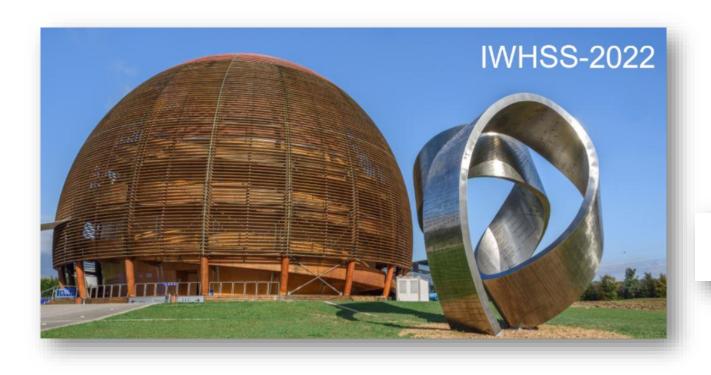
GTMDs & Wigner functions



25 years

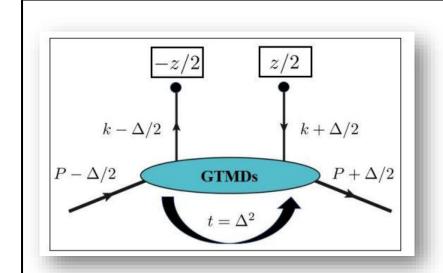
Shohini Bhattacharya

BNL

30 August 2022

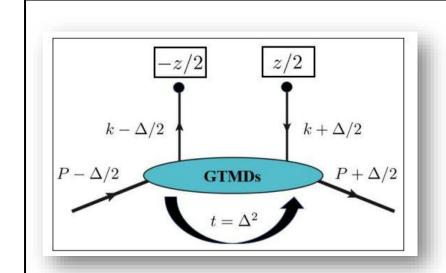
Outline

- Generalized TMDs (GTMDs)
- Wigner functions
- Observables for GTMDs: State of the art
- Summary



Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

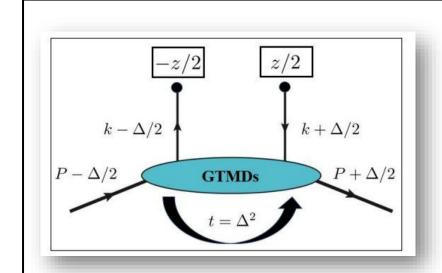


Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

Parameterization of correlator through GTMDs:

$$X^q(x,\xi,\vec{k}_\perp^2,\vec{\Delta}_\perp^2,\vec{k}_\perp\cdot\vec{\Delta}_\perp)$$



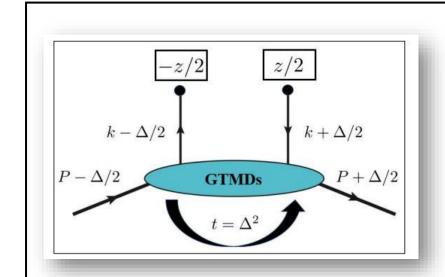
Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) | p, \lambda > \Big|_{z^{+}=0}$$

Parameterization of correlator through GTMDs:

x: "average" longitudinal momentum fraction of quark

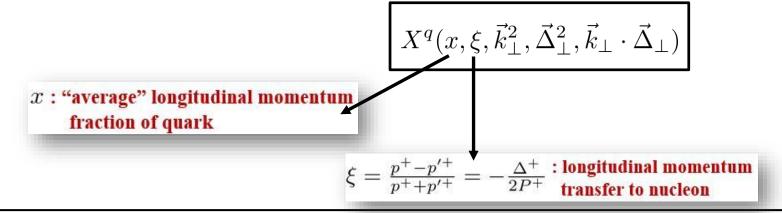
$$X^{q}(x,\xi,\vec{k}_{\perp}^{2},\vec{\Delta}_{\perp}^{2},\vec{k}_{\perp}\cdot\vec{\Delta}_{\perp})$$

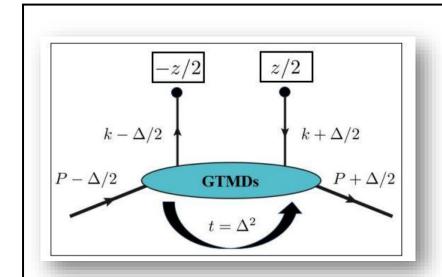


Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

Parameterization of correlator through GTMDs:

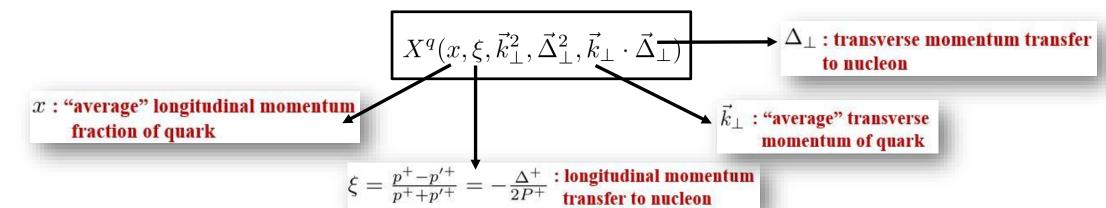


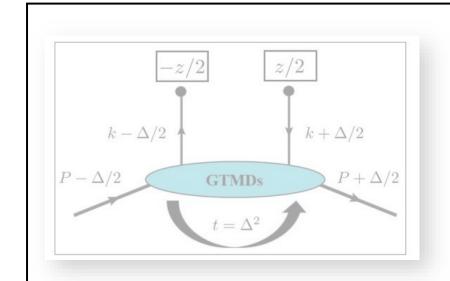


Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) | p, \lambda > \Big|_{z^{+}=0}$$

Parameterization of correlator through GTMDs:





Definition of a (quark) GTMD correlator:

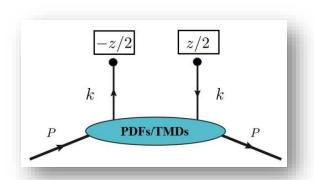
$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

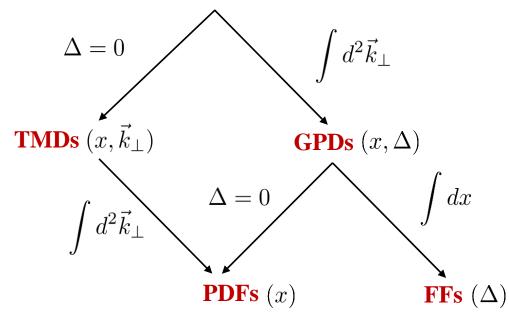
General results:

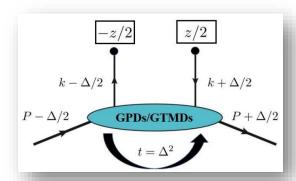
- i. 16 leading-twist GTMDs for quarks (Meissner, Metz, Schlegel, arXiv: 0906.5323)
- ii. 16 leading-twist GTMDs for gluons (Lorce, Pasquini, arXiv: 1307.4497)
- iii. GTMDs are complex functions

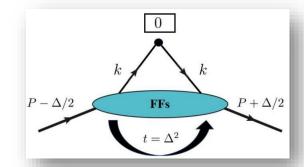
GTMDs are the "Mother Functions"

