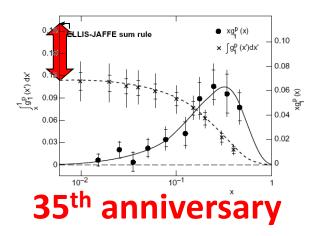


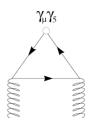
COMPASS Legacy

Longitudinal spin structure and gluon polarisation


G.K. Mallot

Historical excursion

• 1987: EMC nucleon spin puzzle



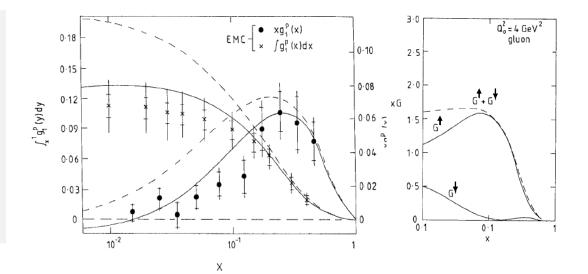
$$\Delta \Sigma = \Delta u + \Delta d + \Delta s = 0.12 \pm 0.17$$
$$\Delta s = -0.19 \pm 0.06$$

$$\Gamma_1 = \int_0^1 \frac{g_1(x) \mathrm{d}x}{x}$$

- 1988/9: axial anomaly may mask quark polarisation
 - Altarelli, Ross; Efremov, Teryaev

$$a_0 = \Delta \Sigma - n_f \frac{\alpha_s}{2\pi} \Delta G$$

Lepton-Photon Stanford 1989


To summarise, let us return to the fit of Fig. 7 and 8. At $Q^2=10GeV^2$ this corresponds to $\Delta g=6.3$ and so the proton helicity is given by

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_Z$$

= 0.35 + 6.3 - 6.15

G.G. Ross 1989

Need huge $\Delta G \approx 6$ for $\Delta \Sigma = 0.7$

 \rightarrow measure ΔG

Historical excursion

• 1993: SMC measures deuteron *g*₁

in agreement with Bjorken sum rule

$$\Gamma_1^{\mathsf{p}} - \Gamma_1^{\mathsf{n}} = \frac{1}{6}g_a$$

- 1995: with new SMC and SLAC g_1 data about $\Delta G \simeq 2.5$ needed to restore parton model value $\Delta \Sigma \simeq 0.7$ via axial anomaly
- 1995: HMC and Cheops Lol's
 - Gluon and quark polarisations, transversity
 - Spectroscopy, pion polarisability

HMC & CHEOPS Lol's

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/SPSLC 95-27 SPSC/I 204 March 28, 1995

Letter of Intent

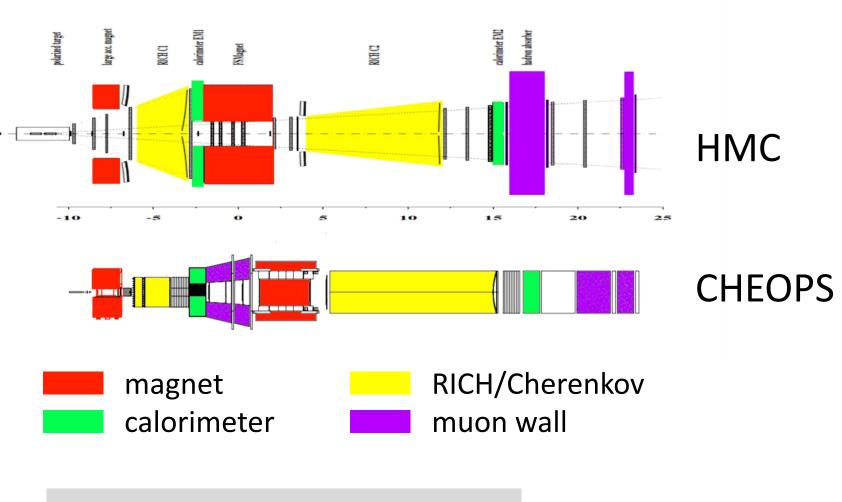
SEMI-INCLUSIVE MUON SCATTERING FROM A POLARISED TARGET

'Hadron Muon Collaboration'

