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Chiral Entanglement and Emergence of

Hadron Structure

Abstract

The standard model (SM) of particle physics is around for about 50 years and is highly
successful with families of leptons and quark coming in multiplets of at first sight ad-hoc
electroweak and strong symmetry groups with an intriguing discrete chirality and triality
structure. These play a role both for space-time symmetries and internal symmetries with
chirality maximally broken in the electroweak sector and chiral symmetry restoration in the
strong sector linked to the confining triality structure.

The chiral structure in a context of a tripartite qubit Hilbert space as basis for SM allows for
different classes of maximally entangled quantum states identified as leptons and quarks as
basis for electroweak and strong sectors, emerging with a different symmetry structure.
Chiral entanglement could be an emerging principle in the SM that can provide guidance for
its extension but that also can help in understanding features within the standard model such
as mass patterns, universality breaking, partonic structure with distribution and fragmentation
phenomena for confined systems or the role of gluonic Wilson lines for non-collinearity.
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SM SYMMETRIES, ACCIDENTAL OR UNAVOIDABLE?

® SM works!

m ... our gospel

B .. even if there are open ends

m dark matter

® neutrin0 masses

Standard Model of Elementary Particles

three generations of matter

interactions / force carriers

(fermions) (bosons)
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SM SYMMETRIES, ACCIDENTAL OR UNAVOIDABLE?

m Are SM symmetries accidental or unavoidable?
... Or emergent

B My focus is on chirality and triality

®m An S(U(2) x U(3)) tripartite embedding where
U(1)q is a relative phase between U(2) and U(3)

Charges: SU(3)c x SU(2); x U(1)y

Baez & Huerta 2010 I S(U(2) x U(3))
color QR =1\,
electroweak Q55 = I +ily
ArXiv 1601.00300 Qz = I; — 2sin® Oy Q,
ArXiv 1801.03664: Few Body Syst. 59 (2018) no.2, 10 1
ArXiv 1806.09797: Phys. Lett. B787 (2018) 193-197 Qv — §YW + I3
Fabian Springer, Jelmer Doornenbal, Amina Sisic, Haralds Baumanis




SM SYMMETRIES, ACCIDENTAL OR UNAVOIDABLE?

m U(3) embedding of electroweak sector works well, in contrast to U(5) embedding

. Y TY
e N T Q-, /,
el
\“‘Vo Y /I ef'
\ _a TEIN |\3 // A /If'/
R A T T A g y B WU o
P ,” & e_ Z_ ‘_jh%’\__ VO
e i b v ,'.L % I,/.,y L
L - \\ I_: L\ ‘/ e__ _/__'\\
eR - /R \
I ™~ e P | 4 Qz
_ 1 _ .2
Q,=sYw + I3 Qz = I3 — 2sin” Oy Q,

a)\a 171
a=1,2,3,8 a=1,2,3
~ cosOy ~ sinOy

SUB3) = ¢ =gv/1/3 or sin® Oy = 1/4 (exp. 0.231)  [Weinberg 1972]
SU(5) = ¢ = g\/3/5 or sin®fy = 3/8



SM SYMMETRIES, ACCIDENTAL OR UNAVOIDABLE?

S(U(2) x U(3)) structure Z; = {T | T3 =1} center symmetry of SU(3)c
EW root diagram (I3, Y) U(2) normal subgroup with I-U-V-embedding

SU(3)/U(2) = Z; or SU(3) = U(2)xZ;



CHIRAL ENTANGLEMENT

m U(2) x U(3) structure becomes natural for tripartite Hilbert space

m [ want to see chiral entanglement in tripartite Hilbert space as a principle governing the
emergence of symmetries in the SM and in particular focus on the difference between
electroweak and strong sectors

m Entanglement requires multipartite structure of Hilbert space with self-consistent structure

H=HxHx..xH

m Further motivation for me is that entanglement of hadrons as well as quarks is actually
quite natural in hard processes where we need PDFs x FFs

® nucleon is pure state - ensemble of partons (good light-front states)
® hard scattering process: partons = partons (local interaction)
® emerging partons are pure state(s) - ensemble of hadrons



