

Gunar.Schnell @ DESY.de

Basque Foundation for Science

IWHSS 2022

International Workshop on

Hadron Structure and Spectroscopy

CERN – August 29-31, 2022

HERMES view on the nucleon's spin & 3d structure

• 25 years of COMPASS approval 20 years of COMPASS data taking

Gunar Schnell

2022 — so many anniversaries!

#123359585

- 25 years of COMPASS approval
- 20 years of COMPASS data taking

- 35 years of spin crisis/puzzle
- 30 years of HERA and (conditional) HERMES approval
- 15 years of HERA shutdown

2022 — so many anniversaries!

27.6 GeV polarized e^{+}/e^{-} beam scattered off ...

- unpolarized (H, D, He,..., Xe) as well as
- transversely (H) or
- longitudinally (H, D, He) polarized pure gas targets

Gunar

IWHSS 2022 – Aug. 29-31, 2022

Total number of published HERMES papers: 83 Total number of citations: 10,135 122 Average citations per paper: **2 top-cite 500+** & 9 topcite 250+ \mathbf{O} [inspirehep.net as of Aug. 28, 2022]

Total number of published HERMES papers: 83 Total number of citations: 10,135 122 Average citations per paper: **2 top-cite 500+** & 9 topcite 250+ [inspirehep.net as of Aug. 28, 2022] 1997

end of data taking

Total number of published HERMES papers: 83 Total number of citations: 10,135 122 Average citations per paper: **2 top-cite 500+** & 9 topcite 250+ [inspirehep.net as of Aug. 28, 2022] 1997

end of data taking

official end of funding

83 Total number of published HERMES papers: Total number of citations: 10,135 122 Average citations per paper: **2 top-cite 500+** & 9 topcite 250+ [inspirehep.net as of Aug. 28, 2022] 1997

Publication schedule for 2012 priority analyses (08/2022)

multiplicities DC66 reevaluation	р	ublished		rds 1st circul rds 2nd circu	
A_UT / A_LT SIDIS A_UT incl. hadrons Phi SDME				rds submissio	
BEC assoc. DVCS					
A_LU SIDIS transverse Lambda longitudinal Lambda					
omega SDME Stolarski Reply delta-q millennium					
Gunar Schnell	0	3	6	9 1	2 15 <i>months</i>

- despite tremendous drop in analysis manpower, almost all priority analyses identified finished
 - two analyses dropped
 - one still ongoing in advanced state
- at same time **new ideas**; partially already published, others ... waiting for manpower
- only possible thanks to tremendous datapreservation efforts

semi-inclusive one-hadron production ($ep \rightarrow ehX$)

Gunar Schnell

IWHSS 2022 – Aug. 29-31, 2022

semi-inclusive one-hadron production ($ep \rightarrow ehX$)

 ϕ_S

parton kinematics

 \mathcal{Y}

T

Gunar Schnell

fragmentation fct. selector

parton polarization

IWHSS 2022 – Aug. 29-31, 2022

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Gunar Schnell

$$A_{UL} = \frac{1}{|P_B|} \frac{N^{\rightarrow}(\phi) - N^{\leftarrow}(\phi)}{N^{\rightarrow}(\phi) + N^{\leftarrow}(\phi)}$$

IWHSS 2022 – Aug. 29-31, 2022

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Gunar Schnell

IWHSS 2022 – Aug. 29-31, 2022

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Gunar Schnell

IWHSS 2022 – Aug. 29-31, 2022

transverse-momentum distributions (TMDs)

Longitudinal momentum

Gunar Schnell

IWHSS 2022 — Aug. 29-31, 2022

3d spin-momentum structure of the nucleon

$$\left[-S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T} \right]$$

$$+ S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1}$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

3d spin-momentum structure of the nucleon

transversity

Gunar Schnell

worm-gear

$$-S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}$$

$$+ S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1}$$

$$(2k^{i}k^{j} - k^{2}\delta^{ij})S^{j}\frac{1}{2m^{2}}h_{1T}^{\perp} + \Lambda s^{i}k^{i}\frac{1}{m}h_{1L}^{\perp}$$

Boer-Mulders

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum

pretzelosity

- functions in green box are chirally odd
- functions in red are naive T-odd

- unpolarized quarks: easy "just" hit them (and count)
- Iongitudinally polarized quarks: use polarized beam

Gunar Schnell

quark polarimetry

- unpolarized quarks: easy "just" hit them (and count)
- Ingitudinally polarized quarks: use polarized beam

transversely polarized quarks: need final-state polarimetry, e.g.

