Exclusive π^0 muoproduction measurements at COMPASS

Markéta Pešková (Charles University, Prague) on behalf of the COMPASS collaboration

Supported by the Charles University, Prague, project GA UK no. 60121

IWHSS'22, August 29. - 31., 2022

• Proton spin sum rule: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$ Jaffe&Manohar Nucl. Phys. B337 (1990)

COMPASS experiment in μp DIS: $\Delta \Sigma = 0.32 \pm 0.03$

COMPASS Collaboration: Phys. Lett. B 693 (2010)

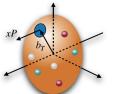
COMPASS, RHIC results: $\Delta G = 0.2^{+0.06}_{-0.07}$

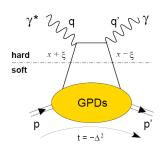
de Florian et al.Phys.Rev.Lett. 113 (2014) no.1, 012001

Missing component: $L_{q,g} = ? \rightarrow \text{GPDs provides access}$

- Generalised Parton Distributions (GPD) give access to the 3D structure of a hadron
- GPDs encode the correlation between the longitudinal momentum of a parton and its position in the transverse plane ↑

$$q^f(x, b_\perp) \xrightarrow{\int \mathrm{d}x} \mathbf{Form\ factors}$$
 $q^f(x, b_\perp) \xrightarrow{\int \mathrm{d}b_\perp} \mathbf{PDFs}$





Definition of variables: $q \dots \gamma^*$ four-momentum $x \dots$ average longitudinal momentum fraction of initial and final parton (NOT accessible)

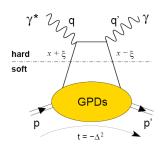
 ξ . . . difference of longitudinal-momentum fraction between initial and final parton $\approx x_B/(2-x_B)$ t . . . four-momentum transfer

- 4 chiral-even GPDs (parton helicity conserved)
- 4 chiral-odd (or transversity) GPDs (parton helicity flipped)

		Quark Polarisation				
		Unpolarised	Longitudinally polarised	Tranversely polarised		
	_	(U)	(L)	(T)		
Nucleon Polarisation	U	H		$ar{E}_T$		
	L		$ ilde{H}$	$ ilde{E}_T$		
	Т	E	$ ilde{E}$	$H_T, ilde{H}_T$		

GPDs enter the exclusive processes through Compton Form Factors (CFF)

$$\mathcal{H}(\xi,t) = \mathcal{P} \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi} + i\pi H$$



Definition of variables: $q \dots \gamma^*$ four-momentum $x \dots$ average longitudinal momentum fraction of initial and final parton (NOT accessible)

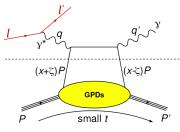
 ξ ... difference of longitudinal-momentum fraction between initial and final parton $\approx x_B/(2-x_B)$ t ... four-momentum transfer

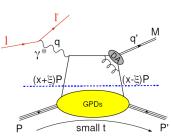
- 4 chiral-even GPDs (parton helicity conserved)
- 4 chiral-odd (or transversity) GPDs (parton helicity flipped)

		Quark Polarisation				
		Unpolarised	Longitudinally polarised	Tranversely polarised		
		(U)	(L)	(T)		
Nucleon Polarisation	U	H		$ar{E}_T$		
	L		$ ilde{H}$	$ ilde{E}_T$		
	т	E	$ ilde{E}$	$H_T, ilde{H}_T$		

GPDs enter the exclusive processes through Compton Form Factors (CFF)

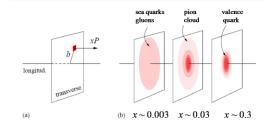
$$\mathcal{H}(\xi,t) = \mathcal{P} \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi} + i\pi H$$