CHIRAL ENTANGLEMENT

O Qubit space . = {|L),[R)} = {[M,p) = cL(p)|L) + cr(p)|R)}
O pure states with simple density matrix being projector p satisfying p?>=p
. . [CL CR] . [ C% CIL.CR ]
p=1i1=| & -]y
0 Ingeneral ensemble £ = Z fedy et Trp=> pa=1 Trp*=> pl <1
O with entropy S(p) = —iTr(pln p?) an In p,,
O entangled (pure) states live in multipartite % (LL + e RL) % (LR + eRL)
product space, e.g. H = {LL,LR, RL, RR} L 0l o ol
4] 0 0l 0 0 o 1 le™ o
pQ[e”\ o‘ 1 0] ”2{0 e | 1 o]
O Measuring in subspace helps as it leads either U Jboop vt
to a pure state or an ensemble: s a1 e 1o
pa=Trap = PA=PA= 3| Lix PA=3 ] 09 1
Trpj =1 Tr p% = %
O Trace can be extended with entanglement S(pa) =0 S(pa) =1n2
witness W (positive definite hermitean op.) SEPARABLE ENTANGLED
with for any separable state Tr(pWW) > 0 5 (L + e R)L




CHIRAL ENTANGLEMENT / BIPARTITE

O Transformations U, © Uz ® ... in multi-partite space H®Y =H ® ... ® H do not affect
entanglement. This is referred to as local unitarity where local refers to subspaces.
It leads to classes of entangled states
1 This equivalence is known in quantum information as Stochastic Local Operations
and Classical Communication (SLOCC)
1 Within classes one can define a basis of maximally entangled (MaxEnt) states

IR ————— RR 7]
O Example: bipartite space has just a single entanglement class

1 Maximally entangled states are Bell states:

[Bell) = %= (|RR) + |LL)) or 45 (|RL) + |LR)) Bel

1 Measurement shows and destroys entanglement
Tr |Bell)(Belll = 5 (|R)(R| + |L){L]|) - RL

entanglement polytope

O Entanglement classes and maximizing entanglement in combination with symmetries can
identify elementary SM modes
1 Symmetries maximizing R/L entanglement [Cervera-Lierta, Latorre, Rojo, Rottoli 2017]
1 Corrollary: S-matrix enhances entanglement entropy [PiM 1801.03664]
1 Understanding gluon distribution [Kharzeev, Levin 2017]




CHIRAL ENTANGLEMENT / TRIPARTITE

O Tripartite entanglement allows two MaxEnt classes [Dur, Vidal & Cirac 2000]
1 Fragile GHZ states |GHZ) = % (JRRR) + |LLL))
Local operation shows and destroys entanglement

Tra |GHZ)(GHZ| = 5 (|RR)(RR| + |LL){LL|)

O Robust class of W states W) = L (|[LRR) + |RLR) + |RRL))

W) = J5 (IRLL) + |LRL) + | LLR))

w

w

After local operation entanglement remains
Tra [W)(W| => 2[Bell)(Bell| + |RR)(RR)|

1 W-class C GHZ-class C ... C product states
1 Note that within each particular class of entangled states
a full basis exists with its own symmeries

abc e tripartite entangled

A AN

A-BC B-AC C-AB bipartite entangled

Y

A-B-C product states

entanglement polytopes ‘
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THE BASIC HILBERT SPACE

m The principle behind symmetries are indistinguishable basic state(s) in (complex) Hilbert
space: ket | >, bra < |, albeit with phases in rays e* | >; a real norm < | >; and charge

conjugation as part of the game: | >¢ ~ < | _ _
T _ _ _ Heisenberg replicas
B Hamiltonian defines spectrum and generates U(1) invariance 2 HH

B U(t) = e with time as gauge parameter
t
m generalized into time-ordered evolution via U(t) U(t,0) = T exp <_@- / ds H(s))
0

m Discrete (anti-unitary) time reversal and corresponding charge conjugation symmetries
In Hilbert space T is matched by C (or CP, ...), but both may be broken

m Including SUSY, bosonic excitations in H =H x H x ... x HH are symmetrized over
subspaces and a fermion can live in just one of the subspaces

