{7,15}$ K. Rith, ${ }^{9}$ G. Rosner, ${ }^{14}$ A. Rostomyan, ${ }^{6}$ J. Rubin, ${ }^{15}$ D. Ryckbosch, ${ }^{12}$ Y. Salomatin, ${ }^{20, *}$ G. Schnell, ${ }^{4,12}$ B. Seitz, ${ }^{14}$ T.-A. Shibata, ${ }^{23}$ M. Statera, ${ }^{10}$ E. Steffens, ${ }^{9}$ J. J. M. Steijger, ${ }^{18}$ S. Taroian, ${ }^{26}$ A. Terkulov, ${ }^{17}$ R. Truty, ${ }^{15}$ A. Trzcinski, ${ }^{25,{ }^{*}}$ M. Tytgat, ${ }^{12}$ P. B. van der Nat, ${ }^{18}$ Y. Van Haarlem, ${ }^{12}$ C. Van Hulse, ${ }^{4,12}$ D. Veretennikov, ${ }^{4,19}$ V. Vikhrov, ${ }^{19}$ I. Vilardi, ${ }^{2}$ C. Vogel, ${ }^{9}$ S. Wang, ${ }^{3}$ S. Yaschenko, ${ }^{9}$ B. Zihlmann, ${ }^{6}$ and P. Zupranski ${ }^{25}$

re-analysis of longitudinal double-spin asymmetries

- revisited [PRD 71 (2005) 012003] A A_{1} analysis at HERMES in order to
- exploit slightly larger data set (less restrictive momentum range)
- provide $A_{\|}$in addition to A_{1}

$$
A_{1}^{h}=\frac{1}{D(1+\eta \gamma)} A_{\|}^{h}
$$

$$
D=\frac{1-(1-y) \epsilon}{1+\epsilon R)}
$$

R (ratio of longitudinal-to-transverse cross-sec' n) still to be measured! [only available for inclusive DIS data, e.g., used in $g_{1} \mathrm{SF}$ measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional ($x, z, P_{h_{\perp}}$) dependences
- extract twist-3 cosine modulations

re-analysis of longitudinal double-spin asymmetries

- revisited [PRD 71 (2005) 012003] A_{1} analysis at HERMES in order to
- exploit slightly larger data set (less restrictive momentum range)
- provide $A_{\|}$in addition to A_{1}

$$
A_{1}^{h}=\frac{1}{D(1+\eta \gamma)} A_{\|}^{h}
$$

$$
D=\frac{1-(1-y) \epsilon}{1+\epsilon R)}
$$

R (ratio of longitudinal-to-transverse cross-sec' n) still to be measured! [only available for inclusive DIS data, e.g., used in $g_{1} \mathrm{SF}$ measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional ($x, z, P_{h_{\perp}}$) dependences
- extract twist-3 cosine modulations ... consistent with zero

double-spin asymmetry $A_{\|}$

$$
A_{\|}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}}\left[\frac{L_{\rightrightarrows} N_{\rightleftarrows}^{h}-L_{\rightleftarrows} N_{\rightrightarrows}^{h}}{L_{P, \rightrightarrows} N_{\rightleftarrows}^{h}+L_{P, \rightleftarrows} N_{\rightrightarrows}^{h}}\right]_{\mathrm{B}}
$$

double-spin asymmetry $A_{\|}$

$$
\begin{aligned}
& \text { azimuthal } \\
& \text { correction } \\
& A_{\|}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}}\left[\frac{L_{\rightrightarrows} N_{\rightleftarrows}^{h}}{L_{P, \rightrightarrows} N_{\rightleftarrows}^{h}+L_{P} \rightleftarrows N_{\rightrightarrows}^{h}}{ }_{\rightrightarrows}^{\rightrightarrows} N_{\rightrightarrows}^{h}\right]_{\mathrm{B}}
\end{aligned}
$$

double-spin asymmetry $A_{\|}$

$$
A_{\|}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}}\left[\frac{L_{\rightrightarrows}^{\rightrightarrows} N_{\rightleftarrows}^{h}-L_{\rightleftarrows}^{\rightleftarrows} N_{\rightrightarrows}^{h}}{L_{P, \rightrightarrows} N_{\rightleftarrows}^{h}+L_{P, \rightleftarrows} N_{\rightrightarrows}^{h}}\right]_{\mathrm{B}}^{\text {correction }}
$$

double-spin asymmetry $A_{\|}$

double-spin asymmetry $A_{\|}$

double-spin asymmetry $A_{\|}$

double-spin asymmetry $A_{\|}$

$$
A_{\|}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}}\left[\frac{L_{\rightrightarrows} N_{\rightleftarrows}^{h}-L_{\rightleftarrows} N_{\rightrightarrows}^{h}}{L_{P, \rightrightarrows} N_{\rightleftarrows}^{h}+L_{P, \rightleftarrows} N_{\rightrightarrows}^{h}}\right]_{\mathrm{B}}
$$

- dominated by statistical uncertainties

double-spin asymmetry $A_{\|}$

$$
A_{\|}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}}\left[\frac{L_{\rightrightarrows} N_{\rightleftarrows}^{h}-L_{\rightleftarrows} \rightleftarrows N_{\rightrightarrows}^{h}}{L_{P, \rightrightarrows} N_{\rightleftarrows}^{h}+L_{P, \rightleftarrows} N_{\rightrightarrows}^{h}}\right]_{\mathrm{B}}
$$