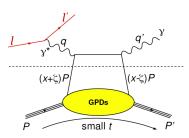


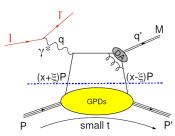


- Most commonly used processes for GPDs parametrisation are Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP)
- DVCS on an unpolarised proton target gives access to GPD $H \to 3D$ imaging of a hadron

$$H^q(x,\xi=0,t) = \rho^q(x,b_\perp)$$
 (Burkardt 2000, 2003)

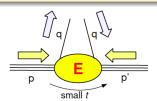


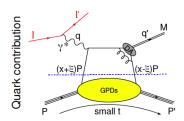


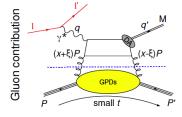


- Most commonly used processes for GPDs parametrisation are Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP)
- DVCS off neutrons, or DVCS or HEMP on transverse polarised proton target gives access to GPD $E \rightarrow$ helps constraining the total angular momentum of partons

$$J^f = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \mathrm{d}x \, x [H^f(x, \xi, t) + \underline{E^f}(x, \xi, t)]$$
 Phys. Rev. Lett. 78 (1997)







Hard Exclusive Meson Production:

- Flavour separation for specific GPDs due to different partonic content of mesons
- Gluon and quark contributions at the same order in α_s for vector mesons
- DVCS sensitive to H^f , E^f , \tilde{H}^f , and \tilde{E}^f
- At the leading twist:
 - Vector meson production sensitive to H^f , and E^f
 - Pseudoscalar mesons production is described by GPDs \tilde{H}^f , and \tilde{E}^f
- Both vector meson and pseudoscalar mesons (as the π_0 presented in this talk) are also sensitive to $\bar{E}_T^f = 2\tilde{H}_T^f + E_T^f$, and H_T^f

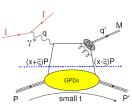
COMPASS measurement in 2012, and 2016/17 with μ^+ and μ^- beams of $E_{\mu}=160~{\rm GeV}$

Collected events corrected for:

- Luminosity of μ^+ and μ^- beams
- Background subtraction
- Acceptance of the spectrometer
- Reduction of μp cross-section to $\gamma^* p$:

$$\frac{\mathrm{d}^4 \sigma_{\mu p}}{\mathrm{d} Q^2 \mathrm{d} t \mathrm{d} \nu \mathrm{d} \phi} = \Gamma \frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi}$$

with the virtual photon flux $\Gamma = \Gamma(E_{\mathfrak{u}}, Q^2, \nu)$



COMPASS 2012:

• 4 weeks \rightarrow results published: PLB 805(2020) 135454

COMPASS 2016/17:

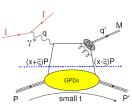
COMPASS measurement in 2012, and 2016/17 with μ^+ and μ^- beams of $E_{\mu}=160~{\rm GeV}$

Collected events corrected for:

- Luminosity of μ^+ and μ^- beams
- Background subtraction
- Acceptance of the spectrometer
- Reduction of μp cross-section to $\gamma^* p$:

$$\frac{\mathrm{d}^4 \sigma_{\mu p}}{\mathrm{d} Q^2 \mathrm{d} t \mathrm{d} \nu \mathrm{d} \phi} = \Gamma \frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi}$$

with the virtual photon flux $\Gamma = \Gamma(E_{\mu}, Q^2, \nu)$



COMPASS 2012:

• 4 weeks \rightarrow results published: PLB 805(2020) 135454

COMPASS 2016/17:

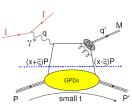
COMPASS measurement in 2012, and 2016/17 with μ^+ and μ^- beams of $E_{\mu}=160~{\rm GeV}$

Collected events corrected for:

- Luminosity of μ^+ and μ^- beams
- Background subtraction
- Acceptance of the spectrometer
- Reduction of μp cross-section to $\gamma^* p$:

$$\frac{\mathrm{d}^4 \sigma_{\mu p}}{\mathrm{d} Q^2 \mathrm{d} t \mathrm{d} \nu \mathrm{d} \phi} = \Gamma \frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi}$$

with the virtual photon flux $\Gamma = \Gamma(E_{\mathfrak{u}}, Q^2, \nu)$



COMPASS 2012:

• 4 weeks \rightarrow results published: PLB 805(2020) 135454

COMPASS 2016/17:

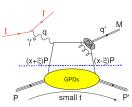
COMPASS measurement in 2012, and 2016/17 with μ^+ and μ^- beams of $E_{\mu}=160~{\rm GeV}$

Collected events corrected for:

- Luminosity of μ^+ and μ^- beams
- Background subtraction
- Acceptance of the spectrometer
- Reduction of μp cross-section to $\gamma^* p$:

$$\frac{\mathrm{d}^4 \sigma_{\mu p}}{\mathrm{d} Q^2 \mathrm{d} t \mathrm{d} \nu \mathrm{d} \phi} = \Gamma \frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi}$$

with the virtual photon flux $\Gamma = \Gamma(E_{\mathfrak{u}}, Q^2, \nu)$



COMPASS 2012:

• 4 weeks \rightarrow results published: PLB 805(2020) 135454

COMPASS 2016/17:

HEMP cross section

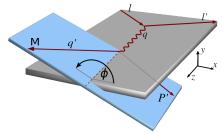
HEMP cross-section, reduced to γ^*p , for the unpolarised target and polarised lepton beam (relevant for COMPASS 2012, 2016/2017 measurements):

$$\frac{\mathrm{d}^{2}\sigma_{\gamma^{*}p}^{\leftrightarrows}}{\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2\pi} \left[\frac{\mathrm{d}\sigma_{T}}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t} + \epsilon \cos(2\phi) \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} + \sqrt{\epsilon(1+\epsilon)} \cos\phi \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} \right]$$

$$\mp |P_{l}| \sqrt{\epsilon(1-\epsilon)} \sin\phi \frac{\mathrm{d}\sigma_{LT}'}{\mathrm{d}t}$$

$$\epsilon = \frac{1 - y - \frac{y^2 \gamma^2}{4}}{1 - y + \frac{y^2}{2} + \frac{y^2 \gamma^2}{4}}$$

Factorization proven for σ_L , not for σ_T which is expected to be suppressed by a factor $1/Q^2$ BUT large contributions are observed at JLab



HEMP cross section

Spin independent HEMP cross-section after averaging the two spin-dependent cross-sections:

$$\frac{\mathrm{d}^{2}\sigma_{\gamma^{*}p}}{\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2} \left(\frac{\mathrm{d}^{2}\sigma_{\gamma^{*}p}^{\leftarrow}}{\mathrm{d}t\mathrm{d}\phi} + \frac{\mathrm{d}^{2}\sigma_{\gamma^{*}p}^{\rightarrow}}{\mathrm{d}t\mathrm{d}\phi} \right) =$$

$$\frac{1}{2\pi} \left[\frac{\mathrm{d}\sigma_{T}}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t} + \epsilon \cos(2\phi) \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} + \sqrt{\epsilon(1+\epsilon)} \cos\phi \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} \right]$$

$$\mp |P_{l}|\sqrt{\epsilon(1-\epsilon)} \sin\phi \frac{\mathrm{d}\sigma_{LT}^{\prime}}{\mathrm{d}t}$$

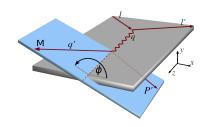
$$\Rightarrow \text{study } \phi$$

$$\frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} = \frac{1}{2\pi} \left[\frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t} + \frac{\mathrm{d}\sigma_{$$