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$





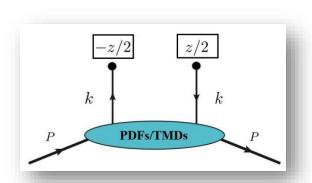


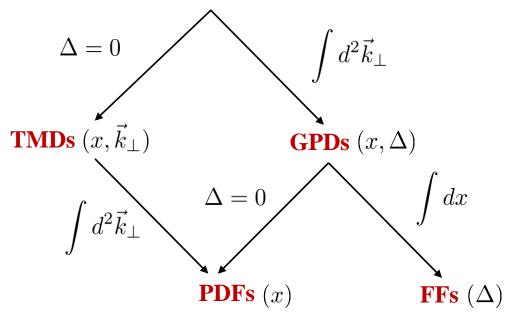


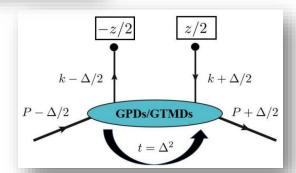
GTMDs are the "Mother Functions"

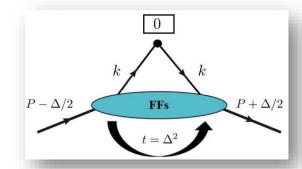
GTMDs contain physics beyond TMDs & GPDs

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$





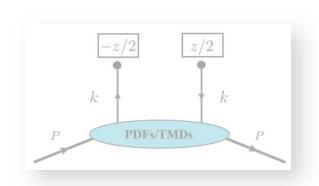


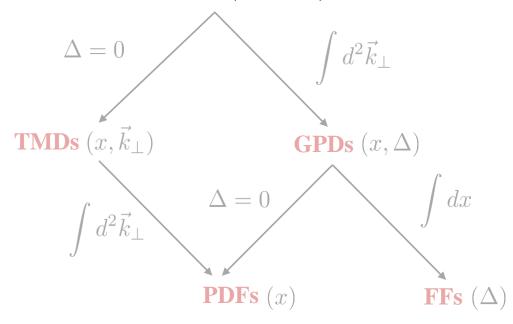


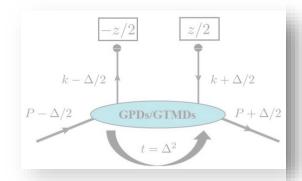
Connection to Wigner functions Wigner Distribution $(x, \vec{k}_{\perp}, \vec{b}_{\perp})$ (Belitsky, Ji, Yuan, 2003)

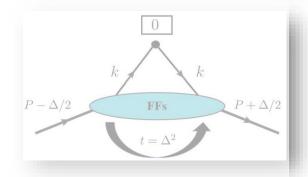
2-D Fourier Transform
$$(\vec{\Delta}_{\perp})$$
 $\xi = 0$

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$









Wigner functions & connection to parton Orbital Angular Momentum

• Recap from NRQM:

Expectation value of observables
$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x,k) W(x,k)$$

Wigner functions & connection to parton Orbital Angular Momentum

• Recap from NRQM:

Expectation value of observables
$$\langle \mathcal{O} \rangle = \int dx \int dk \mathcal{O}(x,k) W(x,k)$$

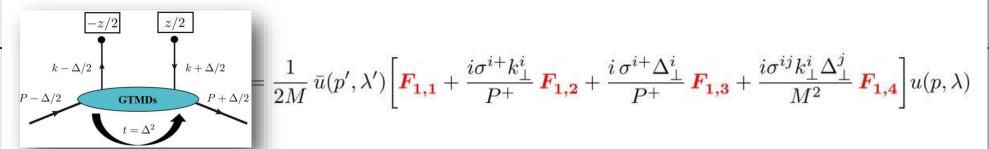
• OAM as a moment of Wigner distribution

: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^q = \int dx \int d^2k_{\perp} d^2b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^q (x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Intuitive definition of OAM

Parameterization of a GTMD correlator (Meissner, Metz, Schlegel, arXiv: 0906.5323):



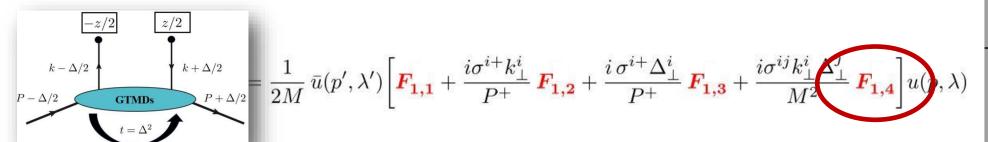
Same equation holds for gluons (Hatta, 1111.3547)

• OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^q = \int dx \int d^2k_\perp d^2b_\perp (\vec{b}_\perp \times \vec{k}_\perp)_z \left\{ \int e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \left[e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \right]_{k-\Delta/2} \right\}_{p-\Delta/2}$$

$$= \int dx \int d^2k_\perp d^2b_\perp (\vec{b}_\perp \times \vec{k}_\perp)_z \left\{ \int e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \left[e^{i\vec{b}_\perp \cdot \vec{\Delta}_\perp} \right]_{p-\Delta/2} \right\}_{p-\Delta/2}$$

Parameterization of a GTMD correlator (Meissner, Metz, Schlegel, arXiv: 0906.5323):



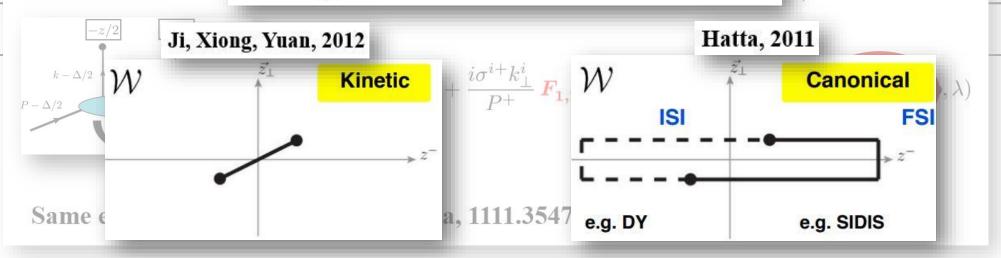
Same equation holds for gluons (Hatta, 1111.3547)

• OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^{q,g} = -\int dx \int d^2\vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} F_{1,4}^{q,g}(\boldsymbol{x}, \vec{k}_\perp^2)$$

Relation between GTMD $F_{1,4}^{q,g}$ & OAM

Parameterization of a Gauge-invariant extension 23)

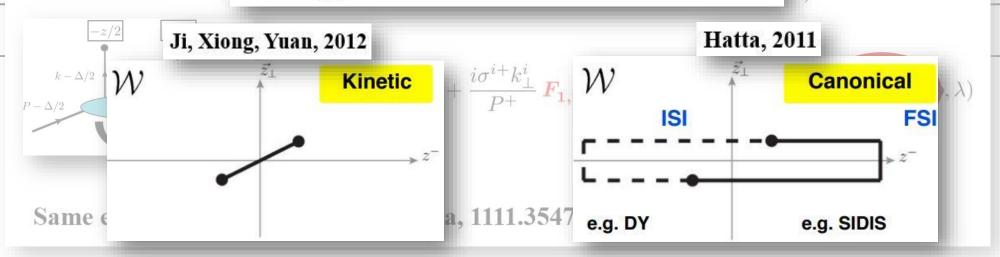


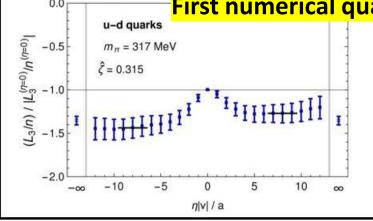
• OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$L_z^{q,g} = -\int dx \int d^2 \vec{k}_{\perp} \frac{\vec{k}_{\perp}^2}{M^2} F_{1,4}^{q,g}(x, \vec{k}_{\perp}^2)$$

Relation between GTMD $F_{1,4}^{q,g}$ & OAM

Gauge-invariant extension





Parameterization of a

First lattice calculation of $L_{\rm JM}$ vs. $L_{\rm Ji}$ (Engelhardt, 1701.01536)