® 0D quantum fields with vev and including C o) =T(t)p = U(t) pUL(t)
¢ =v+ = (a+ a°T)
&= 75 (0+0) supercharges @ = \/§ (ba" —b°Ta)

B boson - fermion = boson’ H = %{QT7Q}

6.0 = ¢ {€.Q't = (o, H) — 2 ({a,a} + o', b))

11



CHIRALITY AS BASIC QUBIT SYMMETRY

® Combination of two identical Hamiltonians {Hg} x {H,} ~ {P*, P~} can be considered as
multipartite space of right- and left-movers defining continuous set of momentum states

® Reordered into time-like and space-like momenta, {P*,P~} ~ {H, P}
m generating translations T(1,1) with Minkowski R!.1 parameters
m boost transformation O(1,1) with [K, P¥] = &i P* and invariant M2 ~ H% — P2 ~ Pt P~
m {H, P, K} complete Poincaré transformations I10(1,1), mass coupling right- and left-movers

m Discrete symmetry V4 = {1, P, T, PT} and CPT

ey L ‘ , space-time replicas
u U(t,x) — @ P e~ P~ _ e—th eza:P — e—an e—ZTM

H=]][H = ][ Ha

B Corresponding extension of fields i /A
. . . NG) im/4 —in /4 et/ §R
m chiral representation for fermions EV2=e"""¢p+e §r = e~im/4g,

= complex extension of bosons pV2 = et pp + e Mg,
= ¢s +igp =e"’x

m Emergence of complexity similar as non-abelian and non-associative behavior of division
algebras (and their emergence): real > complex = quaternions = octonions

® How far can we go? [cf octonions of C. Furey 2016]

12



CHIRALITY AS BASIC QUBIT SYMMETRY

m Extension to more supercharges Qi = b;a), and Q}, = bla,
| wandering through Hilbert space (boson - fermion 9 boson’), generating symmetries
[sz,Qﬂ] = 0;; R + 5lkR with stepping operators R = 2{al,ak} and R — %[bj,bj]

m These stepping operators generate orthogonal O(N) and unitary U(N) symmetries

N
O Symmetries among quantum fields via ¢ @mth (x) = 1 and phases i = —if*T,

6.Q1=¢  {£Q7} = [61{Q",Q)] 06+ gAd
{baT, bTa} i {aT, a} + [bT, O] I

H on diagonal
+ off-diagonal symmetry generators

O iDe? =0 = gA = —ei0e " or explicitly gA¢ = 90° [Ty, ¢]

®m Unitary evolution for space-time and internal symmetries i
®m path ordering and decoupling (Coleman-Mandula) U(xz) = Pexp (—z/ ds-D(s))
0

®m or subtle interplay (fermions & symmetry embedding) D, = id, + gA

® accounts for internal symmetries via Wilson line W(x) - - -

® nonzero loops W[C] indicate physical gauge fields W(z) =P exp <_ig /ac ds-A(s)>
0

m Everything can be accommodated in a 1+1 dimensional Wess Zumino action.
13



CHIRALITY AS BASIC QUBIT SYMMETRY

m Most general 1+1 dimensional starting point is Wess-Zumino lagrangian

£(¢Ra ¢L7£R7§L) « £(¢S7 ¢P7§S7€P) « £(X7A07¢)

®m with two majorana fermions and two bosons
m or a fermion, scalar and pseudoscalar (gauge) boson (M¢ = M, = M,)
®m Parameters M and coupllng go related to vev vop=M/2g,=1

m Template for SM 4, '

0.5 ==

00}

-05F

V(X,G) _ %szg <62i9X2 . 1) (8—27;9X2 . 1)
2002 (- 1) (x2 - 1)

H ; i M
expanded around scalarvev x =x°=1+ — VH) = —~H> > H’ +ﬁH4

14



TRIALITY AS BASIC MULTIPARTITE SYMMETRY

Combining two 1D spaces requires tripartite embedding {H, P!, P, P3} ~ {H, P}
and R1:3 parameter space (t,x).