Gunar Schnell

quark polarimetry

Gunar Schnell

Gunar Schnell

relevant for unpolarized final state

Gunar Schnell

relevant for unpolarized final state

Collins FF: $H_1^{\perp,q \to h}$ A ordinary FF: $D_1^{q \to h}$

IWHSS 2022 – Aug. 29-31, 2022

Gunar Schnell

relevant for unpolarized final state polarized final-state hadrons (e.g., hyperons)

probing TMDs in semi-inclusive DIS

Gunar Schnell

in SIDIS^{*)} couple PDFs to: Collins FF: $H_1^{\perp,q \to h}$ ordinary FF: $D_1^{q \rightarrow h}$

*) semi-inclusive DIS with unpolarized final state

IWHSS 2022 – Aug. 29-31, 2022

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left(F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right) + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}\,F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right] + \Lambda\epsilon\,F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon\,F_{UU}^{h,\cos2\phi}$$

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right\}\right)\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right\}$$

$$+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}F_{LL}^{h,\cos\phi}\right]$$

$$+\Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}$$

double-spin asymmetry:

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} \rightarrow \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right]\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

Gunar Schnell

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

single-spin asymmetry:

explicit angular dependence to be analyzed

Gunar Schnell

with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{ terms not involving transv.}\right.$$

$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right] + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\phi_{s} + \sqrt{2\epsilon}$$

Gunar Schnell

semi-inclusive DIS

IWHSS 2022 - Aug 29-31, 2022

with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2} \quad y^{2}}{\mathrm{Sivers}} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \varepsilon \mathrm{rms \ not \ involving \ transv.} + S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi-\phi_{s}\right)}\right) + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{h,\sin\phi_{s}}\sin\phi_{s} + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{h,\cos\phi_{s}}\cos\left(\phi-\phi_{s}\right)$$

Gunar Schnell

tr

2d kinematic phase space

Gunar Schnell

IWHSS 2022 – Aug. 29-31, 2022

2d kinematic phase space

Gunar Schnell

the analysis of the z dependence.

2d kinematic phase space

Gunar Schnell

0.5 current vs. tar

Gunar Schnell

0

IWHSS 2022 – Aug. 29-31, 2022

Current vs. tar

Gunar Schnell

0

current vs. tar

selected hadrons at HERMES mainly forward-going in photon-nucleon c.m.s. Gunar Schnell

0

Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons

A. Airapetian,^{13,16} N. Akopov,²⁶ Z. Akopov,⁶ E. C. Aschenauer,⁷ W. Augustyniak,²⁵ R. Avakian,²⁶ A. Avetissian,²⁶ S. Belostotski,¹⁹ H. P. Blok,^{18,24} A. Borissov,⁶ V. Bryzgalov,²⁰ G. P. Capitani,¹¹ E. Cisbani,²¹ G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ P. F. Dalpiaz,¹⁰ W. Deconinck,⁶ R. De Leo,² L. De Nardo,^{5,12,22} E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²² S. Frullani,^{21,*} G. Gavrilov,^{6,19,22} V. Gharibyan,²⁶ F. Giordano,¹⁰ S. Gliske,¹⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H. E. Jackson,¹ S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,²⁶ T. Keri,^{13,14} E. Kinney,⁵ A. Kisselev,¹⁹ V. Korotkov,^{20,*} V. Kozlov,¹⁷ P. Kravchenko,^{9,19} V. G. Krivokhijine,⁸ L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ W. Lorenzon,¹⁶ B.-Q. Ma,³ D. Mahon,¹⁴ S. I. Manaenkov,¹⁹ Y. Mao,³ B. Marianski,²⁵ H. Marukyan,²⁶ Y. Miyachi,²³ A. Movsisyan,^{10,26} V. Muccifora,¹¹ A. Mussgiller,^{6,9} Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L. L. Pappalardo,¹⁰ R. Perez-Benito,¹³ A. Petrosyan,²⁶ P. E. Reimer,¹ A. R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² Y. Salomatin,^{20,*} G. Schnell,^{4,12} B. Seitz,¹⁴ T.-A. Shibata,²³ M. Statera,¹⁰ E. Steffens,⁹ J. J. M. Steijger,¹⁸ S. Taroian,²⁶ A. Terkulov,¹⁷ R. Truty,¹⁵ A. Trzcinski,^{25,*} M. Tytgat,¹² P. B. van der Nat,¹⁸ Y. Van Haarlem,¹² C. Van Hulse,^{4,12} D. Veretennikov,^{4,19} V. Vikhrov,¹⁹ I. Vilardi,² C. Vogel,⁹ S. Wang,³ S. Yaschenko,⁹ B. Zihlmann,⁶ and P. Zupranski²⁵