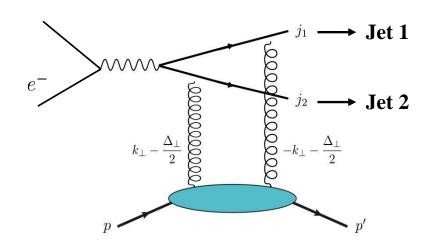
- i. Figure shows $L_{\rm JM}^{u-d}/L_{\rm Ji}^{u-d}$
- ii. Significant numerical differences between $L_{
 m JM}$ & $L_{
 m Ji}$

Xiong, Yuan, 2012)

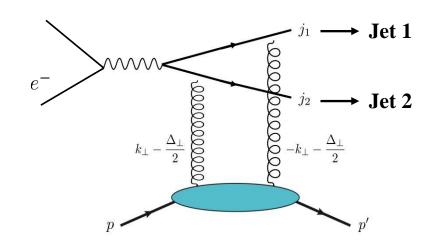
)AM

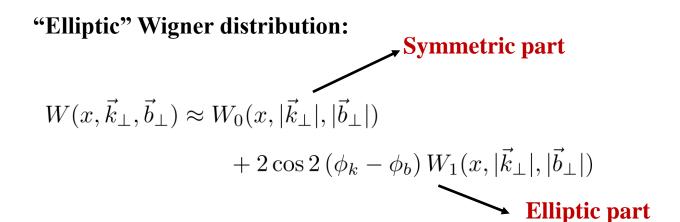
Observables for GTMDs: State of the art

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

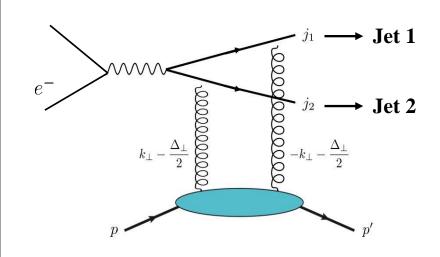


Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)





Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)



"Elliptic" Wigner distribution:

$$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \approx W_0(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$$

 $+ 2\cos 2 (\phi_k - \phi_b) W_1(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$

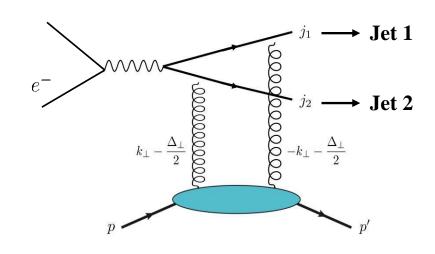
Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z (1-z) [z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

$$\times \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2} \right] \cdot \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}'_{\perp}}{(P_{\perp} - k'_{\perp})^2 + \epsilon^2} \right]$$

$$\approx d\sigma_0 + 2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right)d\tilde{\sigma}$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)



"Elliptic" Wigner distribution:

$$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \approx W_0(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$$

 $+ 2\cos 2 (\phi_k - \phi_b) W_1(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$

Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

Cosine angular modulation
$$\vec{P}_{\perp} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2} \right] \cdot \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}'}{(P_{\perp} - k_{\perp}')^2 + \epsilon^2} \right]$$

$$\approx d\sigma_0 \left(2\cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}}) \right) \vec{\sigma}$$

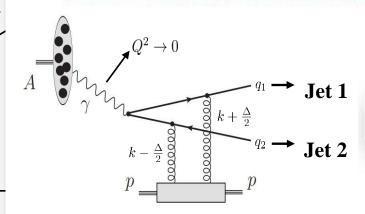
$$\vec{P}_{\perp} = \frac{1}{2} (\vec{j}_{2\perp} - \vec{j}_{1\perp})$$

$$\approx d\sigma_0 + 2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right)l\tilde{\sigma}$$

$$\vec{P}_{\perp} = \frac{1}{2}(\vec{j}_{2\perp} - \vec{j}_{1\perp})$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

Exclusive dijet production in ultra-peripheral collisions at small-x (Hagiwara et al., arXiv: 1706.01765)



Same cosine angular correlation observed in UPC

Main resum

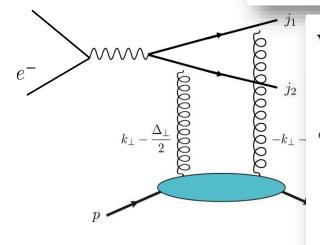
$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

$$pprox d\sigma_0 + 2\cos2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right) l ilde{\sigma} \qquad ec{P}_\perp = rac{1}{2}(ec{j}_{2\perp} - ec{j}_{1\perp})$$

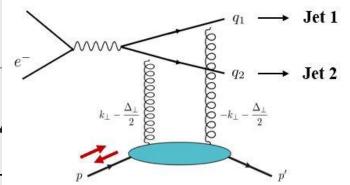
$$ec{P}_{\perp}=rac{1}{2}(ec{j}_{2\perp}-ec{j}_{1\perp})$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

Coming up:



What happens if target is polarized?



arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji. 1,2 Feng Yuan,3 and Yong Zhao 1,3

Main result:

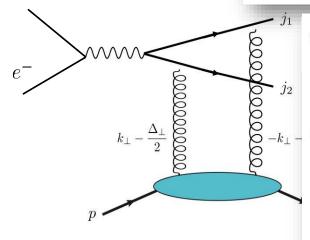
$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

$$pprox d\sigma_0 \left(2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right)l ilde{\sigma}
ight] \vec{P}_\perp = rac{1}{2}(\vec{j}_{2\perp} - \vec{j}_{1\perp})$$

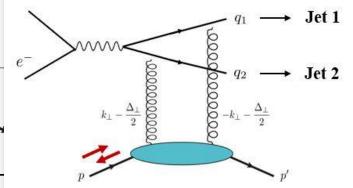
$$ec{P}_{\perp} = rac{1}{2}(ec{j}_{2\perp} - ec{j}_{1\perp})$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

Coming up:



What happens if target is polarized?



arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

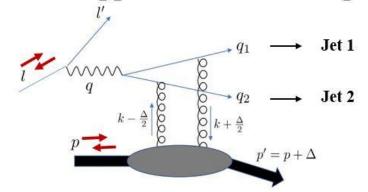
Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1$$

Cosine angul

 $\approx d\sigma_0$

What happens if in addition lepton is polarized?

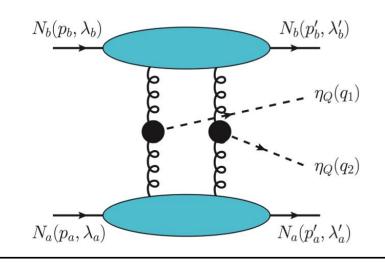


arXiv: 2201.08709 (2022)

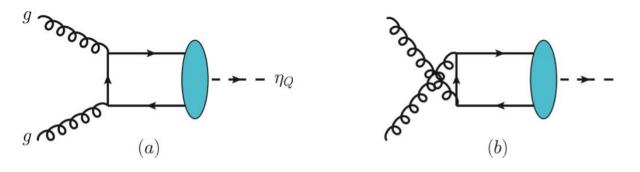
Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

Exclusive double quarkonium production (SB, Metz, Ojha, Tsai, Zhou, arXiv: 1802.10550)



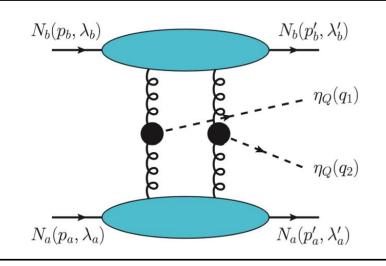
Color Singlet Model: (Kuhn et. al., 1979, ...)



