A 3D OVERVIEW OF THE LAST 20 YEARS

Alessandro Bacchetta

MY PERSONAL PARTICIPATION TO IWHSS WORKSHOPS

- IWHSS 2010 (Venice)
 The TMD frontier
- IWHSS 2011 (Paris) Transverse momentum distributions - theory overview
- IWHSS 2012 (Lisbon)
 Overview of transversity
- IWHSS 2015 (Suzdal) Progress in understanding the transverse structure of the nucleon
- IWHSS 2020 (Trieste, remote)
 The 3D nucleon structure
- IWHSS 2022 (here)
 A 3D overview of the last 20 years

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

20 years later, we can show pictures like this

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

20 years later, we can show pictures like this

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

A picture of a black hole (2019)

A picture of a black hole (2019)

A picture of a proton (2020)

TOP FIVE HIGHLY CITED COMPASS PUBLICATIONS

SPIRE	1	iterature V collaboration:COMPA	SS					
		Literature	Author	rs Jobs	Seminars	Conferences	More	
Date of paper		596 results 📑 cite all				(Most Cited	×
a di ka	6	The COMPASS experiment COMPASS Collaboration • P. Abb Published in: Nucl.Instrum.Meth	on (SPhN, DAPN			3	#	#1
		යි pdf ළි links ලි DOI	⊡ cite				304 citation	ns
1987	2022	First measurement of the t scattering	ransverse spi	n asymmetries of	the deuteron in s	semi-inclusive deep	inelastic +	#2
Number of authors		COMPASS Collaboration - V.Yu. A	lexakhin (Dubna	JINR) et al. (Feb, 200	05)			
Single author	492	Published in: Phys.Rev.Lett. 94 (2						
10 authors or less	514	🖹 pdł 🥏 links 🥏 DOI	⊡ cite [datasets			⊕ 410 citation	ns
Exclude RPP		The Deuteron Spin-depend COMPASS Collaboration - V.Yu. A				ent	\$	#3
Exclude Review of Particle Physics	596	Published in: Phys.Lett.B 647 (20	07) 8-17 - c-Pri	int: hep-ex/0609038 [hep-ex]			
		යි pdf	⊡ cite	datasets			3 408 citation	ns
Document Type		Collins and Sivers asymme	tries for pions	s and kaons in mu	on-deuteron DIS	1	4	#4
conference paper	505	COMPASS Collaboration • M. Ale						
published (2)	114	Published in: Phys.Lett.B 673 (20	009) 127-135 · e	e-Print: 0802.2160 [he	ep-ex]			
article	92	🖹 pdf 🕜 links 🖉 DOI	⊡ cite [datasets			⊖ 346 citation	ns
review	7							4.5
Author		A New measurement of the COMPASS Collaboration • E.S. Ad	neev et al. (Sep,	2006)		ely polarised deute	ron target 7	#6
Andrea Bressan	84	Published in: Nucl.Phys.B765 (2			(nep-ex)			
Boris Grube	81	🖹 pdf 🤗 links 🔗 DOI	⊡ cite	datasets			339 citation	ns
Marcin Stolarski	81	Measurement of the Collin	s and Sivers a	symmetries on tra	ansverselv polar	ised protons	#	#6

