

LMU

ТΠ

Testing the chiral anomaly and measuring the radiative width of the $\rho(770)$ at COMPASS New result on $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}!$

Dominik Ecker for the COMPASS collaboration (dominik.ecker@tum.de)

International Workshop on Hadron Structure and Spectroscopy - 2022

Primakoff reactions

- Idea dates back to Henry Primakoff ("photon target")
- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$)
- Coulomb field of nucleus is a source of quasireal ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Weizsäcker-Williams approximation

Primakoff Program at COMPASS

Requirements for Primakoff

- Fixed target setup with nuclear target (*Z*-dependence of WW approximation)
- Good Q^2 -resolution to separate Coulomb processes (Primakoff) from other processes (strong processes)
- Neutral particles in final state \rightarrow calorimetry with good position/energy resolution for good Q^2 -resolution.

Interesting $\pi + \gamma$ reactions:

2004	$\pi^+\pi^-\pi^-$: published result	→ PRL 108 (2012) 192001
2009	$\pi^-\gamma$: pion polarizabilities $\pi^-\pi^0$: chiral anomaly $\pi^-\pi^0\pi^0$: chiral dynamics	PRL 114 (2015) 06002 Topic of this talk
2012	$\pi^-\gamma$: pion polarizabilities $\pi^-\pi^0$: chiral anomaly $\pi^-\pi^0\pi^0$: chiral dynamics	4x larger data set compared to 2009

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrange density of QCD:

- Flavor symmetries? -> only approximate symmetries
 - $SU(2): m_u \approx m_d$ -> isospin symmetry
 - $SU(3): m_u \approx m_d \approx m_s$
- - -> the eightfold way

Chiral symmetry of QCD

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrange density of QCD:

$$\mathscr{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i\gamma^{\mu} D_{i,\mu}^{j} - m_f \delta_i^{j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

• Approximate flavor symmetries in chiral limit $(m_u = m_d = m_s = 0)$:

$SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity

Chiral symmetry of QCD

• Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i\gamma^{\mu} D_{i,\mu}^{j} - m_f \delta_i^{j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

• Approximate flavor symmetries in chiral limit $(m_u = m_d = m_s = 0)$:

$SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity
- Why does chiral symmetry not manifest itself in the spectrum (in contrast to isospin and eightful way)?
 - → Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Spontaneous symmetry breaking ⇒ Eight massless, spinless Goldstone bosons

 $(\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$

- ⇒ Explicit breaking of chiral symmetry due to the small quark masses -> Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- ⇒ Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD makes use of chiral symmetry

(almost) massless Goldstone bosons

The chiral anomaly

• Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i\gamma^{\mu} D_{i,\mu}^{j} - m_f \delta_i^{j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^{a} G_a^{\mu\nu}$$

- Features axial U(1)-symmetry in chiral limit: $\psi(x) \rightarrow e^{i\theta\gamma_5}\psi(x)$
- No ninth "unnaturally light" meson
- Anomalous symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- Anomaly: Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term

- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes coupling of odd number of Goldstone bosons:

SU(2) flavor	SU(3) flavor
$\pi^0 \to \gamma \gamma$	$K^+K^- \! \to \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta \! ightarrow \! \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

• Effective theory -> pion decay constant measured from leptonic decays of the charged pion ($\pi^{\pm} \rightarrow \mu^{\pm} + \nu$)

Testing the chiral anomaly - $F_{3\pi}$

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Challenges:
 - 1. Explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

2. Coherent background from $\rho(770)$ production

Coherent background from $\rho(770)$ meson

 \Rightarrow possibility of extraction of radiative width of ρ -meson:

$$\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$$

 π^0, η

⇒ contributes to hadronic vacuum polarization terms in calculations of g - 2 of e and μ

Kaiser, N. and Friedrich, J. M., EPJA 36 no. 2, (2008) 181–188

Radiative width of $\rho(770)$ meson

• Background from $\rho(770)$ production (strong and electromagnetic)

 \Rightarrow possibility of extraction of radiative width of $\rho\text{-}$ meson:

$$\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$$

 π^0, η

⇒ contributes to hadronic vacuum polarization terms in calculations of g - 2 of e and μ