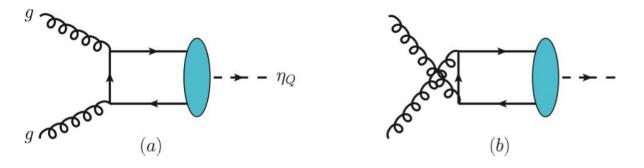
Main result:

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) \approx 2 \operatorname{Re.} \left\{ -\frac{\varepsilon_{\perp}^{ij} \Delta_{a\perp}^{j}}{M} C \left[\frac{k_{a\perp}^{i}}{M} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

Exclusive double quarkonium production (SB, Metz, Ojha, Tsai, Zhou, arXiv: 1802.10550)



Color Singlet Model: (Kuhn et. al., 1979, ...)

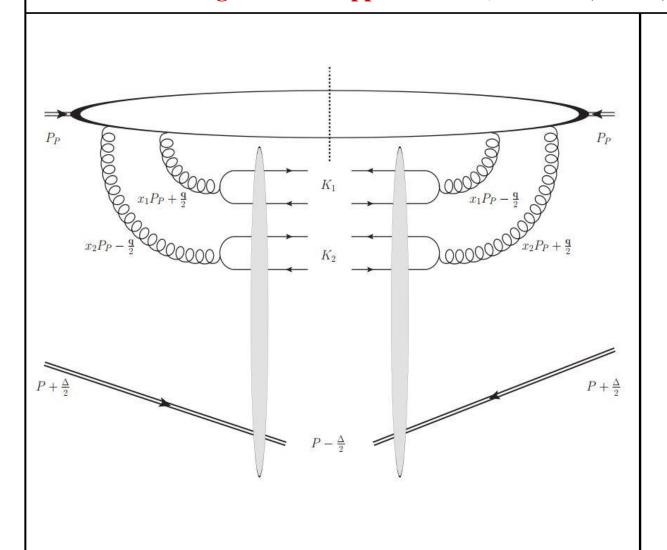


Main result:

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) \approx 2 \operatorname{Re.} \left\{ -\frac{\varepsilon_{\perp}^{ij} \Delta_{a\perp}^{j}}{M} C \left[\frac{k_{a\perp}^{i}}{M} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

This linear combination of polarization observables is sensitive to gluon OAM

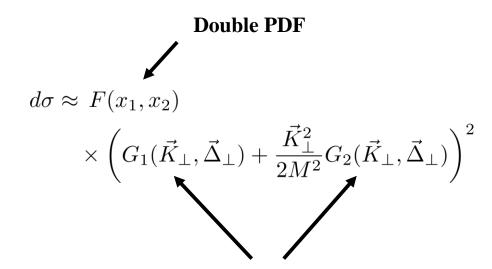
Single-exclusive pp collisions (Boussarie, Hatta, Xiao, Yuan, arXiv: 1807.08697)



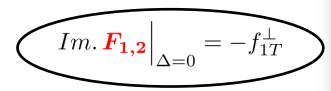
Main result:

Access Weiszacker-Williams gluon GTMD

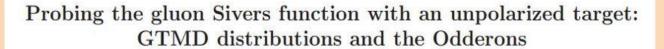
Example: Result for $\chi_1 \chi_1$ production



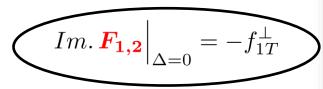
Unpolarized & Linearly-polarized GTMDs



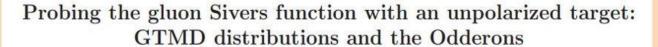
arXiv: 1912.08182 (2019)



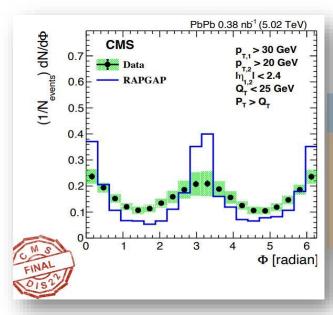
Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}



arXiv: 1912.08182 (2019)



Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}



The CMS Collaboration

Michael Murray's talk, DIS 2022

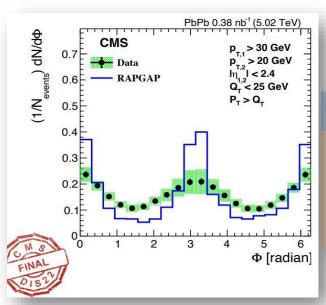
Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

$$\left(Im. \mathbf{F_{1,2}} \Big|_{\Delta=0} = -f_{1T}^{\perp}\right)$$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}



The CMS Collaboration

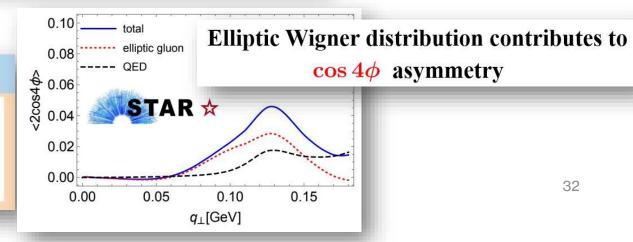
Michael Murray's talk, DIS 2022

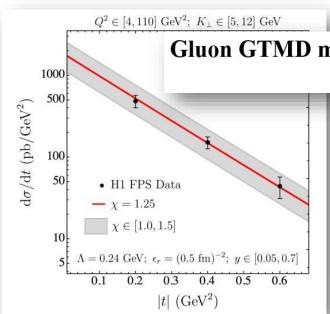
Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou



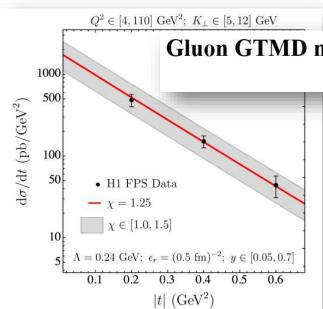


Gluon GTMD model based on MV model can describe HERA-H1 data

arXiv: 2106.15148 (2021)

GTMD model predictions for diffractive dijet production at EIC

Daniël Boer^{1,*} and Chalis Setyadi^{1,2,†}



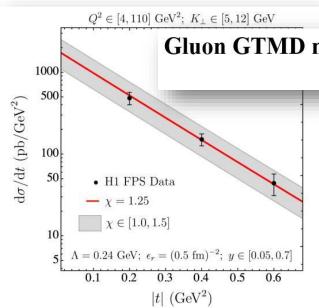
Gluon GTMD model based on MV model can describe HERA-H1 data

arXiv: 2106.15148 (2021)

GTMD model predictions for diffractive dijet production at EIC

Daniël Boer^{1,*} and Chalis Setyadi^{1,2,†}

Impact of JIMWLK evolution: See Mantysaari, Mueller, Schenke, 1902.05087



Gluon GTMD model based on MV model can describe HERA-H1 data

arXiv: 2106.15148 (2021)

GTMD model predictions for diffractive dijet production at EIC

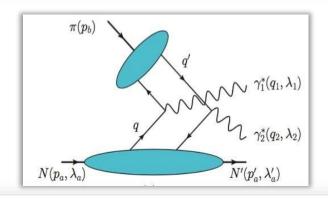
Daniël Boer^{1,*} and Chalis Setyadi^{1,2,†}

Impact of JIMWLK evolution: See Mantysaari, Mueller, Schenke, 1902.05087

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, ¹ Andreas Metz, ¹ and Jian Zhou²