- dominated by statistical uncertainties
- main systematics arise from
- polarization measurements [6.6\% for hydrogen, 5.7% for deuterium)
- azimuthal correction [O(few \%)]

azimuthal-asymmetry corrections

- both numerator and in particular denominator ϕ dependent
- in theory integrated out
- in praxis, detector acceptance also ϕ dependent
- convolution of physics \& acceptance leads to bias in normalization of asymmetries

azimuthal-asymmetry corrections

- both numerator and in particular denominator ϕ dependent
- in theory integrated out
- in praxis, detector acceptance also ϕ dependent
- convolution of physics \& acceptance leads to bias in normalization of asymmetries
- implemented data-driven model for azimuthal modulations [PRD 87 (2013) 012010] into MC extract correction factor \& apply to data
x dependence of $A_{\|}$

『 fully consistent with previous HERMES publication [PRD 71 (2005) 012003]

3-dimensional binning

- first-ever 3d binning provides transverse-momentum dependence

3-dimensional binning

- first-ever 3d binning provides transverse-momentum dependence
- but also extra flavor sensitivity, e.g.,
- $\pi^{\text {- }}$ asymmetries mainly coming from low-z region where disfavored fragmentation large and thus sensitivity to the large positive up-quark polarization

hadron-charge difference asymmetries

$$
A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1 / 2}^{h^{+}}-\sigma_{1 / 2}^{h^{-}}\right)-\left(\sigma_{3 / 2}^{h^{+}}-\sigma_{3 / 2}^{h^{-}}\right)}{\left(\sigma_{1 / 2}^{h^{+}}-\sigma_{1 / 2}^{h^{-}}\right)+\left(\sigma_{3 / 2}^{h^{+}}-\sigma_{3 / 2}^{h-}\right)}
$$

hadron-charge difference asymmetries

$$
A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1 / 2}^{h^{+}}-\sigma_{1 / 2}^{h^{-}}\right)-\left(\sigma_{3 / 2}^{h^{+}}-\sigma_{3 / 2}^{h^{-}}\right)}{\left(\sigma_{1 / 2}^{h^{+}}-\sigma_{1 / 2}^{h^{-}}\right)+\left(\sigma_{3 / 2}^{h^{+}}-\sigma_{3 / 2}^{h^{-}}\right)}
$$

- at leading-order and leading-twist, assuming charge conjugation symmetry for fragmentation functions:

$$
A_{1, d}^{h^{+}-h^{-}} \stackrel{\text { LO } \mathrm{LT}}{=} \frac{g_{1}^{u_{v}}+g_{1}^{d_{v}}}{f_{1}^{u_{v}}+f_{1}^{d_{v}}}
$$

- assuming also isospin symmetry in fragmentation:

$$
A_{1, p}^{h^{+}-h^{-}} \stackrel{\mathrm{LO} \mathrm{LT}}{=} \frac{4 g_{1}^{u_{v}}-g_{1}^{d_{v}}}{4 f_{1}^{u_{v}}-f_{1}^{d_{v}}}
$$

- can be used to extract valence helicity distributions

hadron-charge difference asymmetries

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS

hadron-charge difference asymmetries

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS
- valence distributions consistent with JETSETbased extraction:

Azimuthal single- and double-spin asymmetries in

 semi-inclusive deep-inelastic lepton scattering by transversely polarized protons
新品

The HERMES Collaboration

A. Airapetian, ${ }^{13,16}$ N. Akopov, ${ }^{26}$ Z. Akopov, ${ }^{6}$ E.C. Aschenauer, ${ }^{7}$ W. Augustyniak, ${ }^{25}$
R. Avakian, ${ }^{26, a}$ A. Bacchetta, ${ }^{21}$ S. Belostotski ${ }^{19, a}$ V. Bryzgalov ${ }^{20}$ G. P. Capitani ${ }^{11}$
E. Cisbani, ${ }^{22}$ G. Ciullo, ${ }^{10}$ M. Contalbrigo, ${ }^{10}$ W. Deconinck, ${ }^{6}$ R. De Leo, ${ }^{2}$
E. De Sanctis, ${ }^{11}$ M. Diefenthaler, ${ }^{9}$ P. Di Nezza, ${ }^{11}$ M. Düren, ${ }^{13}$ G. Elbakian, ${ }^{2}$