(The HERMES Collaboration)

re-analysis of longitudinal double-spin asymmetries

- revisited [PRD 71 (2005) 012003] A1 analysis at HERMES in order to
 - exploit slightly larger data set (less restrictive momentum range)
 - provide A_{\parallel} in addition to A_{\perp}

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h$$

R (ratio of longitudinal-to-transverse cross-sec'n) still to be measured! [only available for inclusive DIS data, e.g., used in g1 SF measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional (x, z, $P_{h\perp}$) dependences
- extract twist-3 cosine modulations

$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

re-analysis of longitudinal double-spin asymmetries

- revisited [PRD 71 (2005) 012003] A1 analysis at HERMES in order to
 - exploit slightly larger data set (less restrictive momentum range)
 - provide A_{\parallel} in addition to A_{\perp}

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h$$

R (ratio of longitudinal-to-transverse cross-sec'n) still to be measured! [only available for inclusive DIS data, e.g., used in g1 SF measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional (x, z, $P_{h\perp}$) dependences
- extract twist-3 cosine modulations ... consistent with zero

$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathrm{R}}$

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathrm{R}}$

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{B}$

luminosities. $\frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow} N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons} N_{\Rightarrow}^{h}}{L_{P,\Rightarrow} N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons} N_{\Rightarrow}^{h}} \right]_{\mathbf{D}}$

• dominated by statistical uncertainties

Gunar Schnell

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathsf{R}}$

- dominated by statistical uncertainties
- main systematics arise from
 - polarization measurements [6.6% for hydrogen, 5.7% for deuterium)
 - azimuthal correction [O(few %)]

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathsf{R}}$

measured

• both numerator and in particular denominator ϕ dependent

in theory integrated out

• in praxis, detector acceptance also ϕ dependent

convolution of physics & acceptance leads to bias in normalization of asymmetries

measured

• both numerator and in particular denominator ϕ dependent

in theory integrated out

• in praxis, detector acceptance also ϕ dependent

convolution of physics & acceptance leads to bias in normalization of asymmetries

Implemented data-driven model for azimuthal modulations [PRD 87 (2013) 012010] into MC extract correction factor & apply to data

If fully consistent with previous HERMES publication [PRD 71 (2005) 012003]

x dependence of A_{||}

3-dimensional binning

• first-ever 3d binning provides transverse-momentum dependence

- dependence
- - sensitivity to the large positive up-quark polarization

 $A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \frac{\sigma_{1/2}^{h^+}}{\sigma_{1/2}^{h^+}}\right)}{\left(\sigma_{1/2}^{h^+} - \frac{\sigma_{1/2}^{h^+}}{\sigma_{1/2}^{h^+}}\right)}$

Gunar Schnell

$$\frac{1}{2} - \sigma_{1/2}^{h^-} - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right) = 0.8$$

$$\frac{1}{2} - \sigma_{1/2}^{h^-} + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-}\right) = 0.6$$

$$0.6$$

$$0.4$$

0.2

0-

0.2

0-

$$A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) - \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)}{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) + \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)} \qquad \qquad \textbf{0.8}$$

• at leading-order and leading-twist, assuming charge conjugation sy fragmentation functions:

$$A_{1,d}^{h^+ - h^-} \stackrel{\text{loltt}}{=} \frac{g_1^{u_v} + g_1^{d_v}}{f_1^{u_v} + f_1^{d_v}}$$

assuming also isospin symmetry in fragmentation:

 $A_{1}^{h^+-h^- L}$

• can be used to extract valence helicity distributions

Gunar Schnell

$$= \frac{4g_1^{u_v} - g_1^{d_v}}{4f_1^{u_v} - f_1^{d_v}}$$

0.2

0.2

0-

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS

Gunar Schnell

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS
- valence distributions consistent with JETSETbased extraction:

X Ig 29-31, 2022

Published for SISSA by 🙆 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2, 2020