First & only process sensitive to quark GTMDs

Generalized TMDs and the exclusive double Drell-Yan process

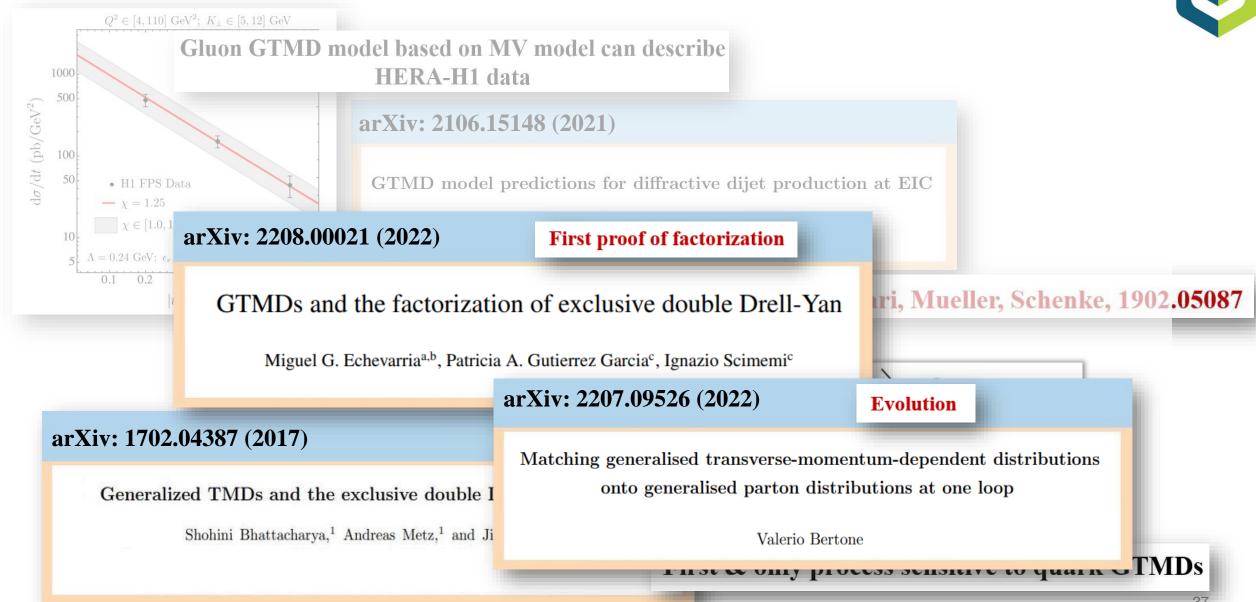
Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

First & only process sensitive to quark GTMDs

 $N(p_a, \lambda_a)$

 $N'(p_a', \lambda_a')$

More developments ...



Our recent work

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, $^{1,\,*}$ Renaud Boussarie, $^{2,\,\dagger}$ and Yoshitaka $\mathrm{Hatta}^{1,\,3,\,\ddagger}$

In Collaboration with:

Based on:

Renaud Boussarie (CPHT, CNRS)

Yoshitaka Hatta (BNL)

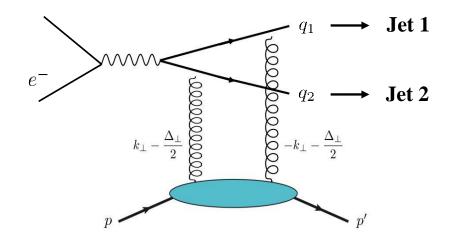
PRL 128, 182002 (arXiv: 2201.08709)

Inspiration

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



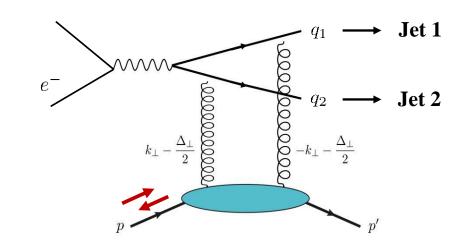
We took a fresh look at this 2016 paper

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}



Longitudinal single spin asymmetry (SSA):

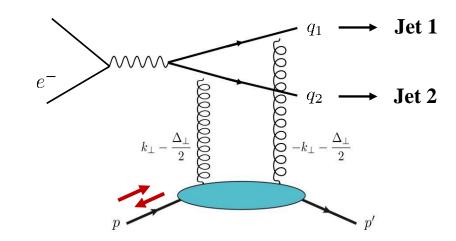
$$\frac{d\Delta\sigma}{dydQ^{2}d\Omega} = \sigma_{0}h_{p}\frac{2(\bar{z}-z)(q_{\perp}\times\Delta_{\perp})}{q_{\perp}^{2}+\mu^{2}} \left[16\beta(1-y)\mathfrak{Im}[F_{g}^{*}+4\xi^{2}\bar{\beta}F_{g}^{\prime*}][\mathcal{L}_{g}+8\xi^{2}\bar{\beta}\mathcal{L}_{g}^{\prime}] + (1+(1-y)^{2})\mathfrak{Im}[F_{g}^{*}+2\xi^{2}(1-2\beta)F_{g}^{\prime*}][\mathcal{L}_{g}+2\bar{\beta}(1/z\bar{z}-2)(\mathcal{L}_{g}+4\xi^{2}(1-2\beta)\mathcal{L}_{g}^{\prime})]\right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji,^{1,2} Feng Yuan,³ and Yong Zhao^{1,3}



Schematic structure of SSA (oversimplified):

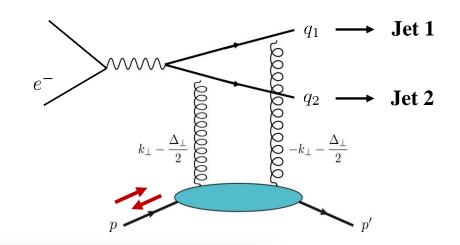
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Moment of GPD

Signature of OAM is sinusoidal angular modulation

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

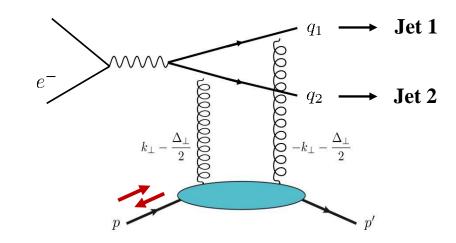
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \left(\sin(\phi_{q_\perp} - \phi_{\Delta_\perp})(\overline{z} - z)\right) \left[\Im \mathfrak{m}\left(F_g^*(\xi)\mathcal{L}_g(\xi)\right)\right] \qquad \text{Moment of OAM}$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan,3 and Yong Zhao 1,3



Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

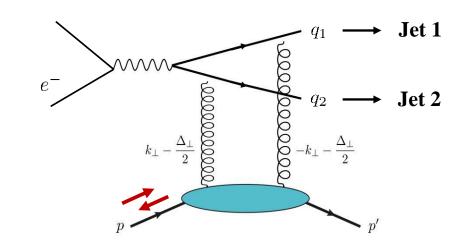
$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3



Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta}) \left(\overline{z} - z \right) \left[\Im \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

SSA vanishes for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Third pole at $x = \pm \xi$ \longrightarrow potentially dangerous for collinear factorization

"Compton Form Factor":
$$\mathcal{L}_g(\xi) = \int dx \frac{x^2 \xi L_g(x,\xi)}{(x^2 - \xi^2 + i\xi\epsilon)^3}$$

Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi | \mathcal{L}_g(\xi)) \right) \right]$$

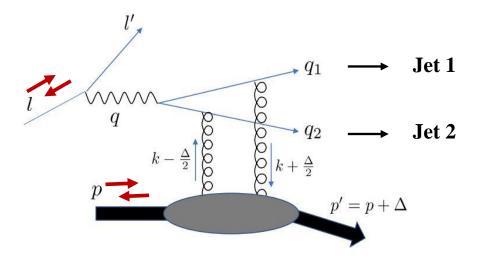
(See Cui, Hu, Ma, 1804.05293)