Two space-like momenta generate translations T(2) allowing rotation J = 13, together
{P1, P2, J} generating I0(2).
® HJ =W + Ky x Py includes spin W/M coupled to statistics commuting with momenta
® 10(1,1) ® I0(2) acts as the little group (embedding momentum x transverse plane)

Closure of symmetry gives I0(1,3) Poincaré symmetry with W = helicities connected to
chiralities

® Symmetry closure via commutator algebra G = [G;,G,]
(with simple [Gy,G;] = G; and [G,,G;] = &) I0(1,3) = [SO(3),10(1,1)®I0(2)]

1
oA B — JA+B+3[ABl+...

15



TRIALITY AS BASIC MULTIPARTITE SYMMETRY

Commutators of the Poincaré algebra

I10(1,3) T(1,3) I0(2) and I0(1,2)

10(1,3) = [SO(3),10(1,1)®10(2)]

16



TRIALITY AS BASIC MULTIPARTITE SYMMETRY

B Role of discrete symmetries

m Usual discrete symmetries V, = {1, P, T, PT}

m tripartite extension brings in

triality symmetry Z; = {T | T3 =1} ={1, T, T2}

10(1,1) =ISO™ (1,1) x V;
I0(1,3) =ISO™(1,3) x V4

ISO"(1,3) = (ISO™(1,1)®ISO(2)) % Z3
Ay =VyxZs

m A, symmetry for embedding of Rl x R2in R13 0

(governs oriented embedding of space)

O Discrete symmetries for tripartite embedding

-1/ 0 0 0
| 0Of[+1 0 0
T=10olo +1 o
00 0 41
+1] 0 0 0
0l-1 0 0
=1 olo -1 o
010 0 +1]

i

connects parity (3D) and
mirror (1D) operations

P:

cyclic permutation (Z3)
of space directions

i

C+1] 0 0 0 ]
0 [+x1 0 0
0] 0 +1 0

0|0 0 -1
+110 0 0
0] 0 0 +1
0 |+1 0 0
0|0 +1 0

10(1,3) = (I0(1, 1)®I0(2)) x Ay

generate V,
{T.P|T? =P =(PT)* =1}

generate A4

{8, T|8* =13 = (ST)> =1}

» 12 elements

» Symmetry group of tetraeder

> normal V4 = {1,5,TST2,T2ST}

» A4 has 3 triplet and 3 singlet
representations (the basis for
family structure) [Ma; Altarelli, 2006]

17



THE TRIPARTITE SM

O tri-bipartite structure for space-time ISO™(1,3) = (ISO1(1,1)®ISO(2)) % Z3

O tri-bipartite structure for discrete symmetries Ay = VyxZs

Q tri-bipartite structure for internal symmetry SU(3) = (SU(2)xU(1))x Zs

O SO(3) is possible symmetry in replica space, ‘

commutator group important for compliance [SO(3), ISO™(1,1) ® ISO(2)] = ISO™ (1, 3)
with Coleman-Mandula U(X) = Ugpacetime Waauge ~ [SO(3) , SU(2) x U(1)] = SU(3)
O SU(3) is maximal symmetry ‘

TY replicas
: 2
3 o O(N) symmetry
i ' d > O
o\ | /e ~ &
D18 %, A\
3
|

Fermion basis 3p @ 3,

18



UNITARY SYMMETRIES IN MULTIPARTITE HILBERT SPACE

Q See H. Georqi, Lie algebras in particle physics, Ch. 14

This is an important chapter, but not because the three dimensional harmonic
oscillator is a particularly important physical system. It is, however, a beau-
tiful illustration of how SU(/N) symmetries arise in quantum mechanics.