After integration in ϕ :

$$\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_L}{\mathrm{d}t}$$

 \Rightarrow study t dependence

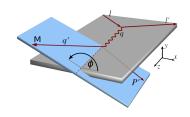


HEMP cross section

$$\frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi} = \frac{1}{2\pi} \Big[\frac{\mathrm{d} \sigma_T}{\mathrm{d} t} + \epsilon \frac{\mathrm{d} \sigma_L}{\mathrm{d} t} + \epsilon \cos(2\phi) \frac{\mathrm{d} \sigma_{TT}}{\mathrm{d} t} + \sqrt{\epsilon (1+\epsilon)} \cos \phi \frac{\mathrm{d} \sigma_{LT}}{\mathrm{d} t} \Big]$$

GPDs in exclusive π^0 production

$$\frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t} \propto \left[(1 - \xi^{2}) |\langle \tilde{\mathcal{H}} \rangle|^{2} - 2\xi^{2} \operatorname{Re} (\langle \tilde{\mathcal{H}} \rangle^{*} \langle \tilde{\mathcal{E}} \rangle) \right]
- \frac{t'}{4M^{2}} \xi^{2} |\langle \tilde{\mathcal{E}} \rangle|^{2}
\frac{\mathrm{d}\sigma_{T}}{\mathrm{d}t} \propto \left[(1 - \xi^{2}) |\langle \mathcal{H}_{T} \rangle|^{2} - \frac{t'}{8M^{2}} |\langle \bar{\mathcal{E}}_{T} \rangle|^{2} \right]
\frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} \propto t' |\langle \bar{\mathcal{E}}_{T} \rangle|^{2}
\frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} \propto \xi \sqrt{1 - \xi^{2}} \sqrt{-t'} \operatorname{Re} (\langle \mathcal{H}_{T} \rangle^{*} \langle \tilde{\mathcal{E}} \rangle)$$



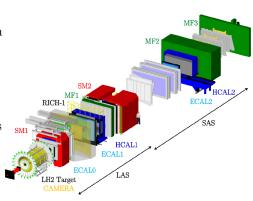
Impact of \bar{E}_T should be visible in $\frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t}$, and also a dip at small t of $\frac{\mathrm{d}\sigma_T}{\mathrm{d}t}$

 $t' = t - t_{min}, t_{min}$ is the minimum value of |t|

COMPASS: Versatile facility to study QCD with hadron $(\pi^{\pm}, K^{\pm}, p ...)$ and lepton (polarized μ^{\pm}) beams of ~200 GeV for hadron spectroscopy and hadron structure studies using SIDIS, DY, DVCS, DVMP... COMPASS Exclusive π^0 muoproduction at Markéta Pešková

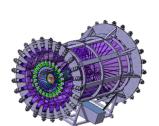
COMPASS GPD program

- Two stage magnetic spectrometer with large angular and momentum acceptance
- Versatile usage: hadron and muon beams
- Particle identification:
 - Ring Imaging Cherenkov (RICH) detector
 - Electromagnetic calorimeters (ECAL0, ECAL1, ECAL2)
 - Hadronic calorimeters (HCAL1, HCAL2)
 - 2 muon walls
- GPD program: 2012 pilot run, 2016/17 main measurement



COMPASS GPD program

- Target ToF system:
 - 24 inner and outer scintillators
 - 1 GHz readout
 - 310 ps ToF resolution
- ECAL0 calorimeter:
 - shaslyk modules
 - 2 × 2 m, 2200

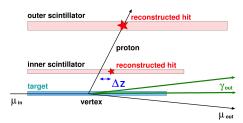


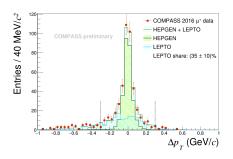
- $\begin{tabular}{ll} \bullet & Incoming and outgoing μ \\ & connected to primary vertex \\ \end{tabular}$
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $\begin{array}{l} \bullet \ \ 1 < Q^2 < 5 \ ({\rm GeV}/c)^2, \\ 8.5 < \nu < 28 \ {\rm GeV}, \\ 0.08 < |t| < 0.64 \ ({\rm GeV}/c)^2 \\ \end{array}$