<u>Capraro, L. *et al.* NPB 288 (1987) 659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

Antipov, Y. et al. PRD 36 (1987) 101103 using data from Serpukhov experiments

Problem of explicit chiral symmetry breaking:

As previously noted, the value $F^{3\pi}$ is supposed to vary slowly with $s,t,q^2 \ll m_{\rho}^2$ so that $F^{3\pi} \simeq F^{3\pi}(0)$.

$$\Rightarrow \bar{F}_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$$

Ametller, L. et al. PRD 64 (2001) 094009

PHYSICAL REVIEW D, VOLUME 64, 094009

Electromagnetic corrections to $\gamma \pi^{\pm} \rightarrow \pi^0 \pi^{\pm}$

Ll. Ametller Dept. de Física i Enginyeria Nuclear, UPC, E-08034 Barcelona, Spain

M. Knecht and P. Talavera Centre de Physique Théorique, CNRS-Luminy, Case 907, F-13288 Marseille Cedex 9, France (Received 11 July 2001; published 3 October 2001)

The amplitude for the anomalous transitions $\gamma \pi^{\pm} \rightarrow \pi^0 \pi^{\pm}$ is analyzed within chiral perturbation theory including electromagnetic interactions. The presence of a *t*-channel one-photon exchange contribution induces sizable $\mathcal{O}(e^2)$ corrections which enhance the cross section in the threshold region and bring the theoretical prediction into agreement with available data. In the case of the crossed reaction $\gamma \pi^0 \rightarrow \pi^+ \pi^-$, the same contribution appears in the *s* channel and its effects are small.

DOI: 10.1103/PhysRevD.64.094009 PACS number(s): 12.39.Fe, 11.30.Rd, 13.60.Le, 13.75.-n

Reanalysis of Serpukhov data using chiral expansion:

$$F_{3\pi}(s,t,u) = F_{3\pi}(f^{(0)}(s,t,u) + f^{(1)}(s,t,u) + f^{(2)}(s,t,u) + \dots)$$

• Extrapolation using one loop and two loop corrections:

$$F_{3\pi} = (11.4 \pm 1.3) \text{ GeV}^{-3}$$

Previous measurement of $F_{3\pi}$ - Reanalysis

 Electro-magnetic corrections => significant contribution to f⁽⁰⁾(s, t, u) when isospin breaking effect are taken into account.

• Integrated correction amounts to 32% at threshold

 $\Rightarrow F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$

- Precision of previous measurements: O(10%)
 - \Rightarrow More precise experimental determination desirable

Ametller, L. et al. PRD 64 (2001) 094009

The COMPASS experiment at CERN

Abbon, P. et al. NIM A 779 (2014) 69–115

- 190 GeV negative hadron beam
- Beam PID
- Nuclear target(s): Ni and W
- Calorimetric trigger on neutrals
- Two stage spectrometer (LAS and SAS) with tracking and calorimeter

Principle of Measurement

- 190 GeV negative hadron beam: 96.8% π^- , 2.4% K^- , 0.8% \bar{p}
- Beam particle identification by Cherenkov detectors
- 4mm Ni target disk ($\approx 25\% X/X_0$)
- Measure scattered π^- and produced photons (number of photons depends on final state)
- Select exclusive events at very low Q^2
- For absolute cross-section measurements:

Luminosity determination via free Kaon decays

$$(K^- \rightarrow \pi^- \pi^0 \text{ or } K^- \rightarrow \pi^- \pi^0 \pi^0)$$

COMPASS measurement

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the $\pi^{-}\pi^{0}$ mass distribution up to 1.0 GeV including the $\rho(770)$ -resonance:

$$\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} dz (1 - z^2) |\mathcal{F}(s, t, u)|^2$$

With

$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s,t,u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s,t,u) - \frac{2e^2 F_\pi^2 F_{3\pi}}{t}$$