F. Ellinghaus, ${ }^{,}$A. Fantoni, ${ }^{11}$ L. Felawka, ${ }^{23}$ G. Gavrilov, ${ }^{6,19,23}$ V. Gharibyan, ${ }^{26}$
D. Hasch, ${ }^{11}$ Y. Holler, ${ }^{6}$ A. Ivanilov, ${ }^{20}$ H.E. Jackson, ${ }^{1, a}$ S. Joosten, ${ }^{12}$ R. Kaiser, ${ }^{14}$
G. Karyan, ${ }^{6,26}$ E. Kinney, ${ }^{5}$ A. Kisselev, ${ }^{19}$ V. Kozlov, ${ }^{17}$ P. Kravchenko, ${ }^{9,19}$ L. Lagamba, ${ }^{2}$
L. Lapikás, ${ }^{18}$ I. Lehmann, ${ }^{14}$ P. Lenisa, ${ }^{10}$ W. Lorenzon, ${ }^{16}$ S.I. Manaenkov, ${ }^{19}$
B. Marianski, ${ }^{25, a}$ H. Marukyan, ${ }^{26}$ Y. Miyachi, ${ }^{24}$ A. Movsisyan, ${ }^{10,26}$ V. Muccifora, ${ }^{11}$
Y. Naryshkin, ${ }^{19}$ A. Nass, ${ }^{9}$ G. Nazaryan, ${ }^{2}$ W.-D. Nowak,' L.L. Pappalardo,
P.E. Reimer, ${ }^{1}$ A.R. Reolon, ${ }^{11}$ C. Riedl, ${ }^{7,15}$ K. Rith, ${ }^{9}$ G. Rosner, ${ }^{14}$ A. Rostomyan,
J. Rubin, ${ }^{15}$ D. Ryckbosch, ${ }^{12}$ A. Schäfer, ${ }^{21}$ G. Schnell, ${ }^{3,4,12}$ B. Seitz, ${ }^{14}$ T.-A. Shibata, ${ }^{24}$
V. Shutov, ${ }^{8}$ M. Statera, ${ }^{10}$ A. Terkulov, ${ }^{17}$ M. Tytgat, ${ }^{12}$ Y. Van Haarlem, ${ }^{12}$
C. Van Hulse, ${ }^{12}$ D. Veretennikov, ${ }^{3,19}$ I. Vilardi, ${ }^{2}$ S. Yaschenko, ${ }^{9}$ D. Zeiler, ${ }^{9}$ B. Zihlmann ${ }^{6}$ and P. Zupranski ${ }^{25}$
${ }^{1}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ${ }^{2}$ Isstituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
Department of Theoretical Physics, University of the Basque Country UPV/EHU, 8080 Bilbao, Spain
KERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spaiz
Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S. A ${ }^{\circ}$ DESY, 22603 Hamburg, Germany
${ }^{8}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia
${ }^{a}$ Deceased.

Azimuthal modulation	Significant						non-vanishing Fourier amplitude	
	π^{+}	π^{-}	K^{+}	K^{-}	p	π^{0}	\bar{p}	
$\sin \left(\phi+\phi_{S}\right)$	[Collins]	\checkmark	\checkmark	\checkmark		\checkmark		
$\sin \left(\phi-\phi_{S}\right)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$\sin \left(3 \phi-\phi_{S}\right)$	[Pretzelosity]							
$\sin \left(\phi_{S}\right)$		(\checkmark)	\checkmark		\checkmark			
$\sin \left(2 \phi-\phi_{S}\right)$								(\checkmark)
$\sin \left(2 \phi+\phi_{S}\right)$				\checkmark				
$\cos \left(\phi-\phi_{S}\right)$	[Worm-gear]	\checkmark	(\checkmark)	(\checkmark)				
$\cos \left(\phi+\phi_{S}\right)$								
$\cos \left(\phi_{S}\right)$				\checkmark				
$\cos \left(2 \phi-\phi_{S}\right)$								

Azimuthal single- and double-spin asymmetries in

 semi-inclusive deep-inelastic lepton scattering by transversely polarized protons
新品

The HERMES Collaboration

A. Airapetian, ${ }^{13,16}$ N. Akopov, ${ }^{26}$ Z. Akopov, ${ }^{6}$ E.C. Aschenauer, ${ }^{7}$ W. Augustyniak, ${ }^{25}$
R. Avakian, ${ }^{26, a}$ A. Bacchetta, ${ }^{21}$ S. Belostotski ${ }^{19, a}$ V. Bryzgalov ${ }^{20}$ G. P. Capitani ${ }^{11}$
E. Cisbani, ${ }^{22}$ G. Ciullo, ${ }^{10}$ M. Contalbrigo, ${ }^{10}$ W. Deconinck, ${ }^{6}$ R. De Leo, ${ }^{2}$
E. Cisbani, ${ }^{2}{ }^{2}$ G. Ciulo, ${ }^{10}$ M. Contalbrigo, ${ }^{10}$ W. Deconinck, ${ }^{6}$ R. De Leo, ${ }^{2}$