- Transverse momentum constraint: $\Delta p_T = p_{T,spect}^p p_{T,recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{enect}^{p} - z_{enect}^{p}$
- Energy-momentum conservation: $M_X^2 = \left(p_\mu + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)^2$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $\begin{array}{l} \bullet \ \ 1 < Q^2 < 5 \ ({\rm GeV}/c)^2, \\ 8.5 < \nu < 28 \ {\rm GeV}, \\ 0.08 < |t| < 0.64 \ ({\rm GeV}/c)^2 \\ \end{array}$

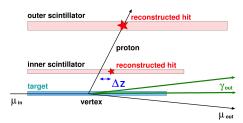
- Transverse momentum constraint: $\Delta p_T = p_{T.spect}^p p_{T.recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{spect}^p - z_{recoil}^p$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

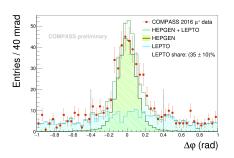




- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $1 < Q^2 < 5 \text{ (GeV/}c)^2$, $8.5 < \nu < 28 \text{ GeV}$, $0.08 < |t| < 0.64 \text{ (GeV/}c)^2$

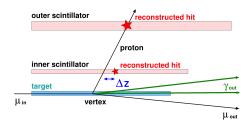
- Transverse momentum constraint: $\Delta p_T = p_{T,spect}^p p_{T,recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{spect}^p - z_{recoil}^p$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

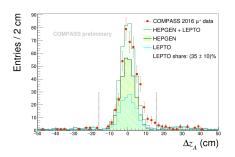




- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $1 < Q^2 < 5 \text{ (GeV/}c)^2$, $8.5 < \nu < 28 \text{ GeV}$, $0.08 < |t| < 0.64 \text{ (GeV/}c)^2$

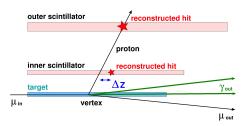
- Transverse momentum constraint: $\Delta p_T = p_{T,spect}^p p_{T,recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z^p_{spect} z^p_{recoil}$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)^2$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

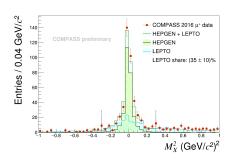




- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $\begin{array}{l} \bullet \ \ 1 < Q^2 < 5 \ ({\rm GeV}/c)^2, \\ 8.5 < \nu < 28 \ {\rm GeV}, \\ 0.08 < |t| < 0.64 \ ({\rm GeV}/c)^2 \\ \end{array}$

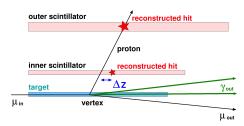
- Transverse momentum constraint: $\Delta p_T = p_{T.spect}^p p_{T.recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{spect}^p z_{recoil}^p$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)^2$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

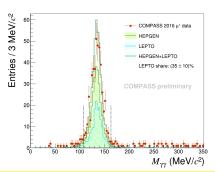




- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $1 < Q^2 < 5 \text{ (GeV/}c)^2$, $8.5 < \nu < 28 \text{ GeV}$, $0.08 < |t| < 0.64 \text{ (GeV/}c)^2$

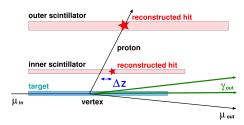
- Transverse momentum constraint: $\Delta p_T = p_{T.spect}^p p_{T.recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{spect}^p z_{recoil}^p$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)^2$
- Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit

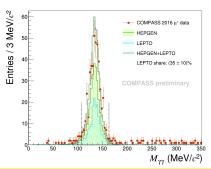




- Incoming and outgoing μ connected to primary vertex
- Two photons in ECALs from π^0 decay, attached to the vertex
- Recoil proton candidate
- $\begin{array}{l} \bullet \ \ 1 < Q^2 < 5 \ ({\rm GeV}/c)^2, \\ 8.5 < \nu < 28 \ {\rm GeV}, \\ 0.08 < |t| < 0.64 \ ({\rm GeV}/c)^2 \\ \end{array}$