 $C_2^{(1)}$, $C_2^{(2)}$: fit parameters

 $\mathcal{F}_{2}^{(1)}(s, t, u), \mathcal{F}_{2}^{(2)}(s, t, u)$: provided by theory colleagues (Kubis, Hoferichter)

<u>M. Hoferichter, B. Kubis, and D. Sakkas, PRD 86 (2012)</u> 116009

Luminosity determination

• Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity: $L_{eff} = L \cdot (1 - \epsilon_{DAQ})$

- Luminosity can be determined via free decays of beam kaons in the beam:
 - Use CEDARs to tag kaons
 - Measure free decays where no material
 - Exclusive events with zero momentum transfer

Decay channel	Γ_i/Γ	Remark
$K^- \to \mu^- \bar{\nu}_\mu$	(63.56 ± 0.11) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- o \pi^- \pi^0$	(20.67 ± 0.08) %	Similar systematics as Primakoff $\pi^- \rightarrow \pi^- \pi^0$ channel
$K^- \rightarrow \pi^- \pi^- \pi^+$	(5.583 ± 0.024) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- ightarrow e^- \pi^0 \overline{ u}_e$	(5.07 ± 0.08) %	Non exclusive, missing energy
$K^- ightarrow \mu^- \pi^0 \overline{ u}_\mu$	(3.352 ± 0.033) %	Non exclusive, missing energy
$K^- ightarrow \pi^- \pi^0 \pi^0$	(1.760 ± 0.023) %	Used to determine π/K -ratio in the beam
others	$< 10^{-4}$	No significant contribution to background expected

 Different channels may form background for each other, but give possibility to crosscheck results

Used for luminosity determination Considered as background process

Effective integrated luminosity

 $L_{2\pi,eff} = 5.21 \pm 0.04_{stat} \text{ nb}^{-1}$ $L_{3\pi,eff} = 5.06 \pm 0.12_{stat} \text{ nb}^{-1}$

Largest contributions to systematic uncertainty:

- CEDAR tag efficiency: 7%
- ECAL reconstruction: 5%
- kaon/pion beam ratio: 2.5%

Result:

$$L_{eff} = 5.21 \pm 0.48_{syst} \pm 0.04_{stat}$$

Main Background

• $\pi^{-}\pi^{0}$ -final state forbidden by *G*-parity conservation

- Large cross section for $\pi^{-}\pi^{0}\pi^{0}$ final state \Rightarrow loss of one (soft) π^{0}
- Approach: determine leakage from 3pi MC data with 2pi event selection

Approach for 3π leakage:

- Select diffractive 3π events
- Develop partial-wave model
- Weight 3π Monte Carlo data set according to model
- Subtract from 2π event sample

Scaling of 3π Monte Carlo background prediction

Dominik Ecker | IWHSS | 30/08/2022

Results of dispersive fits

• Selection: $Q^2 < 1.296 \cdot 10^{-3} \,\text{GeV}^2/c^2$

$$C_{2}^{(1)} = (10.5 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$C_{2}^{(2)} = (24.5 \pm 0.1_{stat})^{+1.6} \text{GeV}^{-5}$$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

$$\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat-8 syst}^{+10}\right) \text{keV}$$

- Preliminary result for $F_{3\pi}$ in agreement with theory prediction from ChPT
- Lower systematics to be expected

Comparison to previous measurements

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat} + 10_{-8} + 10_{syst}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

<u>Capraro, L. *et al.* NPB 288 (1987) 659-680</u> at CERN (SPS):

 $\Gamma_{\rho \to \pi \gamma} = (81 \pm 4 \pm 4) \text{ keV}$

Obtained by fitting $d\sigma/dt$ distribution (separation of nuclear and Coulomb processes)

- Neglecting chiral production of $\pi^-\pi^0$
- Presumably underestimation of systematics $(3\pi \text{ leakage, beam composition})$