F. Ellinghaus, ${ }^{,}$A. Fantoni, ${ }^{11}$ L. Felawka, ${ }^{23}$ G. Gavrilov, ${ }^{6,19,23}$ V. Gharibyan, ${ }^{26}$
D. Hasch, ${ }^{11}$ Y. Holler, ${ }^{6}$ A. Ivanilov, ${ }^{20}$ H.E. Jackson, ${ }^{1, a}$ S. Joosten, ${ }^{12}$ R. Kaiser, ${ }^{14}$
G. Karyan, ${ }^{6,26}$ E. Kinney, ${ }^{5}$ A. Kisselev, ${ }^{19}$ V. Kozlov, ${ }^{17}$ P. Kravchenko, ${ }^{9,19}$ L. Lagamba, ${ }^{2}$
L. Lapikás, ${ }^{18}$ I. Lehmann, ${ }^{14}$ P. Lenisa, ${ }^{10}$ W. Lorenzon, ${ }^{16}$ S.I. Manaenkov,
B. Marianski, ${ }^{25, a}$ H. Marukyan, ${ }^{26}$ Y. Miyachi, ${ }^{24}$ A. Movsisyan, ${ }^{10,26}$ V. Muccifora, ${ }^{11}$
Y. Naryshkin, ${ }^{19}$ A. Nass, ${ }^{9}$ G. Nazaryan, ${ }^{26}$ W.-D. Nowak, ${ }^{7}$ L.L. Pappalardo,
P.E. Reimer, ${ }^{1}$ A.R. Reolon, ${ }^{11}$ C. Riedl,,${ }^{7,15}$ K. Rith, ${ }^{9}$ G. Rosner, ${ }^{14}$ A. Rostomyan, ${ }^{6}$
J. Rubin, ${ }^{15}$ D. Ryckbosch, ${ }^{12}$ A. Schäfer, ${ }^{21}$ G. Schnell, ${ }^{3,4,12}$ B. Seitz, ${ }^{14}$ T.-A. Shibata, ${ }^{24}$
V. Shutov, ${ }^{8}$ M. Statera, ${ }^{10}$ A. Terkulov, ${ }^{17}$ M. Tytgat, ${ }^{12}$ Y. Van Haarlem, ${ }^{12}$
C. Van Hulse, ${ }^{12}$ D. Veretennikov,,${ }^{3,19}$ I. Vilardi, ${ }^{2}$ S. Yaschenko, ${ }^{9}$ D. Zeiler, ${ }^{9}$ B. Zihlmann ${ }^{6}$ and P. Zupranski ${ }^{25}$
${ }^{1}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, \%o124 Bari, Italy
${ }^{3}$ Department of Theoretical Physics, University of the Basque Country UPV/EHU,
8080 Bilbao, Spain

${ }^{5}$ Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ${ }^{\circ}$ DESY, 22603 Hamburg, Germany
${ }^{8}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia
${ }^{{ }^{a} \text { Deceased. }}$

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

nermes

The HERMES Collaboration

A. Airapetian, ${ }^{13,16}$ N. Akopov, ${ }^{26}$ Z. Akopov, ${ }^{6}$ E.C. Aschenauer, ${ }^{7}$ W. Augustyniak, ${ }^{25}$ R. Avakian, ${ }^{26, a}$ A. Bacchetta, ${ }^{21}$ S. Belostotski ${ }^{19, a}$ V. Bryzar ${ }^{20}{ }^{20}$ G.P. Capitani ${ }^{11}$
R. Avakian, ${ }^{26, a}$ A. Bacchetta, ${ }^{24}$ S. Belostotski, ${ }^{1, a, a}$ V. Bryzgalov, ${ }^{20}$ G.P. Capit
E. Cisbani, ${ }^{22}$ G. Ciulo, ${ }^{10}$ M. Contalbrigo, ${ }^{10}$ W. Deconinck, ${ }^{6}$ R. De Leo, ${ }^{2}$
E. De Sanctis, ${ }^{5}$ M. Diefenthaler, ${ }^{4}$ P. Di Nezza, ${ }^{14}$ M. Duren. ${ }^{6}$, Elinghaus, ${ }^{5}$ A. Fantoni, ${ }^{11}$ L. Felawka, ${ }^{23}$ G. Gavrilov, ${ }^{6,19,23}$ V. Gharibyan, ${ }^{26}$
F. Ellinghaus, ${ }^{5}$ A. Fantoni, ${ }^{11}$ L. Felawka, ${ }^{23}$ G. Gavrilov, ${ }^{6,19,23}$ V. Gharibyan, ${ }^{26}$
D. Hasch, ${ }^{14}$ Y. Holler, ${ }^{6}$ A. Ivanilov, ${ }^{20}$ H.E. Jackson, ${ }^{1, a}$ S. Joosten, ${ }^{12}$ R. Kaiser, ${ }^{14}$
G. Karyan, ${ }^{6,26}$ E. Kinney, ${ }^{5}$ A. Kisselev, ${ }^{19}$ V. Kozlov, ${ }^{17}$ P. Kravchenko, ${ }^{9,19}$ L. Lagamba, ${ }^{2}$
L. Lapikás, ${ }^{18}$ I. Lehmann, ${ }^{14}$ P. Lenisa, ${ }^{10}$ W. Lorenzon, ${ }^{16}$ S.I. Manaenkov, ${ }^{10}$
B. Marianski, ${ }^{25, a}$ H. Marukyan, ${ }^{26}$ Y. Miyachi, ${ }^{24}$ A. Movsisyan, ${ }^{10,26}$ V. Muccifora, ${ }^{11}$
Y. Naryshkin, ${ }^{19}$ A. Nass, ${ }^{9}$ G. Nazaryan, ${ }^{26}$ W.-D. Nowak, L.L. Pappalardo,
P.E. Reimer, ${ }^{1}$ A.R. Reolon, ${ }^{11}$ C. Riedl,,${ }^{7,15}$ K. Rith, ${ }^{9}$ G. Rosner, ${ }^{14}$ A. Rostomyan, ${ }^{6}$
J. Rubin, ${ }^{15}$ D. Ryckbosch, ${ }^{12}$ A. Schäfer, ${ }^{21}$ G. Schnell, ${ }^{3,4,12}$ B. Seitz, ${ }^{14}$ T.-A. Shibata, ${ }^{24}$
V. Shutov, ${ }^{8}$ M. Statera, ${ }^{10}$ A. Terkulov, ${ }^{17}$ M. Tytgat, ${ }^{12}$ Y. Van Haarlem, ${ }^{12}$
C. Van Hulse, ${ }^{12}$ D. Veretennikov, ${ }^{3,19}$ I. Vilardi, ${ }^{2}$ S. Yaschenko, ${ }^{9}$ D. Zeiler, B. Zihlmann ${ }^{6}$ and P. Zupranski ${ }^{25}$
${ }^{1}$ Physicics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, \%o124 Bari, Italy
${ }^{3}$ Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain

Basque Foundation for Science, 48013 Bilbao, Spain
${ }^{5}$ Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ${ }^{6}$ DESY, 22603 Hamburg, Germany
${ }^{8}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia
${ }^{{ }^{a} \text { Deceased. }}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

- high-z data probes region of increased flavor sensitivity to struck quark (but also where contributions from exclusive vector-meson production becomes significant)
- only last z bin shows indication of sizable ρ^{0} contribution (decaying into charged pions)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions
\Leftrightarrow consequence of u-quark dominance in both cases?

$$
\begin{aligned}
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}} & =-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)} \\
& \approx-\mathcal{C} \frac{f_{1 T}^{\perp, u}\left(x, p_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right)}
\end{aligned}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes multi-dimensional analysis

[A. Airapetian et al., JHEP12(2020)O10]

- 3d analysis: $4 \times 4 \times 4$ bins in ($x, z, P_{h_{\perp}}$)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes multi-dimensional analysis

[A. Airapetian et al., JHEP12(2020)O10]

- 3d analysis: $4 \times 4 \times 4$ bins in ($x, z, P_{h_{\perp}}$)
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes multi-dimensional analysis

[A. Airapetian et al., JHEP12(2020)O10]

- 3d analysis: $4 \times 4 \times 4$ bins in ($x, z, P_{h_{\perp}}$)
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- quark-helicity asymmetry in transversely polarized nucleon
- evidences from
- ${ }^{3} \mathrm{He}$ target at JLab

X

- H target at COMPASS \& HERMES

X
worm-gear II

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

new HERMES results on Collins amplitudes

- first-ever results for (anti-)protons consistent with zero \rightarrow vanishing Collins effect for (spin-1/2) baryons?

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

new HERMES results on Collins amplitudes

- first-ever results for (anti-)protons consistent with zero \rightarrow vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

new HERMES results on Collins amplitudes

- first-ever results for (anti-)protons consistent with zero \Rightarrow vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor
- high-z region with larger quark-flavour sensitivity, with increasing amplitudes for positive pions and kaons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- quadrupole deformation in momentum space

Pretzelosity

- chiral-odd \Rightarrow needs Collins FF (or similar)
- ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ \& ${ }^{3} \mathrm{He}$ data from various experiments consistently small/vanishing
- cancelations? pretzelosity=zero? or just the additional general suppression of the asymmetry by two powers of $P_{h \perp} / M_{N}$

surprises: subleading twist, e.g., $\left\langle\sin \left(\phi_{s}\right)\right\rangle U T$

- clearly non-zero asymmetries
- opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude
- similar observation at COMPASS

	Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb	PHYSICS LETTERS B

Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

The HERMES Collaboration
A. Airapetian ${ }^{\mathrm{m}, \mathrm{p}}, \mathrm{N}$. Akopov $^{\mathrm{Z}}$, Z. Akopov ${ }^{\mathrm{f}}$, E.C. Aschenauer ${ }^{\text {g }}$, W. Augustyniak ${ }^{\mathrm{y}}$, S. Belostotski ${ }^{\mathrm{s}}$, H.P. Blok ${ }^{\mathrm{r}, \mathrm{x}}$, V. Bryzgalov ${ }^{\mathrm{t}}$, G.P. Capitani ${ }^{\mathrm{k}}$, E. Cisbani ${ }^{\mathrm{u}}$, G. Ciullo ${ }^{\mathrm{j}}$, M. Contalbrigo ${ }^{j}$, W. Deconinck ${ }^{\mathrm{f}}$, E. De Sanctis ${ }^{\mathrm{k}}$, M. Diefenthaler ${ }^{\mathrm{i}}$, P. Di Nezza ${ }^{\mathrm{k}}$, M. Düren ${ }^{\mathrm{m}}$, G. Elbakian ${ }^{\mathrm{z}}$, F. Ellinghaus ${ }^{\mathrm{e}}$, A. Fantoni ${ }^{\mathrm{k}}$, L. Felawka ${ }^{\mathrm{V}}$, G. Gapienko ${ }^{\mathrm{t}}$, F. Garibaldi ${ }^{\mathrm{u}}$, G. Gavrilov ${ }^{\mathrm{f}, \mathrm{s}, \mathrm{v}}$, V. Gharibyan ${ }^{\mathrm{Z}}$, A. Hillenbrand ${ }^{\mathrm{g}}$, Y. Holler ${ }^{\mathrm{f}}$, A. Ivanilov ${ }^{\mathrm{t}}$, H.E. Jackson ${ }^{\text {a, }}{ }^{1}$, S. Joosten ${ }^{1}$, R. Kaiser ${ }^{\text {n }}$, G. Karyan ${ }^{\text {f,z }}$, E. Kinney ${ }^{\text {e }}$, A. Kisselev ${ }^{\text {s }}$,
V. Korotkov ${ }^{\text {t, }}$, V. Kozlov ${ }^{\text {q }}$, P. Kravchenko ${ }^{\text {i,s }}$, L. Lagamba ${ }^{\text {b }}$, L. Lapikás ${ }^{\text {r }}$, I. Lehmann ${ }^{\text {n }}$,
P. Lenisa ${ }^{\mathrm{j}}$, W. Lorenzon ${ }^{\mathrm{p}}$, S.I. Manaenkov ${ }^{\mathrm{s}}$, B. Marianski ${ }^{\mathrm{y}}$, H. Marukyan ${ }^{\mathrm{z}}$, A. Movsisyan ${ }^{\mathrm{j}, \mathrm{z}}$,
V. Muccifora ${ }^{\mathrm{k}}$, A. Nass ${ }^{\mathrm{i}}$, G. Nazaryan ${ }^{\text {z }}$, W.-D. Nowak ${ }^{\text {g }}$, L.L. Pappalardo ${ }^{\mathrm{j}}$, A.R. Reolon ${ }^{\mathrm{k}}$,
C. Riedl ${ }^{\text {g,o }}$, K. Rith ${ }^{\mathrm{i}}$, G. Rosner ${ }^{\mathrm{n}}$, A. Rostomyan ${ }^{\mathrm{f}}$, D. Ryckbosch ${ }^{1}$, G. Schnell ${ }^{\text {c,d, } 1, * \text {, B. Seitz }}{ }^{\mathrm{n}}$,
T.-A. Shibata ${ }^{\mathrm{w}}$, V. Shutov ${ }^{\text {h }}$, M. Statera ${ }^{\mathrm{j}}$, A. Terkulov ${ }^{\mathrm{q}}$, A. Trzcinski ${ }^{\mathrm{y}, 1}$, M. Tytgat ${ }^{1}$,
Y. Van Haarlem ${ }^{1}$, C. Van Hulse ${ }^{\text {c,1 }}$, D. Veretennikov ${ }^{\text {c,s }}$, I. Vilardi ${ }^{\text {b }}$, C. Vogel ${ }^{\text {i }}$, S. Yaschenko ${ }^{\text {i }}$,
V. Zagrebelnyy ${ }^{\mathrm{f}, \mathrm{m}}$, D. Zeiler ${ }^{\mathrm{i}}$, B. Zihlmann ${ }^{\mathrm{f}}$, P. Zupranski ${ }^{\text {y }}$