JHE

Д

 \vdash

 \mathbb{N}

 \mathbb{N}

 \bigcirc

 \mathbb{N}

 \bigcirc

 \checkmark

 \bigcirc

 \vdash

 \bigcirc

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian, 13,16 N. Akopov, 26 Z. Akopov, 6 E.C. Aschenauer, 7 W. Augustyniak, 25 **R.** Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11 E. Cisbani,²² G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ W. Deconinck,⁶ R. De Leo,² E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²³ G. Gavrilov,^{6,19,23} V. Gharibyan,²⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H.E. Jackson,^{1,a} S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,^{6,26} E. Kinney,⁵ A. Kisselev,¹⁹ V. Kozlov,¹⁷ P. Kravchenko,^{9,19} L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ P. Lenisa,¹⁰ W. Lorenzon,¹⁶ S.I. Manaenkov,¹⁹ B. Marianski,^{25,a} H. Marukyan,²⁶ Y. Miyachi,²⁴ A. Movsisyan,^{10,26} V. Muccifora,¹¹ Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰ P.E. Reimer,¹ A.R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² A. Schäfer,²¹ G. Schnell,^{3,4,12} B. Seitz,¹⁴ T.-A. Shibata,²⁴ V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹² C. Van Hulse,¹² D. Veretennikov,^{3,19} I. Vilardi,² S. Yaschenko,⁹ D. Zeiler,⁹ **B.** Zihlmann⁶ and P. Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia

^aDeceased.

OPEN ACCESS, © The Authors. Article funded by $SCOAP^3$.

https://doi.org/10.1007/JHEP12(2020)010

Azi $\sin(\phi)$ $\sin(\phi)$ $\sin(3\phi)$ $\sin($ $\sin\left(2\phi\right)$ $\sin{(2\phi)}$ $\cos(\phi)$ $\cos(\phi)$ COS $\cos{(2\phi)}$

imuthal	modulation	Sign	ificant	non-vai	nishing	Fourie	r amplit
		π^+	π^{-}	K^+	K^{-}	p	π^0
$\phi + \phi_S)$	[Collins]	\checkmark	\checkmark	\checkmark		\checkmark	
$\phi - \phi_S)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(\checkmark)
$\phi - \phi_S)$	[Pretzelosity]						
(ϕ_S)		(\checkmark)	\checkmark		\checkmark		
$\phi - \phi_S)$							
$\phi + \phi_S)$				\checkmark			
$\phi - \phi_S)$	[Worm-gear]	\checkmark	(\checkmark)	(\checkmark)			
$\phi + \phi_S)$							
$\phi_S(\phi_S)$				\checkmark			
$\phi - \phi_S)$							

Published for SISSA by 🖉 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2, 2020

 \square

ΉE

Д

 \vdash

 \mathbb{N}

 \mathbb{N}

 \bigcirc

 \mathbb{N}

 \bigcirc

 \checkmark

 \bigcirc

 \vdash

 \bigcirc

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian, 13,16 N. Akopov, 26 Z. Akopov, 6 E.C. Aschenauer, 7 W. Augustyniak, 25 **R.** Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11 E. Cisbani,²² G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ W. Deconinck,⁶ R. De Leo,² E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²³ G. Gavrilov,^{6,19,23} V. Gharibyan,²⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H.E. Jackson,^{1,a} S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,^{6,26} E. Kinney,⁵ A. Kisselev,¹⁹ V. Kozlov,¹⁷ P. Kravchenko,^{9,19} L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ P. Lenisa,¹⁰ W. Lorenzon,¹⁶ S.I. Manaenkov,¹⁹ B. Marianski,^{25,a} H. Marukyan,²⁶ Y. Miyachi,²⁴ A. Movsisyan,^{10,26} V. Muccifora,¹¹ Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰ P.E. Reimer,¹ A.R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² A. Schäfer,²¹ G. Schnell,^{3,4,12} B. Seitz,¹⁴ T.-A. Shibata,²⁴ V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹² C. Van Hulse,¹² D. Veretennikov,^{3,19} I. Vilardi,² S. Yaschenko,⁹ D. Zeiler,⁹ **B.** Zihlmann⁶ and **P.** Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia

^aDeceased.