$\Gamma(\pi^{\pm}\gamma)$					Гз
VALUE (keV)	DOCUMENT ID		TECN	CHG	COMMENT
68 ±7 OUR FIT	Error includes sca	le fact	or of 2.3	3.	
68 ±7 OUR AVE	RAGE Error inclu	des sca	ale facto	r of 2.2	2. See the ideogram below.
81 ± 4 ± 4	CAPRARO	87	SPEC	_	$200 \pi^- A \rightarrow \pi^- \pi^0 A$
59.8 ± 4.0	HUSTON	86	SPEC	+	202 $\pi^+ A \rightarrow \pi^+ \pi^0 A$
71 ± 7	JENSEN	83	SPEC	_	156–260 $\pi^- A \rightarrow \pi^- \pi^0 A$

Comparison to previous measurements

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat} + 10_{-8} + 10_{syst}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

Antipov, Y. et al. PRD 36 (1987) 101103 and reanalyzed by Ametller, L. et al. PRD 64 (2001) 094009

 $F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics

Thank you for your attention

2004 $\pi^+\pi^-\pi^-$: published result \implies PRL 108 (2012) 192001

	$\pi^-\gamma$: pion polarizabilities \implies Phys. Rev. Lett. 114	(2015) 06002
2009	$\pi^{-}\pi^{0}$: chiral anomaly Presented in this ta	lk
	$\pi^{-}\pi^{0}\pi^{0}$: chiral dynamics	

	$\pi^-\gamma$: pion polarizabilities
2012	$\pi^{-}\pi^{0}$: chiral anomaly Ax larger data set compared to 2009 No results yet, MC still incomplete
	$\pi^{-}\pi^{0}\pi^{0}$: chiral dynamics

Primakoff data sets at COMPASS

Discovery of the chiral anomaly – π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

 $\tau_{\exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} s \neq \tau_{PCAC}(\pi^0) \approx 10^{-13} s$

• Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

$$\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma) = F_{\pi \gamma \gamma}^{2} \cdot \frac{m_{\pi^{0}}^{3}}{64\pi} = \left(\frac{e^{2}N_{c}}{12\pi^{2}F_{\pi}}\right)^{2} \frac{m_{\pi^{0}}^{3}}{64\pi} = 7.75 \,\text{eV}$$
$$\tau(\pi^{0}) = \text{BR}(\pi^{0} \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma)}$$
$$= 8.38 \cdot 10^{-17} \,\text{s}$$

• Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \,\mathrm{s}$$

Production mechanisms for mesons at COMPASS

- Strong and electromagnetic production of mesons
- Electromagnetic production via Primakoff effect with sharp Q^2 distribution
- Pomeron exchange: $\pi^{-}\pi^{0}$ final state forbidden due to *G*parity conservation, but: large cross-section for $\pi^{-}\pi^{0}\pi^{0}$ final state \rightarrow loss of one (soft) π^{0} as main background

	Primakoff	₽ (strong)	\mathbb{R} (strong)
$\sigma(s)$	$\propto \ln(\sqrt{s})$	\propto const.	$\propto 1/\sqrt{s}$
$\sigma(A_{\text{target}})$	\propto const.	$\propto A^{2/3}$	$\propto A^{2/3}$
$\sigma(Z_{\text{target}})$	$\propto Z^2$	\propto const.	\propto const.
$\sigma(t)$	$\propto \frac{Q^2 - Q_{\min}^2}{Q^4} = \frac{\hat{t}'}{\hat{t}^2}$	$\propto e^{-b\hat{t}'}$	$\propto g(\hat{t}) \cdot e^{-b\hat{t}'}$ for small \hat{t}

Scaling of 3π Monte Carlo background prediction

/ | | |

Chiral Tree, Chiral Loop

- Direct (point-like) coupling of photon to 4 pions
- Prediction from ChPT at tree- and loop-level available

<u>Krämer M. (2016) Evaluation and Optimization of a digital</u> <u>calorimetric trigger and analysis of $\pi^-Ni \rightarrow$ </u>

- Selection: $Q^2 < 1.296 \cdot 10^{-3} \, {\rm GeV}^2/c^2$
- Trigger on energy deposit in central part of electromagnetic calorimeter ($E_{\text{trig}} > 68 \text{ GeV}$)
- Minimum energy of $\pi^0 \rightarrow$ maximum scattering angle of π^- in Gottfried-Jackson frame