subleading twist II $-\langle\sin (\phi)\rangle L U$

HERMES 3d analysis

most comprehensive presentation; use 1d binning for discussion

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

- p \& d targets
- $\pi, K, p \& \bar{p}$ final-state h
- SIDIS and high-z transition regions

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

[HERMES, PLB 797 (2019) 134886]

subleading twist II - <sin(ϕ)>८U

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

subleading twist II - <sin $(\phi)>$ LU

HERMES \& CLAS

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed
- CLAS more sensitive to $e(x)$ Collins term due to higher x probed?

subleading twist II - <sin $(\phi)>$ LU

HERMES \& COMPASS

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets

conclusions

- HERMES continues producing results long after its shut-down
- latest pub's providing 3d presentations of longitudinal \& transverse SSA \& DSA
- completes the TMD analyses of single-hadron production
- several significant leading-twist spin-momentum correlations (Sivers, Collins, wormgear) but no sign for pretzelosity => clear dipole but no quadrupole deformations
- surprisingly large twist-3 effects
- by now, basically all asymmetries (except one: Aul) extracted simultaneously in three or even four dimensions - a rich data set on transverse-momentum distributions
- complementary to data from other facilities
- equally important are studies of generalized parton distributions (see DVCS summary in backup) and many other results not related to 3d structure (e.g., nuclear effects)

backup slides

deeply virtual Compton scattering (DVCS)

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target (many more modulations for polarized targets)

Fourier expansion for ϕ :

$$
\begin{aligned}
& \left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
& \\
& \text { (using form-factor measurements) }
\end{aligned}
$$

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target (many more modulations for polarized targets)

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\text {BH }}\right|^{2} & =\frac{K_{\text {BH }}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\text {BH }} \cos (n \phi) \\
\left|\mathcal{T}_{\text {DVCS }}\right|^{2} & =K_{\text {DVcs }}\left[\sum_{n=0}^{2} c_{n}^{2 v C s} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\text {DVCs }} \sin (n \phi)\right]
\end{aligned}
$$

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target (many more modulations for polarized targets)

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\text {DVCS }} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\text {DVCS }} \sin (n \phi)\right] \\
\mathcal{I} & =\frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos (n \phi)+P_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right]
\end{aligned}
$$

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target (many more modulations for polarized targets)

DVCS

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right] \\
\mathcal{I} & =\frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \operatorname{Cos}(n \phi)+\beta_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right]
\end{aligned}
$$

bilinear ("DVCS") or linear in GPDs

Beam-charge asymmetry: GPD H PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083
Beam-helicity asymmetry: pRC 81 (2010) 035202 GPD H

PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry: GPD \tilde{H}
Double-spin asymmetry: GPD \tilde{H}

however, no crosssection measurement so far at HERMES kinematics!
non-vanishing twist-3

subleading twist I -<sin $(\phi)>$ UL

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

subleading twist I - <sin $(\phi)>$ UL

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
\Rightarrow mixing of longitudinal and transverse polarization effects [Diehl \& Sapeta, EPJ C 41 (2005) 515], e.g.,

$$
\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{\prime} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & \cos \theta_{\gamma^{*}} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & 0 & \cos \theta_{\gamma^{*}}
\end{array}\right)\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{q} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}
\end{array}\right)
$$

subleading twist I -<sin $(\phi)>$ UL

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
\Rightarrow mixing of longitudinal and transverse polarization effects
[Diehl \& Sapeta, EPJ C 41 (2005) 515], e.g.,

$$
\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{\prime} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & \cos \theta_{\gamma^{*}} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & 0 & \cos \theta_{\gamma^{*}}
\end{array}\right)\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{q} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}
\end{array}\right)
$$