SSA vanishes for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Our work

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

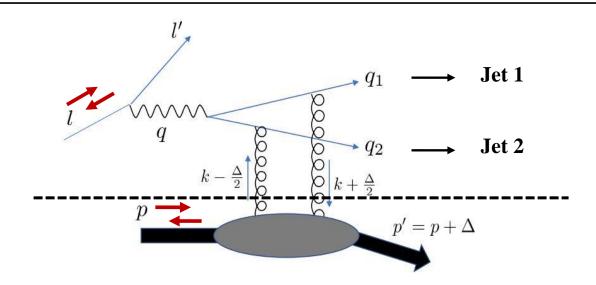


Distinct feature in our work

Double spin asymmetry (DSA):-

Both electron & incoming proton are longitudinally polarized

Scattering amplitude



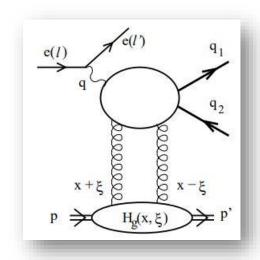
- 6 leading-order Feynman diagrams
- Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} \, \mathcal{H}(x,\xi,q_{\perp},k_{\perp},\Delta_{\perp}) \, x f_g(x,\xi,k_{\perp},\Delta_{\perp})$$
 Hard part Soft part

Scattering amplitude

Twist expansion:

Twist-2 amplitude: Proportional to gluon GPD



$$A_T^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{q_\perp^2 + \mu^2} \left(\bar{u}(q_1) \not \epsilon_\perp v(q_2) \right) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}$$

$$\times \left(1 + \frac{2\xi^2 (1 - 2\beta)}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$A_L^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{(q_\perp^2 + \mu^2)^2} 4\xi z \overline{z} QW(\bar{u}(q_1)\gamma^- v(q_2)) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \times \left(1 + \frac{4\xi^2 \bar{\beta}}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}\right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Scattering amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{(q_{\perp}^{2}+\mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

$$-\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(2\xi)^{2}z\overline{z}W}{(q_{\perp}^{2}+\mu^{2})^{2}} \overline{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \int d^{2}k_{\perp}\epsilon_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z} - z)z\overline{z}QW}{(q_{\perp}^{2} + \mu^{2})^{3}} \overline{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2} - \xi^{2} + i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1 - \beta)}{(x^{2} - \xi^{2} + i\xi\varepsilon)}\right) \int d^{2}k_{\perp} q_{\perp} \cdot \mathbf{k_{\perp}} x f_{g}(x, \xi, k_{\perp}, \Delta_{\perp})$$

Scattering amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \left(\int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \right) d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$-\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(2\xi)^2 z \overline{z} W}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \gamma^- v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Factorization-breaking third poles at $x=\pm \xi$

Twist expansion:

Twist-3 amplitude: Proportion

Note: Gluon GPDs may contain $\sim \theta(\xi-|x|)(x^2-\xi^2)^2$ (See Radyushkin, 9805342)

Hence, integrals containing third poles are divergent

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)}\right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$= \frac{ig_s^2 e_{em} e_q}{2(2\xi)^2 z \overline{z} W} \overline{u}(q_1) \gamma_\perp v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)}\right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Factorization-breaking third poles at $x=\pm \xi$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \bar{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} \, q_{\perp} \cdot \mathbf{k_{\perp}} \, xf_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Scattering amplitude

Twist evnansion:

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{q_{\perp}^{2} + \mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \int dx \frac{x}{(x^{2} - \xi^{2} + i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2} - \xi^{2} + i\xi\varepsilon)}\right) \int d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Recall: Not possible in SSA

Factorization-breaking third poles at $x=\pm\xi$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} = -\frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1+\xi)\xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_g^{(1)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \left(\mathcal{H}_g^{(2)*} - \frac{\xi^2}{1-\xi^2} \mathcal{E}_g^{(2)*} \right) \right\} \mathcal{L}_g + \left(\mathcal{E}_g^{(1)*} + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{E}_g^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}|| \Delta_{\perp} \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

Signature of gluon OAM is cosine angular modulation

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}||\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\mathcal{L}_{g}(\xi) = \int_{-1}^{1} dx \frac{x^{2} L_{g}(x,\xi)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)} \mathcal{H}_{g}^{(2)}(\xi) = \int_{-1}^{1} dx \frac{\xi^{2} H_{g}(x,\xi)}{(x-\xi+i\epsilon)^{2}(x+\xi-i\epsilon)^{2}}$$

Scattering amplitude

Main result (z = 1/2):

DSA is sensitive to OAM through an interference between L & T amplitudes:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

"Compton Form Factors":

$$O(x,\xi) \equiv \int d^2 \widetilde{k}_{\perp} \frac{\widetilde{k}_{\perp}^2}{M^2} F_{1,2}(x,\xi,\widetilde{\Delta}_{\perp} = 0)$$

$$\mathcal{O}(\xi) = \int_{-1}^{1} dx \frac{xO(x,\xi)}{(x-\xi+i\epsilon)^2(x+\xi-i\epsilon)^2}$$

			U 1				
Scattering amplitude							
Not the and of the							
Not the end of the	ne story:						

Helicity GPD

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \Re \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Analogous contribution should enter SSA

Helicity GPD

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp} \left(\cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \mathfrak{R} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Helicity contributes to the same angular modulation as that of OAM

Numerical estimate of cross section

See backup slides for details on how we modelled GPDs and OAM

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$oldsymbol{Q^2} \ [\mathrm{GeV^2}]$	$oldsymbol{y}$	ξ
	2.7		
120	4.8	0.7	$\lesssim 10^{-3}$
	10.0		

Focus on:
$$z = \bar{z} = \frac{1}{2}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [\mathrm{GeV}^2]$	y	ξ
120	2.7		$\lesssim 10^{-3}$
	4.8	0.7	
	10.0		

Focus on:
$$z = \bar{z} = \frac{1}{2}$$

Cross section:

$$\frac{d\sigma}{dy dQ^2 d\phi_{l_{\perp}} dz dq_{\perp}^2 d^2 \Delta_{\perp}} = \frac{\alpha_{em} y}{2^{11} \pi^7 Q^4} \frac{\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu}}{(W^2 + Q^2)(W^2 - M_J^2) z \overline{z}}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [\mathrm{GeV}^2]$	y	ξ
	2.7		
120	4.8	0.7	$\lesssim 10^{-3}$
	100		

Focus on:

$$z = \bar{z} = \frac{1}{2}$$

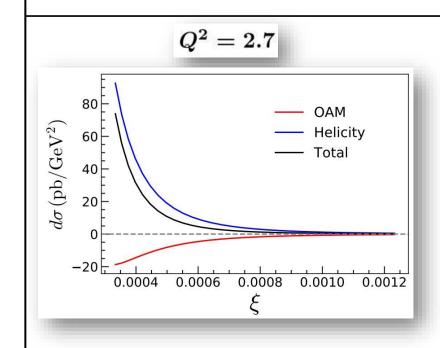
Study cross section as differential in the skewness variable

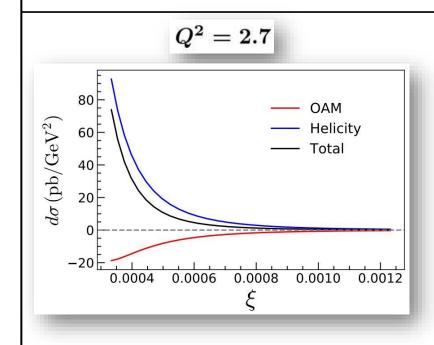
Cross section:

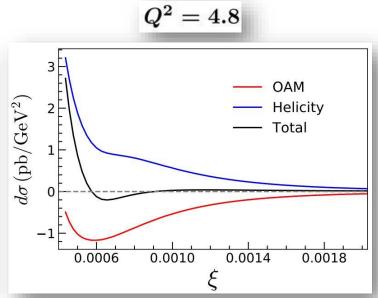
$$\frac{d\sigma}{dydQ^2d\phi_{l_{\perp}}dzdq_{\perp}^2d^2\Delta_{\perp}} = \frac{\alpha_{em}y}{2^{11}\pi^7Q^4}$$

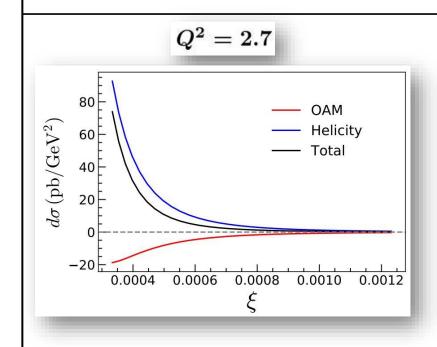
Relation between skewness & jet momenta:

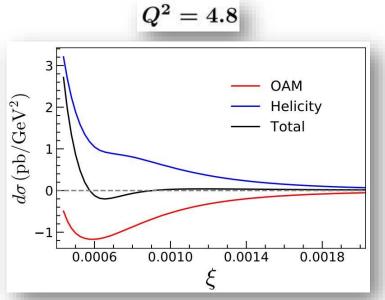
$$\xi = \frac{q_{\perp}^2 + z\bar{z}Q^2}{-q_{\perp}^2 + z\bar{z}(Q^2 + 2W^2)}$$

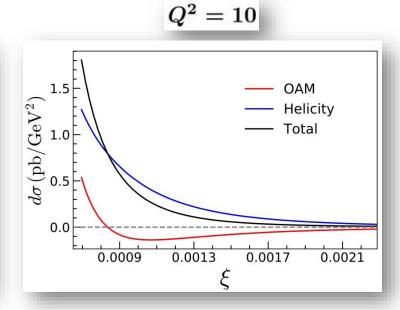


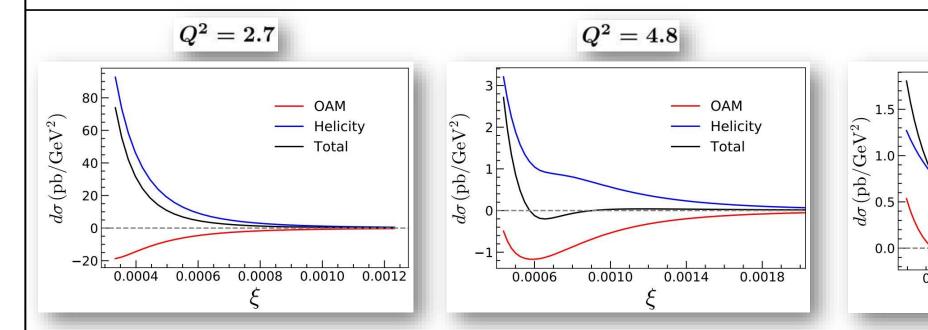


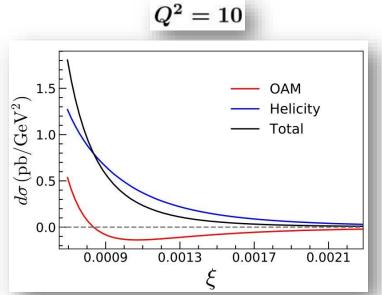




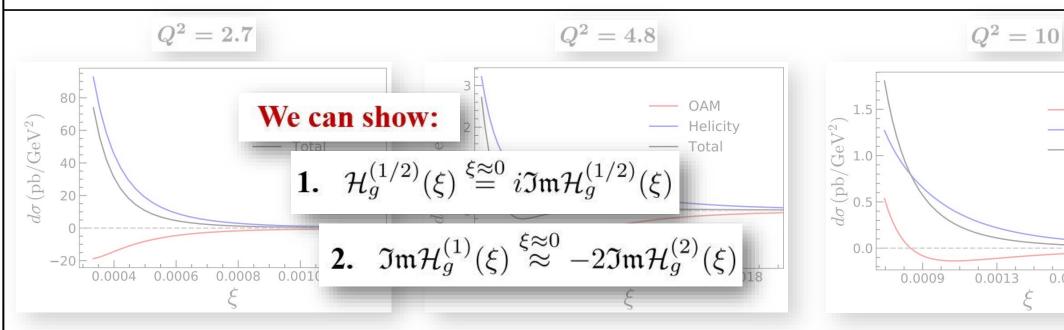




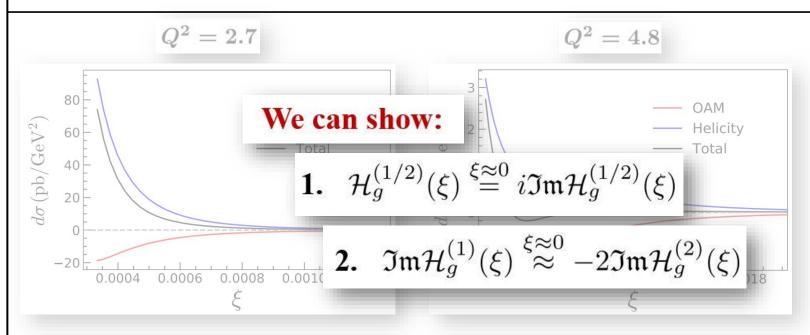


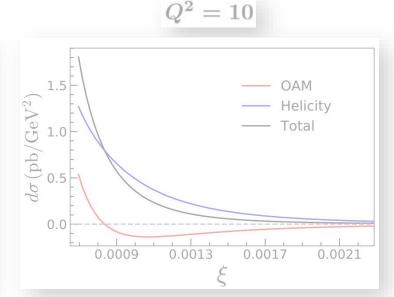


$$\mathbf{DSA:} \qquad \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathfrak{Re} \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \mathfrak{Re} \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$



DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$





DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\tilde{\mathcal{H}}_g^{(2)}(\xi) + \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

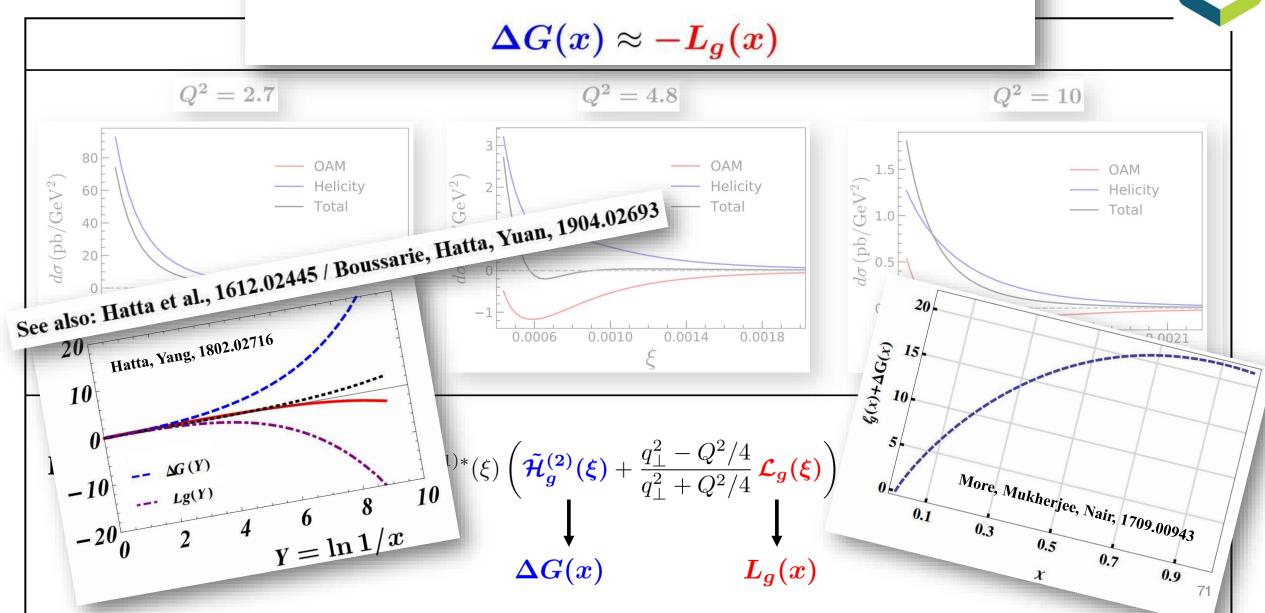
Numerical estimate of cross section



DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\frac{\tilde{\mathcal{H}}_g^{(2)}(\xi)}{g_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