28 March 1995

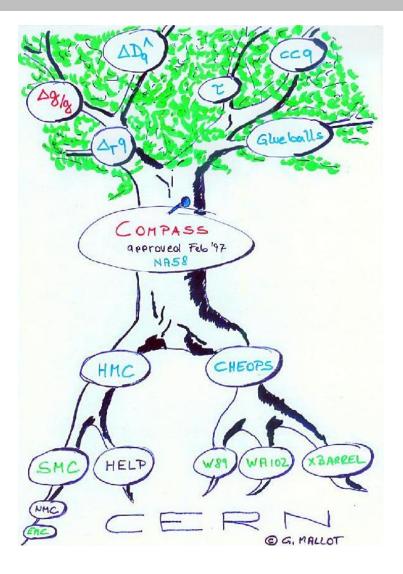
- Independent Lol's
- Both require new spectrometer
- Both propose to use same experimental hall

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH


CERN/SPSLC 95-22 SPSLC/I202 March 28, 1995

 \mathbf{LoI}

CHEOPS


CHarm Experiment with Omni-Purpose Setup

Spectrometers

SPSLC, June 1995: join forces!

COMPASS Proposal

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/SPSLC 96-14 SPSC/P 297 March 1, 1996

PROPOSAL

Common Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS Collaboration

Abstract

We propose to study hadron structure and hadron spectroscopy with high-rate hadron and muon beams and a new spectrometer to be built at the CERN SPS. The experiment can start up in 1999 and a program of physics measurements for an initial period of 5 more years is planned.

Approval Feb 1997

COMPASS

CERN/DG/Research Board 97-252 Minutes 130 14 February, 1997

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN European organization for nuclear research

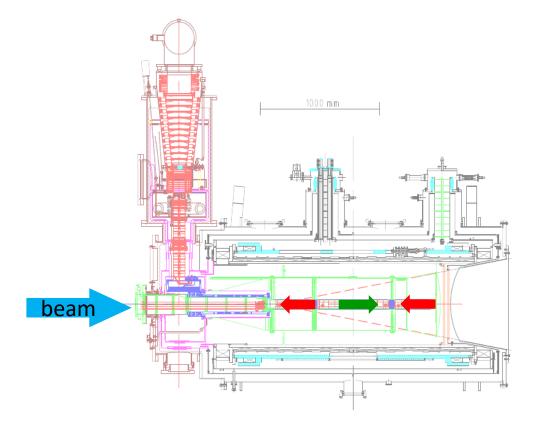
The Research Board then discussed the COMPASS proposal. The physics programme was recognised to be of topical interest. The re-design of the spectrometer in order to cope with the available funds was appreciated. In conclusion the Research Board **approved** the experiment under the conditions spelled out by the SPSC and subject to the availability of funds. Its code number will be **NA58**.

EHN2

COMPASS Spectrometer

NIM A577 (2007) 455

 $\mu \text{ beam}$


- 160 200 GeV, ~ 80% pol.
- 2 10⁸/spill

Two stages

2 magnets

- tracking
- particle ID

Polarised target

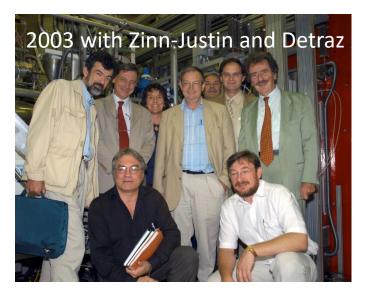
• 2.5 T solenoid, 0.6 T dipole

COMPASS

- ~ 50 mK
- 2 or 3 oppositely pol. cells
- pol. reversal by rotation of magnet field
- ⁶LiD ~ 50%
- NH₃ ~ 85%