\Rightarrow need data on same target for both polarization orientations!

subleading twist I - <sin $(\phi)>$ UL

$$
\langle\sin \phi\rangle_{U L}^{q}=\langle\sin \phi\rangle_{U L}^{\prime}+\sin \theta_{\gamma^{*}}\left(\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}+\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime}\right)
$$

- experimental Aul dominated by twist-3 contribution
- correction for Aut contribution increases the longitudinal asymmetry for positive pions
- consistent with zero for π^{-}

subleading twist I - <sin $(\phi)>$ UL

$$
\langle\sin \phi\rangle_{U L}^{q}=\langle\sin \phi\rangle_{U L}^{\prime}+\sin \theta_{\gamma^{*}}\left(\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}+\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime}\right)
$$

- experimental Aul dominated by twist-3 contribution
- in contrast to WW-type approximation [1807.10606] (both COMPASS and HERMES data)

subleading twist I - <sin $(\phi)>$ UL

$$
\langle\sin \phi\rangle_{U L}^{q}=\langle\sin \phi\rangle_{U L}^{\prime}+\sin \theta_{\gamma^{*}}\left(\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}+\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime}\right)
$$

- experimental Aul dominated by twist-3 contribution
- in contrast to WW-type approximation [1807.10606] (for both COMPASS and HERMES data)
- sizable also for new CLAS neutral-pion data

subleading twist II $-\langle\sin (\phi)\rangle L U$

$$
\frac{M_{h}}{M z} h_{1}^{\perp} \tilde{E} \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} \tilde{G}^{\perp} \oplus x e H_{1}^{\perp}
$$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
- signs of BM from unpolarized SIDIS
- little known about interaction-dependent FF
- little known about naive-T-odd g^{\perp}; singled out in ALu in jet production
- large unpolarized f_{1}, coupled to interaction-dependent FF
- twist-3 e survives integration over P_{h}; here coupled to Collins FF
- e linked to the pion-nucleon σ-term
- interpreted as color force (from remnant) on transversely polarized quarks at the moment of being struck by virtual photon
- all terms vanish in WW-type approximation

subleading twist III $-\left\langle\sin \left(\phi_{s}\right)\right\rangle_{U T}$

- vanishes in inclusive limit, e.g. after integration over $P_{h \perp}$ and z, and summation over all hadrons
- tested to permille level at HERMES:

subleading twist III $-\left\langle\sin \left(\phi_{s}\right)\right\rangle_{U T}$

- vanishes in inclusive limit, e.g. after integration over $P_{h \perp}$ and z, and summation over all hadrons
- various contributing terms related to transversity, worm-gear, Sivers etc.:

$$
\begin{aligned}
& \propto\left(\mathrm{Xf}_{\mathrm{T}}^{\perp} \mathbf{D}_{1}-\frac{\mathrm{M}_{\mathbf{h}}}{\mathrm{M}} \mathrm{~h}_{1} \frac{\tilde{\mathbf{H}}}{\mathrm{z}}\right) \\
& -\mathcal{W}\left(\mathbf{p}_{\mathrm{T}}, \mathrm{k}_{\mathrm{T}}, \mathbf{P}_{\mathrm{h} \perp}\right)\left[\left(\mathrm{xh}_{\mathrm{T}} \mathbf{H}_{1}^{\perp}+\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathrm{g}_{1 \mathrm{~T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathrm{z}}\right)\right. \\
& \left.-\left(\mathrm{xh}_{\mathbf{T}}^{\perp} \mathbf{H}_{1}^{\perp}-\frac{\mathrm{M}_{\mathrm{h}}}{\mathrm{M}} \mathrm{f}_{1 \mathrm{~T}}^{\perp} \frac{\tilde{\mathrm{D}}^{\perp}}{\mathrm{z}}\right)\right]
\end{aligned}
$$

- non-vanishing collinear limit:

$$
F_{\mathrm{UT}}^{\sin \left(\phi_{S}\right)}\left(x, Q^{2}, z\right)=\int d^{2} \mathbf{P}_{h \perp} F_{\mathrm{UT}}^{\sin \left(\phi_{S}\right)}\left(x, Q^{2}, z, P_{h \perp}\right)=-x \frac{2 M_{h}}{Q} \sum_{q} e_{q}^{2} h_{1}^{q} \frac{\tilde{H}^{q}(z)}{z}
$$

subleading twist III $-\left\langle\sin \left(\phi_{s}\right)\right\rangle_{U T}$