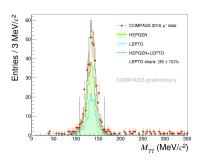
- Transverse momentum constraint: $\Delta p_T = p_{T.spect}^p p_{T.recoil}^p$
- Z coordinate of inner CAMERA ring: $\Delta z = z_{spect}^p z_{recoil}^p$
- Energy-momentum conservation: $M_X^2 = \left(p_{\mu} + p_p p_{\mu'} p_{p'} p_{\pi^0}\right)^2$
- \bullet Invariant mass $M_{\gamma\gamma}$ cut
- Kinematic fit





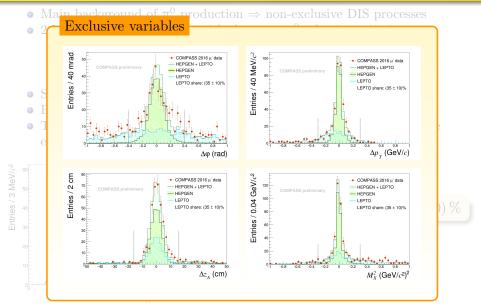
Exclusive π^0 production: SIDIS background estimation

- Main background of π^0 production \Rightarrow non-exclusive DIS processes
- 2 Monte Carlo simulations with the same π^0 selection criteria:
 - LEPTO for the non-exclusive background
 - HEPGEN++ shape of distributions of exclusive π^0 production (signal contribution)
- Search for best description of data fitting by mixture of both MC
- Both MC samples normalised to the experimental $M_{\gamma\gamma}$ distribution
- \bullet The ratio of background events r_{LEPTO} is determined by a fit on the exclusivity distributions



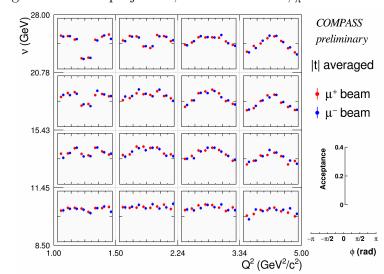
- Resulting fraction of non-exclusive background in data \Rightarrow $(35 \pm 10) \%$
- Background fit method is currently the main source of systematic uncertainty

Exclusive π^0 production: SIDIS background estimation



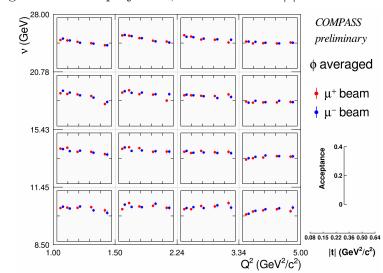
Exclusive π^0 production: COMPASS acceptance

- 4D acceptance in bins of ϕ_{π^0} , ν , |t|, Q^2
- figure shows 3D projection, as a function of ϕ_{π^0}

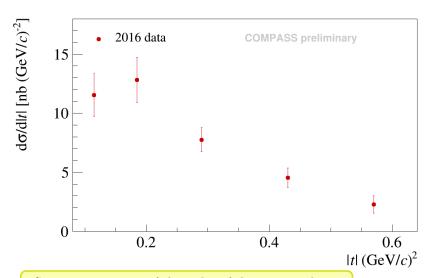


Exclusive π^0 production: COMPASS acceptance

- 4D acceptance in bins of ϕ_{π^0} , ν , |t|, Q^2
- figure shows 3D projection, as a function of |t|