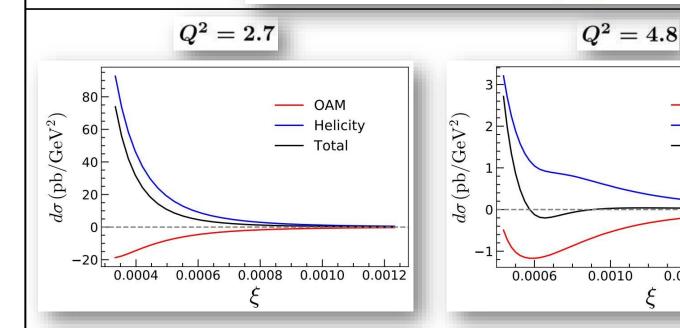
 $\tilde{\mathcal{H}}_{m{g}}^{(2)}$ & $\mathcal{L}_{m{g}}$ interfere positively/negatively depending upon sign of $q_{\perp}^2 - \frac{Q^2}{4}$

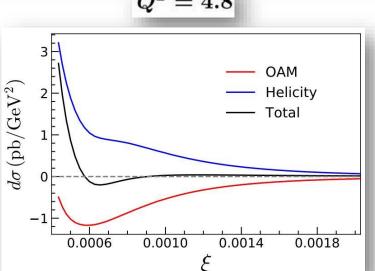
Cancellation expected between Helicity & OAM at small $oldsymbol{x}$

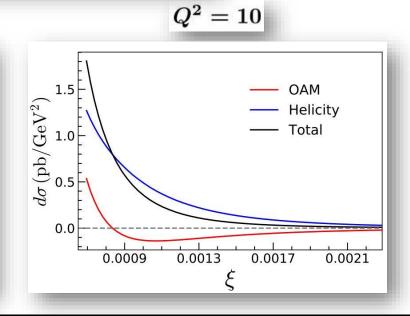


Cancellation expected between Helicity & OAM at small x

$$\Delta G(x) pprox - L_g(x)$$







Unique opportunity to study interplay between

$$\Delta G(x) \& L_g(x)$$

which has been so far only studied theoretically!

$$\begin{pmatrix} \tilde{\mathcal{H}}_{\boldsymbol{g}}^{(2)}(\boldsymbol{\xi}) + \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \mathcal{L}_{\boldsymbol{g}}(\boldsymbol{\xi}) \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

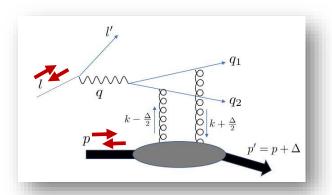
$$\Delta G(\boldsymbol{x}) \qquad \qquad L_{\boldsymbol{g}}(\boldsymbol{x})$$

Summary of our work

• Gluon OAM related to the Wigner distribution

Summary of our work

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

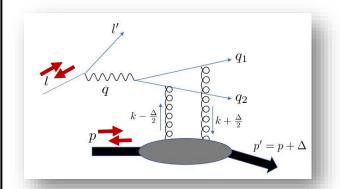


$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:



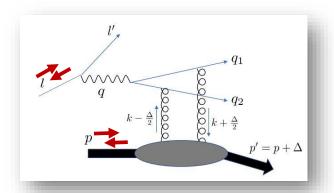
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

• DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

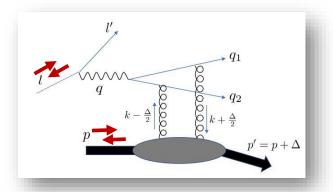
Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Consequence:

DSA in exclusive dijet production:

Elimination of factorization-breaking third poles at $x=\pm \xi$



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

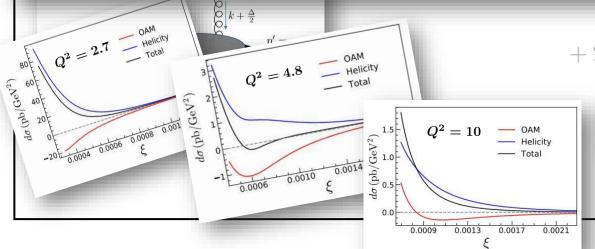
DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Consequence:

• DSA in exclusive dijet production is

Elimination of factorization-breaking third poles at $x=\pm \xi$

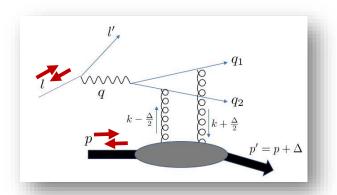
DSA is a unique observable to study interplay between gluon OAM & helicity



$$+ \mathfrak{Re} \left[\mathcal{H}_g^{(1)*}(\xi) \left(\tilde{\mathcal{H}}_g^{(2)}(\xi) \right) \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \right]$$

Summary of our work

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:



$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

First realistic numerical calculation of observable sensitive to OAM @ EIC

Backup slides

Numerical estimate of cross section

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} \quad & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ — Very simple formula

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

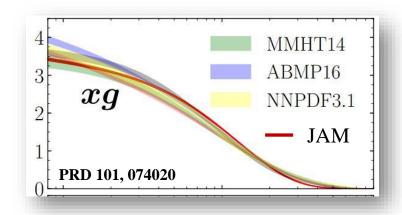
- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)

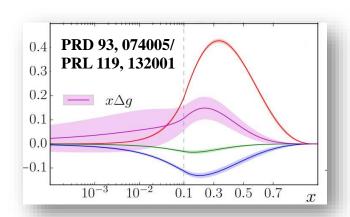
$$\begin{pmatrix} H_g(x,\boldsymbol{\xi}) \\ \tilde{H}_g(x,\boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$

Numerical estimate of cross section

- Neglect contributions from $\,(E_g,\,\tilde{E}_g)\,,\,F_{1,2}\,$ —— Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$\begin{pmatrix} H_g(x,\boldsymbol{\xi}) \\ \tilde{H}_g(x,\boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$





Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) = x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

$$H_g(x') = x' G(x') \qquad \text{Neglect } E_g$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

2. Use the Double distribution approach to construct $xL_g(x,\xi)$ from $xL_g(x)$ (GPD-like approach)

Cross section

Jet azimuthal angle ($\phi_{q_{\perp}}$) integrated out

$$\frac{d\sigma}{dy dQ^2 d\phi_{l_{\perp}} dz dq_{\perp}^2 d^2 \Delta_{\perp}} = \frac{\alpha_{em} y}{2^{11} \pi^7 Q^4} \frac{\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu}}{(W^2 + Q^2)(W^2 - M_J^2) z \overline{z}}$$

Integrate assuming a Gaussian form factor

$$\sim e^{-b\Delta_{\perp}^2}$$
Slope = 5

(See Braun, Ivanov, 0505263)