New large acceptance COMPASS magnet in 2005 Repaired and instrumented at Saclay

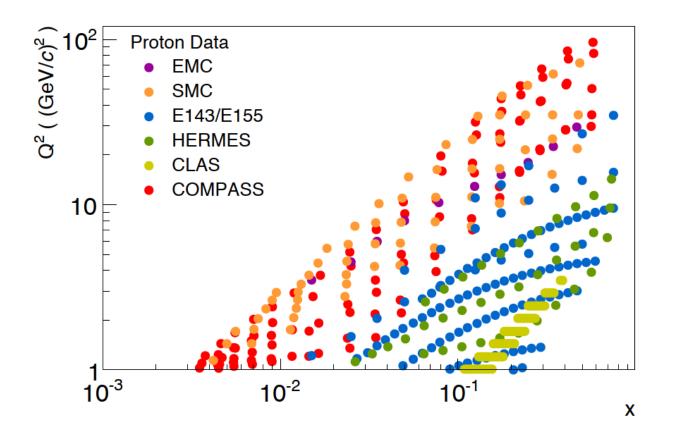
COMPASS magnet at Saclay



Alain Magnon, J. Ball, C. Marchand, JY Rousse, ...

Alain Magnon (1944 – 2022)

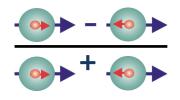
Alain Magnon (1944 – 2022)



20. A Charpak

2017

Kinematic coverage



Lowest x data from COMPASS and SMC

Reminder

Measured asymmetry A_{exp} yields the virtual photon asymmetry

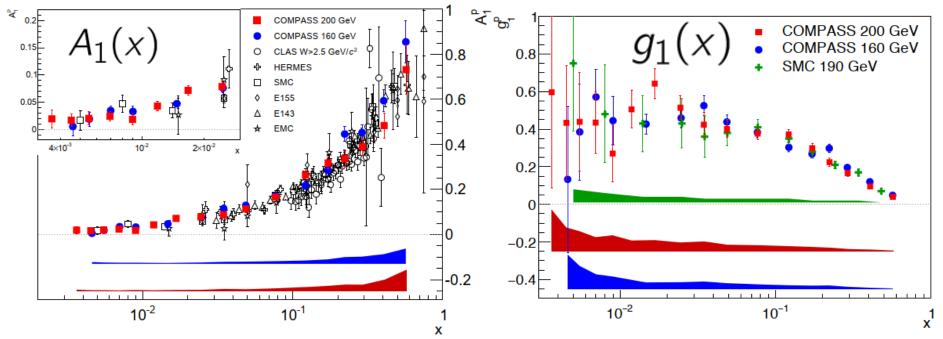
$$A_1 \simeq rac{A_{exp}}{f P_\mu P_T D}$$

- dilution factor
- polarisations

f :

Р:

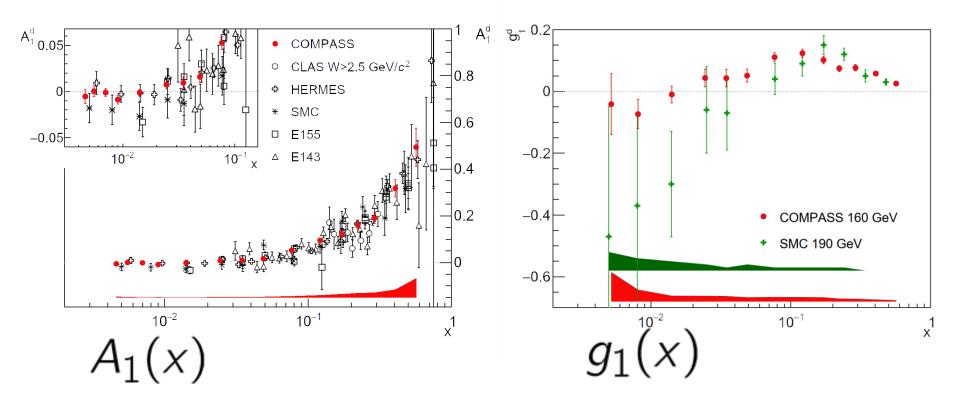
D:


depolarisation factor

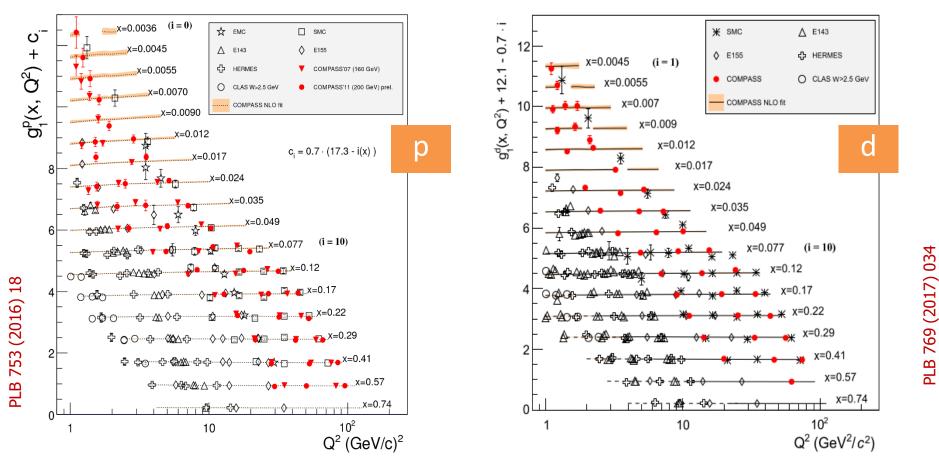
and the structure function g_1 via

$$A_{1}(x,Q^{2}) = \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2})} = \frac{g_{1}(x,Q^{2})}{F_{1}(x,Q^{2})}$$

Proton A_1 and g_1


PLB 753 (2016) 18

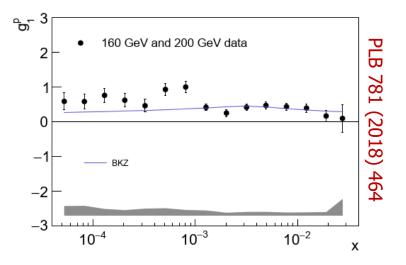
- COMPASS contributes the lowest x and highest Q^2 data
- A₁ is still positive at lowest x (Q² > 1 GeV²)


Deuteron for A_1 and g_1

PLB 769 (2017) 34

- COMPASS contributes the lowest x and highest Q^2 data
- A_1 , g_1 are compatible with zero at lowest x (*c.f.* SMC)

Proton and deuteron $g_1(x,Q^2)$

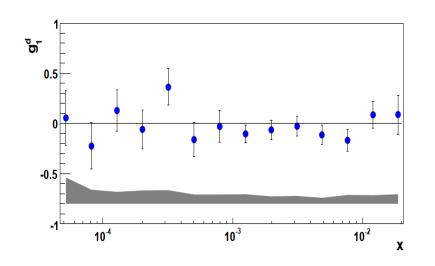


Curve: Compass QCD fit to world data

 $W^2 > 10 \, {\rm GeV}^2$

g_1 for small x ($Q^2 < 1 \text{ GeV}^2$)

proton



- 0.006 < Q^2 < 1 (GeV/c)² 4·10⁻⁵ < x < 4·10⁻²
- Spin effects are present even below x < 10⁻³

Curve: phenom. Model by B.Badełek, J. Kwiecinski, B. Ziaja Eur. Phys. J. C 26 (2002) 45 deuteron

COMPASS

PLB 647 (2007) 330

- $0.006 < Q^2 < 1 (GeV/c)^2$ $4 \cdot 10^{-5} < x < 2 \cdot 10^{-2}$
- Compatible with zero