O 3D Harmonic oscillator is an example of a tripartite Hilbert space with rotational
SO(3) invariance, but where the Hilbert space also has a (larger) unitary SU(3)
invariance and HO states can be labeled as [nnyn,> or |ndm> or |n>

level | degeneracy (Mg, Ny, M) SO3) (¢) SU(3) (n)

0 1 (0,0,0) 0 1

1 3 (1,0,0), (0,1,0), (0,0,1) 1 3

2 6 (1,1,0), (2,0,0), ... 06 2 6

3 10 (1,1,1), (2,1,0), (3,0,0), ... 13 10

4 15 0@ 24 15,

0 Works for bosons and fermions! E ?— 10 E 4

+72 { =—— 6
+5/2 J —— 3 +5/2 ]
32— 1 32— 1
+1/2 12 1 — 3%
~1/2 12— 3
-3/2 ] 32— 1

19



THE TRIPARTITE SM

IY (important for both )
5 quarks & leptons
B 15 |, A, allows 3 families
" > | ) Z5 allows CP violation
- @ [Cabbibbo 1973] P
3 A4 = ‘/;l X Zg
|

'

[LEPTONS (GHZ class) J

__________________

[T and U and V allowed]

QUARKS (W class)
T Y [1 or U or V allowed]
ez red
asWy
R B 7\
- —
N
& 1
€R construction has some remote
| resemblance with rishon model,
Shupe 1979; Harari & Seiberg 1982 20




THE TRIPARTITE SM

m Identification of tripartite states with SM states with different unitary symmetry structure
and different orthogonal space-time structure and gauge boson structure governed by

local unitarity in tripartite space
GAUGE BOSONS

LEPTONS

B GHZ states (RRR, LLL) P .
m I, U, and V allowed, identified ’
®m orthogonal symmetry: 1I0(1,3)
® unitary symmetry: S(U(2) x U(1))
m A4 three families of singlets

tripartite
entangled

bipartite
AB-C

bipartite
BC-A

bipartite
AC-B

QUARKS

gluons = gluons

m W-states (RRL, RLL)
m I, U, or Vallowed, colored

m orthogonal symmetry: 10(1,1)

® unitary sym: S(U(3) x U(2)) GHzZ: D, =10, +g Z AT,
m Ay three families of triplets a=1,2,3,8

m 10(1,3) and EW for SU(3) singlets w: iD,, = i0, + g AST,

21



Leptons and EW gauge bosons / Elementary GHZ states

d I-, U- and V-allowed states belonging to GHZ class: leptons TY aQ
O SU(2); x U(1)y combined with tripartite I0(1,3) space-time e+ e %
O Hypercharge coupled Fo charge conjugation (CP symmetry) Y ARNS
O Symmetry embedded in U(3) 2 AN
weak interactions involve the generators (I,Y;) RS LY | L
A o €L T
D, IWiT = > gWiliy +9'BuYw g
a=1,2,3,8 a=1,2,3 \ \ [ ™~
~ cosOy ~ sinOy Q= %YW + I3
SU(3) = ¢ =g/V3 or sin? Oy = 0.25 (exp. 0.231)
[Weinberg 1972] Y/ '
0 g=1v/3/8 = e*/4n = 3/1287z ~ 1/134 &
O My/8/3=MzV2 =My = Myp/V2 9 /I ok
O Just one massive lepton (tau) and need for P any VLY, J}
radiatively generated masses [Weinberg 2020] < e—’,{if"f_[}:,{ y di
. . . o R T
O role of dimensionality [Stojkovic — 1406.2696] o e-,—z?;-\
O primordial gravitational waves ,/-;;:./f2 2,
O d*z mpp <= &’z Myprp involving pso) = 8n? : ,
O neutrino mass studies [Altarelli & Feruglio 2006] Qz = I3 = 2sin” Oy Q
O tri-bilinear family mixing [Harrison, Perkins, Scott, 2002]
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QCD / Elementary W-states and composite GHZ-states

1I_ o e ! Irnv' LA | 111!1!]
m Parton-hadron duality in hard processes: PDFs x FFs F NNPDF3.1 (NNLO)

® nucleon is pure state = ensemble of partons § xf(xp?=10 GeV’)
(good light-front states)