OPEN ACCESS, (c) The Authors Article funded by $SCOAP^3$.

https://doi.org/10.1007/JHEP12(2020)010

Published for SISSA by 🖉 Springer

RECEIVED: July 31, 2020 ACCEPTED: October 4, 2020 PUBLISHED: December 2. 2020

 \square

ΗE

Д

 \vdash

 \mathbb{N}

 \mathbb{N}

 \bigcirc

 \mathbb{N}

 \bigcirc

 \checkmark

 \bigcirc

 \vdash

 \bigcirc

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian, 13,16 N. Akopov, 26 Z. Akopov, 6 E.C. Aschenauer, 7 W. Augustyniak, 25 **R.** Avakian, 26,a A. Bacchetta, 21 S. Belostotski, 19,a V. Bryzgalov, 20 G.P. Capitani, 11 E. Cisbani,²² G. Ciullo,¹⁰ M. Contalbrigo,¹⁰ W. Deconinck,⁶ R. De Leo,² E. De Sanctis,¹¹ M. Diefenthaler,⁹ P. Di Nezza,¹¹ M. Düren,¹³ G. Elbakian,²⁶ F. Ellinghaus,⁵ A. Fantoni,¹¹ L. Felawka,²³ G. Gavrilov,^{6,19,23} V. Gharibyan,²⁶ D. Hasch,¹¹ Y. Holler,⁶ A. Ivanilov,²⁰ H.E. Jackson,^{1,a} S. Joosten,¹² R. Kaiser,¹⁴ G. Karyan,^{6,26} E. Kinney,⁵ A. Kisselev,¹⁹ V. Kozlov,¹⁷ P. Kravchenko,^{9,19} L. Lagamba,² L. Lapikás,¹⁸ I. Lehmann,¹⁴ P. Lenisa,¹⁰ W. Lorenzon,¹⁶ S.I. Manaenkov,¹⁹ B. Marianski,^{25,a} H. Marukyan,²⁶ Y. Miyachi,²⁴ A. Movsisyan,^{10,26} V. Muccifora,¹¹ Y. Naryshkin,¹⁹ A. Nass,⁹ G. Nazaryan,²⁶ W.-D. Nowak,⁷ L.L. Pappalardo,¹⁰ P.E. Reimer,¹ A.R. Reolon,¹¹ C. Riedl,^{7,15} K. Rith,⁹ G. Rosner,¹⁴ A. Rostomyan,⁶ J. Rubin,¹⁵ D. Ryckbosch,¹² A. Schäfer,²¹ G. Schnell,^{3,4,12} B. Seitz,¹⁴ T.-A. Shibata,²⁴ V. Shutov,⁸ M. Statera,¹⁰ A. Terkulov,¹⁷ M. Tytgat,¹² Y. Van Haarlem,¹² C. Van Hulse,¹² D. Veretennikov,^{3,19} I. Vilardi,² S. Yaschenko,⁹ D. Zeiler,⁹ **B.** Zihlmann⁶ and P. Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, U.S.A. ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, U.S.A. ⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia

^aDeceased.

OPEN ACCESS, (c) The Authors Article funded by $SCOAP^3$.

https://doi.org/10.1007/JHEP12(2020)010

 $\langle \sin(\phi - \phi_{S}) \rangle_{U^{\perp}}$

N

Gunar Schnell

Sivers amplitudes for pions

_		
ר ז		

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

$$2\langle \sin\left(\phi - \phi_S\right) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1\text{T}}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, p_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k)}$$
$$\approx -\mathcal{C} \frac{f_{1T}^{\perp,u}(x, p_T^2)}{f_1^u(x, p_T^2)}$$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

• 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- quark-helicity asymmetry in transversely polarized nucleon
- evidences from
 - ³He target at JLab
 - H target at COMPASS & HERMES

worm-gear II

IWHSS 2022 – Aug. 29-31, 2022

first-ever results for (anti-)protons consistent with zero vanishing Collins effect for (spin-1/2) baryons?

IWHSS 2022 - Aug 29-31, 2022

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

new HERMES results on Collins amplitudes

- first-ever results for (anti-)protons consistent with zero vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor

Gunar Schnell

high-z region with larger quark-flavour sensitivity, with increasing amplitudes for positive pions and kaons 38 IWHSS 2022 – Aug 29-31, 2022

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- quadrupole deformation in momentum space
- chiral-odd >> needs Collins FF (or similar)
- ¹H, ²H & ³He data from various experiments consistently small/vanishing
- cancelations? pretzelosity=zero? or just the additional general suppression of the asymmetry by two powers of $P_{h\perp}/M_N$

Pretzelosity

surprises: subleading twist, e.g., $\langle sin(\phi_s) \rangle_{UT}$

- clearly non-zero asymmetries
- striking z dependence and in particular magnitude
- similar observation at COMPASS