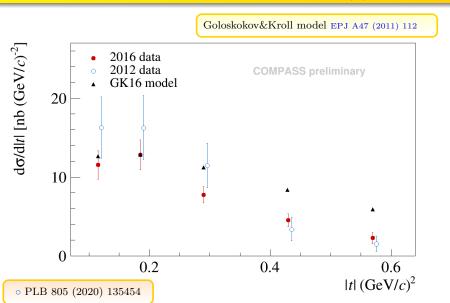


Exclusive π^0 cross-section as a function of |t|



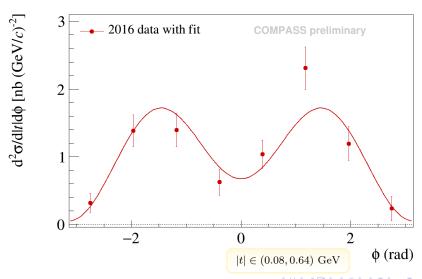
Systematic error is of the order of the statistical one

Exclusive π^0 cross-section as a function of |t|



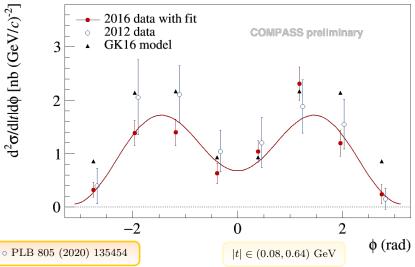
Exclusive π^0 cross-section as a function of ϕ

$$\frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi} = \frac{1}{2\pi} \left[\frac{\mathrm{d} \sigma_T}{\mathrm{d} t} + \epsilon \frac{\mathrm{d} \sigma_L}{\mathrm{d} t} + \epsilon \cos(2\phi) \frac{\mathrm{d} \sigma_{TT}}{\mathrm{d} t} + \sqrt{\epsilon (1+\epsilon)} \cos\phi \frac{\mathrm{d} \sigma_{LT}}{\mathrm{d} t} \right]$$



Exclusive π^0 cross-section as a function of ϕ

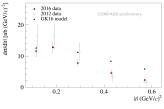
$$\frac{\mathrm{d}^2 \sigma_{\gamma^* p}}{\mathrm{d} t \mathrm{d} \phi} = \frac{1}{2\pi} \left[\frac{\mathrm{d} \sigma_T}{\mathrm{d} t} + \epsilon \frac{\mathrm{d} \sigma_L}{\mathrm{d} t} + \epsilon \cos(2\phi) \frac{\mathrm{d} \sigma_{TT}}{\mathrm{d} t} + \sqrt{\epsilon (1+\epsilon)} \cos\phi \frac{\mathrm{d} \sigma_{LT}}{\mathrm{d} t} \right]$$

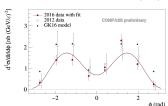


Summary

|t|-dependence and ϕ -dependence of exclusive π^0 cross-section on unpolarised proton target:

New, preliminary results of 2016 COMPASS measurement at low ξ (or $\langle x_B \rangle = 0.096$), input for constraining phenomenological models (e.g. Goloskokov&Kroll, Goldstein&Luiti, etc.)





- → Statistics of 2016 shown here is about 2.3× larger than of published results from 2012 pilot run (PLB 805 (2020) 135454)
- The whole collected 2016/2017 statistics $\sim 9 \times$ larger then 2012 \rightarrow plan to process all available data
- → Heading towards publication of 2016/2017 results soon

SPARES

Kinematic fit

- Measurement of exclusive processes at COMPASS is overconstrained → can be used to improve precision of kinematic quantities using kinematically constrained fit
- Kinematic fit improves the resolution of the signal and lowers the background
- It works in a principle of minimisation of least square function $\chi^2(\vec{k}) = (\vec{k}_{fit} \vec{k})^T \hat{C}^{-1} (\vec{k}_{fit} \vec{k})$, where \vec{k} is a vector of measured quantities and \hat{C} is their covariance matrix
- Method used for the minimisation is Lagrange multipliers with constraints g_i :

$$L(\vec{k}, \vec{\alpha}) = \chi^2(\vec{k}) + 2\sum_{i=1}^{N} \alpha_i g_i$$

 Constraints include momentum and energy conservation, common vertex for all tracks (except proton), constraints for final proton, and mass constraint

Past and future GPD measurements