Bjorken sum rule

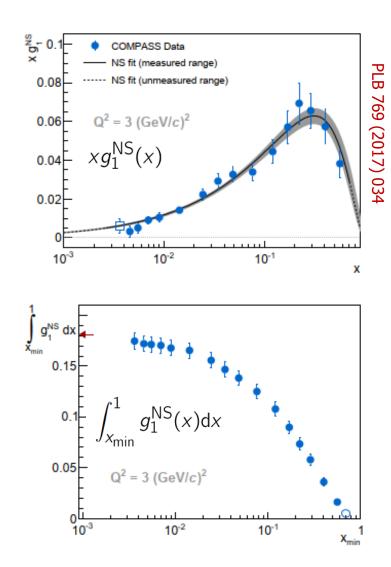
• First moment of g_1

$$\Gamma_1 = \int_0^1 g_1(x) \mathrm{d}x$$

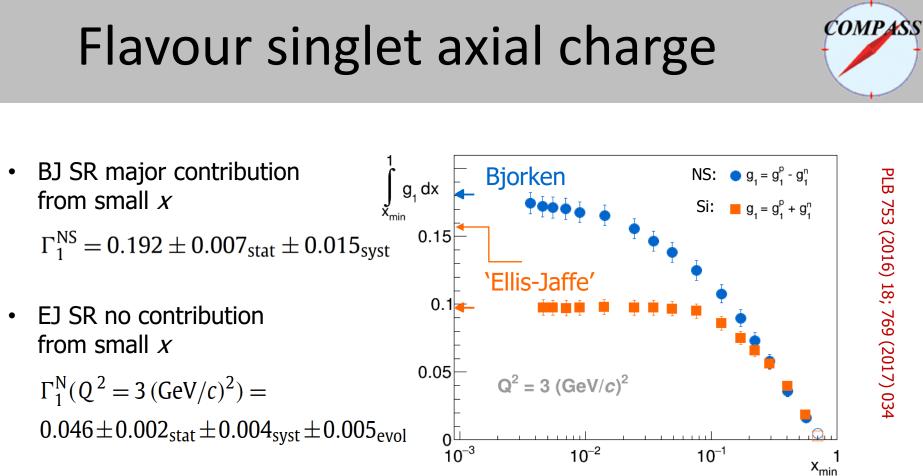
Non-singlet structure function

$$g_1^{\mathsf{NS}} = g_1^{\mathsf{p}} - g_1^{\mathsf{n}}$$

• Bjorken sum rule

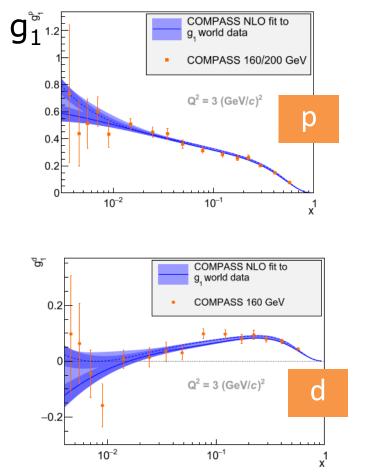

$$\Gamma_1^{\rm NS} = \frac{1}{6} (\Delta u - \Delta d) = \frac{1}{6} \left| \frac{g_A}{g_V} \right|$$

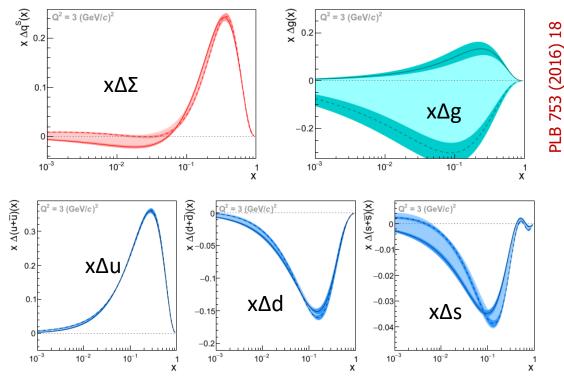
• COMPASS Γ_1^{NS} corresponds to


$$\left|\frac{g_A}{g_V}\right| = 1.29 \pm 0.05_{\text{stat.}} \pm 0.10_{\text{syst.}}$$

• *c.f.* PDG 2022: 1.2754 ± 0.0013

BJ sum rule tested at 9% level

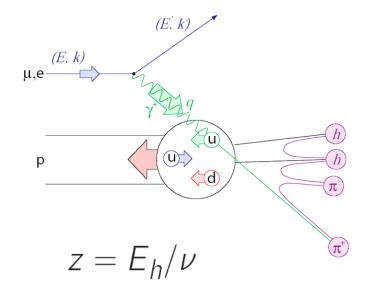

COMP_{ASS}



• From deuteron (Γ_1^N) and SU₃:

$$a_o \stackrel{\overline{\text{MS}}}{=} \Delta \Sigma = 0.32 \pm 0.02_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.05_{\text{evol}}$$
 at 3 GeV²