® hard scattering process: partons 2> partons

B emerging partons are pure state(s) > ensemble of
hadrons

m Parton distribution functions (PDFs) and fragmentation
functions (FFs) are entanglement witnesses Tr(pW)
(with resemblance to Wigner functions)

m Involve trace over color, positive definite light-front
operators (including spin/... projectors) such as
m for quark PDFs T/ ~ 4 (0)yTU (0, z)vy(x)
m for gluon PDFs 11/ ~ F+O‘(0)U(O,x)F+B(x)

® Crucial are 1D light-like or 3D staple-like Wilson lines X
U(0,&) for collinear or transverse momentum dependent
(TMD) PDFs and FFs including T-odd [Boer-M 1997]
Er | Er U(z) =Pexp (—z/ ds-D(s))
oo ® T L - 0
alt } t -
* e £ iD,=i0,+g Y AT,
a=1,...,8

23



QCD / Elementary W-states and composite GHZ-states

m Dynamics of gluons is in transverse structure, best illustrated by looking at emergence of
the Wilson loop giving linearly polarized gluons [Boer, van Daal, Petreska, M]

1 transveIrse .}; 1 W|[C] = exp (—ig]idsﬂAM(so

> > _ gF. . = 0W|[C]|/dc°

m  Gluons in entangled proton state found by maximizing partonic entropy S(z) = In(xzg(x))
using continuous freedom of translations/momenta/resolution [Kharzeev & Levin 2017]

m Family mixing small (possible zero-order 6 ~ /12, sin 6 ~ 0.26, exp 0.22)
Confinement is a non-issue

= In 3D world no W states, only GHZ states, chirally and space-time entangled
® Combined EW and strong effects need attention (e.g. g-2 studies)

m Success of Soft Collinear Effective Theory or effective models for low-energy QCD

24



QCD / Elementary W-states and composite GHZ-states

m Fragmentation also leads to an ensemble that = ST R I N IR
o : + 10°ET Pb-Pb \s,,=2.76 TeV ]
(within the constraints such as charge, flavor, 2 T ok . | ]
. .. = 1 2_,.‘ -10% centrality -

spin) appears to maximize entropy. S 10F T o4
2 1o ne E
F Berges, S Floerchinger, R Venugopalan, % - ’3 . ]
NPA 982 (2019) 819 e RN E
107'E * d .

o,
10°F 3
m Possibly explains success of statistical 10°E » -
. . g e s 3
hadronization model 104F o Data, ALICE Ly ]
“ not.d.ue to thermalization by 10‘5§— Statistical Hadronization ‘
collisions 10°° _ total (after decays) 4?6_
= note the presence of 3H( > 5 fm) Lf oo prmordel
A 10

0 0.5 1 1.5 2 2.5 3 3.5 4
Mass (GeV)

A Andronic, P Braun-Munzinger,

K Redlich, J Stachel, 1710.09425 . .
FIG. 2. Mass dependence of hadron yields compared with

predictions of the statistical hadronization model. Only par-
ticles, no anti-particles, are included and the yields are di-
vided by the spin degeneracy factor (2J + 1). Data are from
the ALICE collaboration for central Pb—Pb collisions at the
LHC. For the statistical hadronization approach, plotted are
the “total” yields, including all contributions from high-mass
resonances (for the A hyperon, the contribution from the elec-
tromagnetic decay X° — A~, which cannot be resolved ex-
perimentally, is also included), and the (“primordial”) yields
prior to strong and electromagnetic decays. For more details
see text.
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FINAL REMARKS

m Chiral entanglement in multi-partite replicas allows matching of orthogonal space-time and
unitary internal symmetries including their algebraic structure and conjugation properties,
providing a novel way of looking at all symmetries

® Local unitarity manifests itself as gauging of the symmetries
m chiral entanglement classes in a tripartite setting
® Hiding of supersymmetry in 1D - 3D extension

B Many aspects need careful further analysis but for me the prospect of a natural explanation
of the complexity of hadrons in QCD (manifest in spectroscopy as well as in partonic
structure details) is appealing, in particular because it was, it is and it remains a collaborative
effort of theory and experiment (cf impact of notion of chiral-odd nature of transversity)
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