- vanishes in inclusive limit, e.g. after integration over $P_{h \perp}$ and z, and summation over all hadrons
- various contributing terms related to transversity, worm-gear, Sivers etc.:

$$
\begin{aligned}
& \propto\left(\mathrm{xf}_{\mathbf{T}}^{\perp} \mathbf{D}_{1}-\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathrm{h}_{1} \frac{\tilde{\mathbf{H}}}{\mathrm{z}}\right) \\
&-\mathcal{W}\left(\mathbf{p}_{\mathbf{T}}, \mathrm{k}_{\mathbf{T}}, \mathbf{P}_{\mathrm{h} \perp}\right) {\left[\left(\mathrm{xh}_{\mathbf{T}} \mathbf{H}_{\mathbf{1}}^{\perp}+\frac{\mathbf{M}_{\mathbf{h}}}{\mathrm{M}} \mathrm{~g}_{1 \mathrm{~T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathrm{z}}\right)\right.} \\
&\left.-\left(\mathrm{xh}_{\mathbf{T}}^{\perp} \mathbf{H}_{\mathbf{1}}^{\perp}-\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathrm{f}_{1 \mathbf{T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathrm{z}}\right)\right]
\end{aligned}
$$

- non-vanishing collinear limit:

$$
F_{\mathrm{UT}}^{\sin \left(\phi_{S}\right)}\left(x, Q^{2}, z\right)=\int d^{2} \mathbf{P}_{h \perp} F_{\mathrm{UT}}^{\sin \left(\phi_{S}\right)}\left(x, Q^{2}, z, P_{h \perp}\right)=-x \frac{2 M_{h}}{Q} \sum_{q} e_{q}^{2} h_{1}^{\tilde{H}^{q}(z)}
$$

subleading twist III - $\left\langle\sin \left(\phi_{s}\right)\right\rangle u T$

- hint of Q^{2} dependence seen in signal for negative pions

devil in the details \&
 lessons learnt on the way

mixing of target polarizations

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
\Rightarrow mixing of longitudinal and transverse polarization effects

TMD factorization: a 2-scale problem

lowest \times bin

- - $\quad Q^{2}=P^{2} h_{\perp}$

TMD factorization: a 2-scale problem

lowest \times bin

$-=\quad Q^{2}=P^{2} h_{\perp}$

- - $\quad Q^{2}=2 P^{2} h_{\perp}$
$==-Q^{2}=4 P^{2}{ }_{h \perp}$
disclaimer: coloured lines drawn by hand

TMD factorization: a 2-scale problem

highest x bin

$$
\begin{array}{ll}
=- & Q^{2}=P_{h \perp} \\
== & Q^{2}=2 P_{h \perp} \\
== & Q^{2}=4 P^{2} 2_{\perp \perp}
\end{array}
$$

disclaimer: coloured lines drawn by hand

TMD factorization: a 2-scale problem

highest x bin

$=-\quad Q^{2}=P^{2}{ }_{h \perp} / z^{2}$
$=-\quad Q^{2}=2 P_{h \perp} / z^{2}$
$===Q^{2}=4 P_{h \perp} / z^{2}$
disclaimer: coloured lines drawn by hand

TMD factorization: a 2-scale problem

lowest x bin

- $-\quad Q^{2}=P^{2}{ }_{h \perp} / z^{2}$
all other x-bins included in the Supplemental Material of JHEP12(2020)010

hadron production at HERMES

- forward-acceptance favors current fragmentation
- backward rapidity populates large- $\mathrm{P}_{\mathrm{h} \perp}$ region [as expected]

hadron production at HERMES

- forward-acceptance favors current fragmentation
- backward rapidity populates large- $\mathrm{P}_{\mathrm{h} \perp}$ region [as expected]
- rapidity distributions available for all kinematic bins (e.g., highest $-x$ bin protons)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

[A. Airapetian et al., arXiv:2007.07755]

Sivers amplitudes multi-dimensional analysis

multi-d dependence and kinematical distribution should facilitate analyses within TMD formalism

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. kaons
somewhat unexpected if dominated by scattering from u-quarks:
$\simeq-\frac{\mathrm{f}_{1 \mathrm{~T}}^{\perp, \mathrm{u}}\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}^{2}\right) \otimes_{\mathcal{W}} \mathbf{D}_{1}^{\mathrm{u} \rightarrow \pi^{+} / \mathrm{K}^{+}}\left(\mathrm{z}, \mathrm{k}_{\mathrm{T}}^{2}\right)}{\left.\mathrm{f}_{1}^{\mathrm{u}}\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}^{2}\right) \otimes \mathbf{D}_{1}^{\mathrm{u} \rightarrow \pi^{+} / \mathrm{K}^{+}}\left(\mathrm{z}, \mathrm{k}_{\mathrm{T}}^{2}\right)\right)}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. kaons

larger amplitudes seen also by COMPASS
somewhat unexpected if dominated by scattering from u-quarks:
$\simeq-\frac{\mathbf{f}_{1 \mathrm{~T}}^{\perp, \mathrm{u}}\left(\mathrm{x}, \mathrm{p}_{\mathbf{T}}^{2}\right) \otimes \mathcal{W} \mathbf{D}_{1}^{\mathrm{u} \rightarrow \pi^{+} / \mathrm{K}^{+}}\left(\mathbf{z}, \mathbf{k}_{\mathbf{T}}^{2}\right)}{\left.\mathrm{f}_{1}^{\mathrm{u}}\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}^{2}\right) \otimes \mathbf{D}_{1}^{\mathrm{u} \rightarrow \pi^{+} / \mathrm{K}^{+}}\left(\mathrm{z}, \mathrm{k}_{\mathbf{T}}^{2}\right)\right)}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering from u-quarks:

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions
\Leftrightarrow consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions
\Leftrightarrow consequence of u-quark dominance in both cases?
 possibly, onset of target fragmentation only at lower z