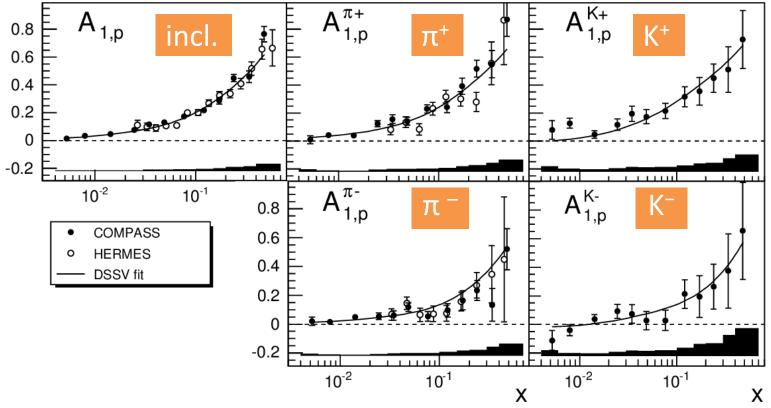
QCD fit to world data


- NLO to world DIS data (2016/18)
- Gluon polarisation hardly constrained, a positive and a negative solution

 $\Delta G \in [-1.6, 0.5]$ at 3 GeV²

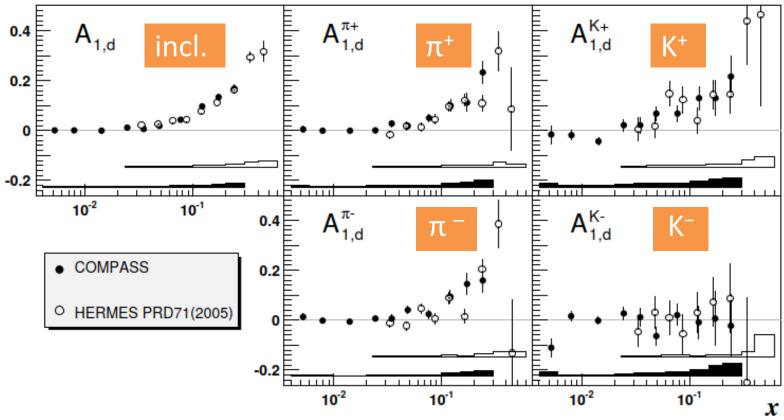
Semi-inclusive DIS results

Additional hadron observed in FS

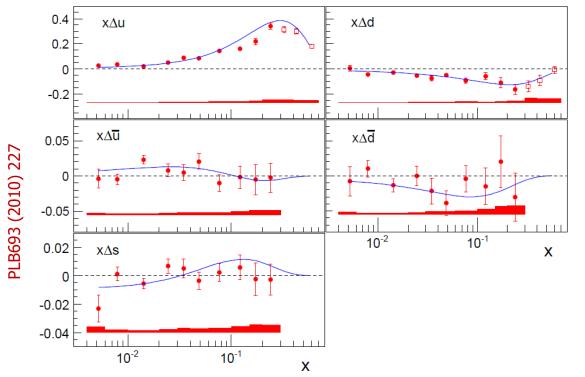

$$A_{1}^{h} = \frac{\sum_{q} e_{q}^{2} g_{1}^{q}(x, Q^{2}) D_{1q}^{h}(z, Q^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x, Q^{2}) D_{1q}^{h}(z, Q^{2})}$$