Gunar Schnell

Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

The HERMES Collaboration

A. Airapetian^{m, p}, N. Akopov^z, Z. Akopov[†], E.C. Aschenauer^g, W. Augustyniak^y, S. Belostotski^s, H.P. Blok^{r,x}, V. Bryzgalov^t, G.P. Capitani^k, E. Cisbani^u, G. Ciullo^j, M. Contalbrigo^j, W. Deconinck^f, E. De Sanctis^k, M. Diefenthalerⁱ, P. Di Nezza^k, M. Düren^m, G. Elbakian^z, F. Ellinghaus^e, A. Fantoni^k, L. Felawka^v, G. Gapienko^t, F. Garibaldi^u, G. Gavrilov^{f, s, v}, V. Gharibyan^z, A. Hillenbrand^g, Y. Holler^f, A. Ivanilov^t, H.E. Jackson^{a,1}, S. Joosten¹, R. Kaiserⁿ, G. Karyan^{f,z}, E. Kinney^e, A. Kisselev^s, V. Korotkov^{t,1}, V. Kozlov^q, P. Kravchenko^{i,s}, L. Lagamba^b, L. Lapikás^r, I. Lehmannⁿ, V. Muccifora^k, A. Nass¹, G. Nazaryan^z, W.-D. Nowak^g, L.L. Pappalardo^J, A.R. Reolon^k, T.-A. Shibata^w, V. Shutov^h, M. Statera^j, A. Terkulov^q, A. Trzcinski^{y,1}, M. Tytgat¹, V. Zagrebelnyy^{†, m}, D. Zeiler¹, B. Zihlmann[†], P. Zupranski^y

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

subleading twist II - $\langle sin(\phi) \rangle_{LU}$ HERMES 3d analysis

Gunar Schnell

most comprehensive presentation; use 1d binning for discussion

42

IWHSS 2022 - Aug. 29-31, 2022

 $\frac{M_h}{Mz}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

- p & d targets
- π , K, p & \overline{p} final-state h
- SIDIS and high-z transition regions

[HERMES, PLB 797 (2019) 134886]

IWHSS 2022 – Aug. 29-31, 2022

43

2 – Aug. 29-31, 2022

Gunar Schnell

[HERME

0.5

1.0

• opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

CLAS more sensitive to e(x)Collins term due to higher x probed?

Gunar Schnell

consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets IWHSS 2022 – Aug. 29-31, 2022 Gunar Schnell 46

- HERMES continues producing results long after its shut-down
 - Intest pub's providing 3d presentations of longitudinal & transverse SSA & DSA
 - completes the TMD analyses of single-hadron production
 - several significant leading-twist spin-momentum correlations (Sivers, Collins, wormgear) but no sign for pretzelosity => clear dipole but no guadrupole deformations
 - Surprisingly large twist-3 effects
 - or even four dimensions a rich data set on transverse-momentum distributions
- by now, basically all asymmetries (except one: AUL) extracted simultaneously in three complementary to data from other facilities
- equally important are studies of generalized parton distributions (see DVCS summary in backup) and many other results not related to 3d structure (e.g., nuclear effects)

conclusions

backup slides

deeply virtual Compton scattering (DVCS)

- beam polarization P_B
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

calculable in QED (using form-factor measurements)

DVCS

Fourier expansion for ϕ :

 $|\mathcal{T}_{\mathsf{BH}}|^2 = \frac{K_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi)$

- beam polarization P_B
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

DVCS

Fourier expansion for ϕ :

- beam polarization P_B
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

DVCS

Fourier expansion for ϕ :

- beam polarization P_B
- beam charge CB
- here: unpolarized target (many more modulations for polarized targets)

DVCS

Fourier expansion for ϕ :

bilinear ("DVCS") or linear in GPDs

IWHSS 2022 - Aug. 29-31, 2022

Beam-charge asymmetry: PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 Beam-helicity asymmetry: PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

JHEP 06 (2010) 019 NPB 842 (2011) 265

Double-spin asymmetry:

Beam-charge asymmetry: PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 Beam-helicity asymmetry: PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target

> JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

JHEP 06 (2010) 019 NPB 842 (2011) 265

Double-spin asymmetry:

however, no crosssection measurement so far at HERMES kinematics!

non-vanishing twist-3

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

Gunar Schnell

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\dagger} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\dagger} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\dagger} \end{pmatrix}^{\dagger} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