gives access to flavour information via the fragmentation functions D_{1q}

Proton: Incl. & semi-incl. A₁


Compass and Hermes data for proton

First kaon data

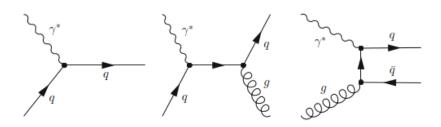

Deuteron: Incl. & semi-incl. A_1

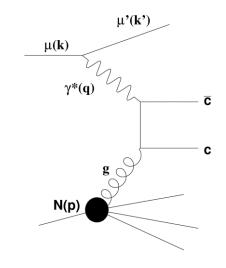
Compass and Hermes data for deuteron

First kaon data

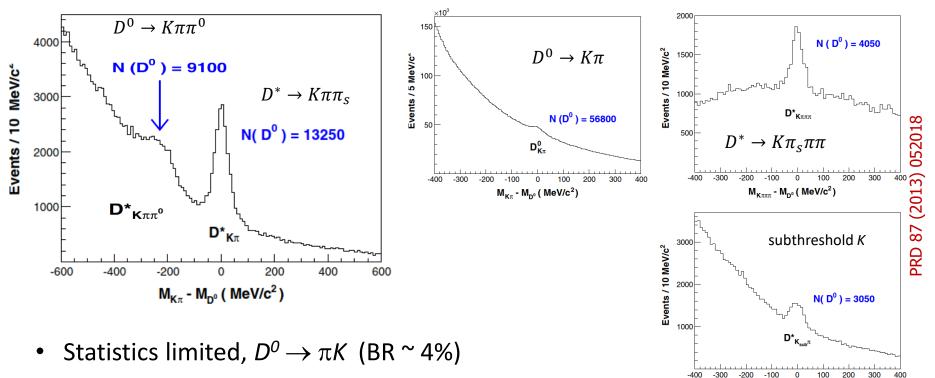
Polarisation by flavour

LO analysis of 5p+5d asymmetries, DSS FF Line: NLO DSSV not including these data


5-flavour fit, assuming $\Delta s = \Delta \overline{s}$


Δu	$0.71 \pm 0.02 \pm 0.03$
∆d	$-0.34 \pm 0.04 \pm 0.03$
$\Delta \bar{u}$	$0.02 \pm 0.02 \pm 0.01$
∆ā	$-0.05 \pm 0.03 \pm 0.02$
$\Delta S(\Delta \bar{S})$	$-0.01\pm0.01\pm0.01$
$\Delta u_{\rm v}$	$0.68 \pm 0.03 \pm 0.03$
Δd_{v}	$-0.29 \pm 0.06 \pm 0.03$
$\Delta \Sigma$	$0.32 \pm 0.03 \pm 0.03$

'direct' Δg measurements


 Δg assessable via photon-gluon fusion (PGF)

- Measure double-spin asymmetry
 - Open charm production (D mesons),
 PGF is only process in LO
 scale set by charm quark mass
 - Single hadrons or hadron pairs contributions from LP, QCD-C, PGF

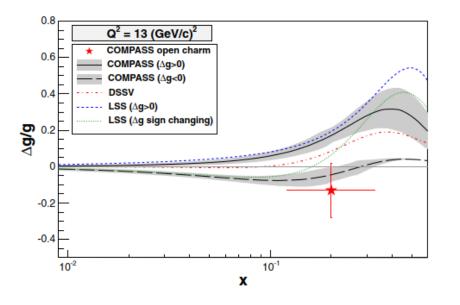
Open charm: D meson samples

COMPASS

 $M_{K_{sub}\pi} - M_{n^0} (MeV/c^2)$

- Large combinatorial background
- drastically reduced in $D^* \rightarrow D^0 \pi_s \rightarrow K \pi \pi_s$ with detected slow π_s
- Background checked using wrong sign charge combinations

Open charm: $\langle \Delta g/g \rangle$

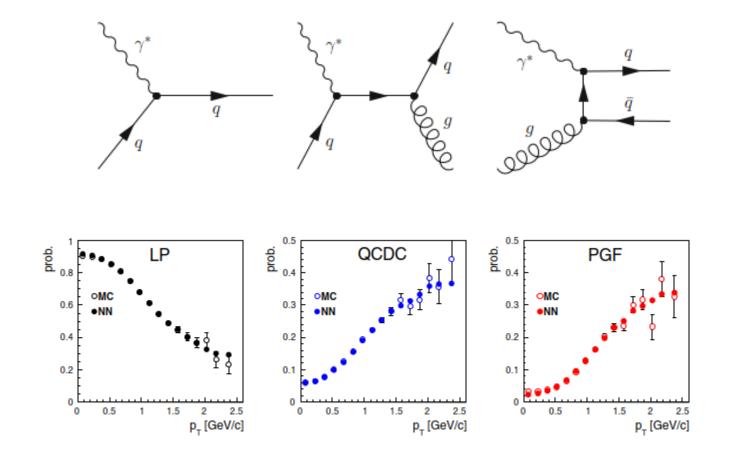


$$A^{\mu N} = DA^{\gamma N} = a_{LL} \frac{\Delta g}{g}$$
Leading order:
$$\left\langle \frac{\Delta g}{g} \right\rangle = -0.06 \pm 0.21 (\text{stat.}) \pm 0.08 (\text{syst.})$$

$$0.06 < x < 0.22; \langle x \rangle \approx 0.11$$

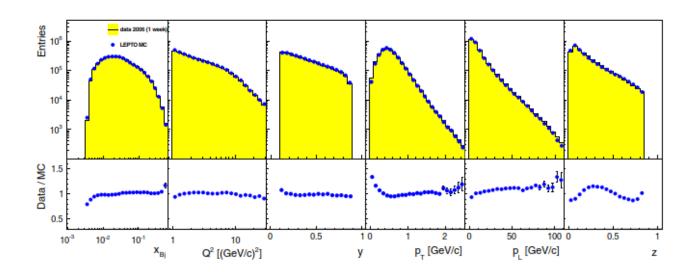
• NLO: a_{LL} in NLO using Aroma generator and parton shower

$$\left< \frac{\Delta g}{g} \right>^{\text{NLO}} = -0.13 \pm 0.15 \text{(stat.)} \pm 0.15 \text{(syst.)}_{0.12 < x < 0.33; \langle x \rangle \approx 0.20}$$



Agrees with NLO fit with negative ΔG

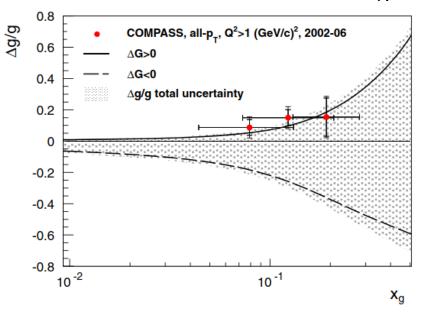
Large positive ΔG less likely


All- p_{T} hadrons method $\langle \Delta g/g \rangle$

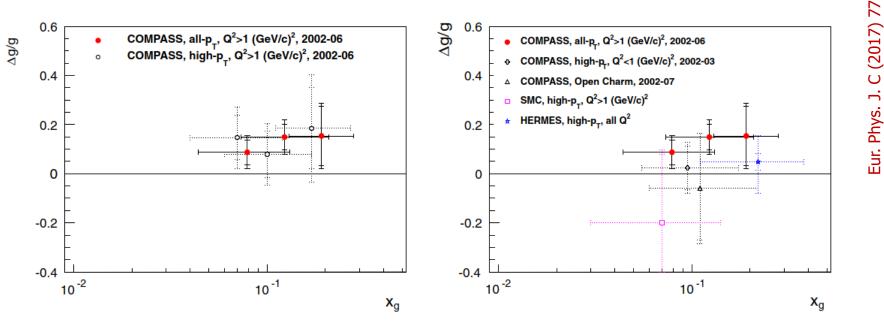
• Contributions in leading order (gluon)

All- p_{T} hadrons method

- $0.05 < p_{\rm T} < 2.5 \ {
 m GeV}; \ Q^2 > 1 \ {
 m GeV}^2$
- Determine contribution and analysing power for the three processes by a NN trained on MC data.
- MC agrees well with measured kinematic distributions



All- p_{T} hadrons method


$$\langle \Delta g/g \rangle = 0.113 \pm 0.038_{(\text{stat.})} \pm 0.036_{(\text{syst.})}$$

 $\langle x \rangle \approx 0.10, \quad \langle Q^2 \rangle = 3 \text{ GeV}^2$

• Statistics allows splitting in three x_q bins

Eur. Phys. J. C (2017) 77

Summary of Δg

- All- $p_{\rm T}$ agrees well with previous less precise result from high- $p_{\rm T}$ data
- Compatible with result from open charm
- Large ΔG ruled out

Conclusion

- COMPASS
- Compass united several physics communities since decades, a real success story and highly on-trivial.
- Rewarded by great physics outputs, incl. longitudinal spin structure data 2002-2011.
- Proposal precision for $\langle \Delta g/g \rangle$ of 0.11 in open charm almost reached despite many difficulties.
- Precision from all- p_{T} even much better, about 0.04.
- COMPASS was the first to rule out a large gluon polarisation in the nucleon! Certainly not 6 (after EMC) nor 2.5 (after SMC, Slac).
- Today we have new, more complicated view on nucleon spin being shared between orbital angular momentum and quark and gluon spins.
- Precise test of Bjorken sum rule
- Quark polarisations Δq

Thanks for your attention