Gunar Schnell

 $\begin{array}{ccc} -\sin\theta_{\gamma^{*}} & -\sin\theta_{\gamma^{*}} \\ \cos\theta_{\gamma^{*}} & 0 \\ 0 & \cos\theta_{\gamma^{*}} \end{array} \right) \left(\begin{array}{c} \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT} \end{array} \right)$

 $\mathbf{P}_{h\perp}$

 \mathbf{P}_h

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\dagger} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\dagger} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\dagger} \end{pmatrix}^{\dagger} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

 $\begin{array}{ccc} -\sin\theta_{\gamma^{*}} & -\sin\theta_{\gamma^{*}} \\ \cos\theta_{\gamma^{*}} & 0 \\ 0 & \cos\theta_{\gamma^{*}} \end{array} \right) \left(\begin{array}{c} \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT} \end{array} \right)$

need data on same target for both polarization orientations!

 \mathbf{P}_h

Gunar Schnell

 $\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{l}} + \sin \theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{l}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{l}} \right)$

- experimental AUL dominated by twist-3 contribution
- correction for AUT contribution increases the longitudinal asymmetry for positive pions
- consistent with zero for π^-

 $\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{l}} + \sin \theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{l}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{l}} \right)$

- experimental AUL dominated by twist-3 contribution
- in contrast to WW-type approximation [1807.10606] (both COMPASS and HERMES data)

IWHSS 2022 - Aug. 29-31, 2022

 $\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{l}} + \sin \theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{l}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{l}} \right)$

- experimental AUL dominated by twist-3 contribution
- in contrast to WW-type approximation [1807.10606]

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - Ittle known about interaction-dependent FF
- little known about naive-T-odd g_{\perp} ; singled out in A_{LU} in jet production
- Iarge unpolarized f₁, coupled to interaction-dependent FF
- twist-3 e survives integration over $P_{h\perp}$; here coupled to Collins FF
 - e linked to the pion-nucleon σ -term
 - of being struck by virtual photon
- all terms vanish in WW-type approximation

 $\frac{M_h}{M_{\gamma}}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{M_{\gamma}}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

interpreted as color force (from remnant) on transversely polarized quarks at the moment

- - tested to permille level at HERMES:

Gunar Schnell

• vanishes in inclusive limit, e.g. after integration over $P_{h\perp}$ and z, and summation over all hadrons

IWHSS 2022 - Aug. 29-31, 2022

subleading twist IT - <sin vanishes in inclusive lime, e.g. after integration various contributing terms related to trans

$$\propto \left(\mathbf{x} \mathbf{f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1} \frac{\mathbf{\tilde{H}}_{\mathbf{T}}}{\mathbf{z}} - \mathcal{W}(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h}\perp}) \right[\left(\mathbf{v}_{\mathbf{T}} \mathbf{v}$$

non-vanishing collinear limit:

$$F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z) = \int d^2 \mathbf{P}_{h\perp} F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z,P_{h\perp}) = -x \frac{2M_h}{Q} \sum_q e_q^2 h_1^q \frac{\tilde{H}^q(z)}{z}$$

Gunar Schnell

$$egin{aligned} \mathbf{x}\mathbf{h_T}\mathbf{H_1^{\perp}} + rac{\mathbf{M_h}}{\mathbf{M}}\mathbf{g_{1T}}rac{ ilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \end{pmatrix} \ & \left(\mathbf{x}\mathbf{h_T^{\perp}}\mathbf{H_1^{\perp}} - rac{\mathbf{M_h}}{\mathbf{M}}\mathbf{f_{1T}^{\perp}}rac{ ilde{\mathbf{D}^{\perp}}}{\mathbf{z}} \end{pmatrix}
ight] \end{aligned}$$

IWHSS 2022 – Aug. 29-31, 2022

subleading twisg III - <sin

- vanishes in inclusive lime, e.g. after integration
 various contributing terms related to trans

$$\propto \left(\mathbf{x} \mathbf{f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1} \frac{\mathbf{\tilde{H}}_{\mathbf{T}}}{\mathbf{z}} - \mathcal{W}(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h}\perp}) \right[\left(\mathbf{v}_{\mathbf{T}} \mathbf{v}$$

non-vanishing collinear limit:

$$F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z) = \int d^2 \mathbf{P}_{h\perp} F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z,P_{h\perp}) = -x \frac{2M_h}{Q} \sum_q e_q^2 h_1^{\tilde{H}^q(z)}$$

Gunar Schnell

$$(\phi_s)$$
 UT
 (ϕ_s) UT
 (ϕ_s) and z , and summation over all how
 (ϕ_s) and z , and summation over all how
 (ϕ_s) and z , and summation over all how
 (ϕ_s) and z , and summation over all how
 (ϕ_s) and z , and summation over all how
 (ϕ_s) and (ϕ_s)

$$egin{aligned} \mathbf{x}\mathbf{h_T}\mathbf{H}_1^{\perp} + rac{\mathbf{M_h}}{\mathbf{M}}\mathbf{g_1T}rac{ ilde{\mathbf{G}}^{\perp}}{\mathbf{z}} \end{pmatrix} \ & \left(\mathbf{x}\mathbf{h}_{\mathbf{T}}^{\perp}\mathbf{H}_1^{\perp} - rac{\mathbf{M_h}}{\mathbf{M}}\mathbf{f}_{\mathbf{1T}}^{\perp}rac{ ilde{\mathbf{D}}^{\perp}}{\mathbf{z}} \end{pmatrix}
ight] \end{aligned}$$

Gunar Schnell

hint of Q² dependence seen in signal for negative pions

devil in the details & lessons learnt on the way

mixing of target polarizations

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects

Gunar Schnell

 $Q^2 = P^2_{h\perp}$

lowest x bin

Gunar Schnell

lowest x bin

Gunar Schnell

 $Q^2 = P^2_{h\perp}$ $Q^2 = 2 P^2_{h\perp}$ $Q^2 = 4 P^2_{h\perp}$

disclaimer: coloured lines drawn by hand

IWHSS 2022 – Aug. 29-31, 2022

highest x bin

Gunar Schnell

 $Q^2 = P^2_{h\perp}$ $Q^2 = 2 P^2_{h\perp}$ $Q^2 = 4 P^2_{h\perp}$

disclaimer: coloured lines drawn by hand

IWHSS 2022 – Aug. 29-31, 2022

highest x bin

Gunar Schnell

 $Q^2 = P^2_{h\perp}/z^2$ $Q^2 = 2 P^2_{h\perp}/z^2$ $Q^2 = 4 P^2_{h\perp}/z^2$

disclaimer: coloured lines drawn by hand

lowest x bin

Gunar Schnell

 $Q^2 = P^2_{h\perp}/z^2$

all other x-bins included in the Supplemental Material of JHEP12(2020)010

IWHSS 2022 – Aug. 29-31, 2022

hadron production at HERMES

- forward-acceptance favors current fragmentation
- backward rapidity populates large- $P_{h\perp}$ region [as expected]

IWHSS 2022 – Aug. 29-31, 2022

hadron production at HERMES

- forward-acceptance favors current fragmentation
- backward rapidity populates large- $P_{h\perp}$ region [as expected]
- rapidity distributions available for all kinematic bins (e.g., highest-x bin protons)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering from u-quarks:

$$\simeq - \ \frac{f_{1\mathrm{T}}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p}_{\mathrm{T}}^{2}) \otimes_{\mathcal{W}} \mathbf{D}_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathrm{T}}^{2})}{f_{1}^{\mathbf{u}}(\mathbf{x},\mathbf{p}_{\mathrm{T}}^{2}) \ \otimes \mathbf{D}_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathrm{T}}^{2}))}$$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

larger amplitudes seen also by COMPASS

Gunar Schnell

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering from u-quarks:

$$\simeq - \; \frac{f_{1\mathrm{T}}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p}_{T}^{2}) \otimes_{\mathcal{W}} D_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{T}^{2})}{f_{1}^{\mathbf{u}}(\mathbf{x},\mathbf{p}_{T}^{2}) \; \otimes D_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{T}^{2}))}$$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

surprisingly large K- asymmetry for ³He target (but zero for K⁺?!)

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering from u-quarks:

$$\simeq - \; \frac{f_{1\mathrm{T}}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p}_{T}^{2}) \otimes_{\mathcal{W}} D_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{T}^{2})}{f_{1}^{\mathbf{u}}(\mathbf{x},\mathbf{p}_{T}^{2}) \; \otimes D_{1}^{\mathbf{u} \rightarrow \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{T}^{2}))}$$

72

x VHSS 2022 – Aug. 29-31, 2022

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

IWHSS 2022 – Aug. 29-31, 2022