TOP FIVE HIGHLY CITED COMPASS PUBLICATIONS

SPIRE • HEP	lit	literature V collaboration:COMPASS						
		Literature	Authors	Jobs	Seminars	Conferences	More	
Date of paper		596 results 📄 cite all				a	Most Ciled V	
a de la compañía de l	6	The COMPASS experiment COMPASS Collaboration • P. Abb Published in: Nucl.Instrum.Meth.J	on (SPhN, DAPNIA, Sac			3	#1	
		🖹 pdf 🕜 links එ DOI	⊡ cite				304 citations	
1987	2022	First measurement of the to scattering	ransverse spin asy	mmetries of	the deuteron in s	semi-inclusive deep ir	nelastic #2	
Number of authors		COMPASS Collaboration - V.Yu. A	lexakhin (Dubna, JINR)	et aL (Feb, 200	5)			
Single author	492	Published in: Phys.Rev.Lett. 94 (2	2005) 202002 • e-Print	: hep-ex/05030	02 [hep-ex]			
10 authors or less	514	🖹 pdf 🥏 links 🖉 DOI	🖃 cite 目 data	asets			3 410 citations	
Exclude RPP		The Deuteron Spin-depend COMPASS Collaboration - V.Yu. A				ent	#3	
Exclude Review of Particle Physics	596	Published in: <i>Phys.Lett.B</i> 647 (20 집 pdf <i>양</i> links 양 DOI	007) 8-17 - e-Print: hep		rep-ex]		3 408 citations	
Document Type								
conference paper	505	Collins and Sivers asymme			on-deuteron DIS	;	#4	
published (2)	114	COMPASS Collaboration • M. Ale Published in: <i>Phys.Lett.B</i> 673 (20			o-ex]			
article	92		-	-	in ev]			
review	7	ළී pdf 🕜 links යි DOI	😑 cite 🗎 data	isets			346 citations	
		A New measurement of the	e Collins and Sivers	asymmetrie	s on a transvers	ely polarised deuteror	n target #5	
Author		COMPASS Collaboration - E.S. Ad						
Andrea Bressan	84	Published in: Nucl.Phys.B 765 (2)			[hep-ex]			
Boris Grube	31	🖹 pdf 🕜 links 🖉 DOI	😑 cite 目 data	asets			339 citations	
Marcin Stolarski	81	Measurement of the Collins	s and Sivers asymp	netries on tra	insverselv polar	ised protons	#6	
		wedsurement of the comm	s and sivers dayrin		naversely pold			

Old Chinese compass

Exploration

Hand-held compass

Consolidation

Exploration

Exploration

Consolidation

Exploration

Consolidation

Precision

first measurements

Consolidation

Precision

first measurements

Consolidation TMD factorization

many consistent measurements
Precision

first measurements

Consolidation TMD factorization

many consistent measurements

Precision
 full-fledged global analysis

precision measurements

first measurements

Consolidation TMD factorization

many consistent measurements

Precision

full-fledged global analysis

precision measurements

first measurements

Consolidation TMD factorization

2012

2002

many consistent measurements
 Precision

 full-fledged global analysis

precision measurements

first measurements

Consolidation TMD factorization

many consistent measurements
 Precision

 full-fledged global analysis

precision measurements

from IWHSS 2011

2002

2012

Old Chinese compass

Exploration

2002: TRANSVERSITY AND SIVERS FUNCTION

Alessandro Bacchetta

in deep inelastic lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-In deep inerastic reproto-proton scattering at reading twist in perturbative QCD, i.e., the researching concernors are not power-law suppressed at large photon virtuality Q^2 at fixed x_{bj} . The existence of such single-spin asymmetries requires a phase iaw suppressed at large photon virtuality Q at line Abj. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with $J_p^z = \pm 1/2$ to the same final-state, the same amplitudes difference between two amplitudes coupling the proton target with $J_p^z = \pm 1/2$ to the same final-state, the same amplitudes difference between two amplitudes coupling the proton target with $J_p^z = \pm 1/2$ to the same final-state, the same amplitudes difference between two amplitudes coupling the proton target with $J_p^z = \pm 1/2$ to the same final-state, the same amplitudes difference between two amplitudes coupling the proton target with $J_p^z = \pm 1/2$. which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles which are necessary to produce a nonzero proton anomatous magnetic moment, we show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angula L^{2} of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry

2002: TMD UNIVERSALITY

Nontrivial gauge link structure induces surprising behaviors

2002: TMD UNIVERSALITY

Nontrivial gauge link structure induces surprising behaviors

Sivers function SIDIS = - Sivers function Drell-Yan

Collins, PLB 536 (O2)

66 [The experimental check of the change of sign] would **Crucially test the factorization approach** to the description of processes sensitive to transverse parton momenta. **66** [The experimental check of the change of sign] would **Crucially test the factorization approach** to the description of processes sensitive to transverse parton momenta.

Efremov, Goeke, Menzel, Metz, Schweitzer, PLB 612 (05)

•• It is a remarkable and fundamental QCD prediction that really tests all concepts we know of for analyzing hardscattering reactions in strong interactions, and it awaits experimental verification. **W** It is a remarkable and fundamental **QCD** prediction that really tests all concepts we know of for analyzing hard-scattering reactions in strong interactions, and it awaits experimental verification.

Bomhof, Mulders, Vogelsang, Yuan, PRD 75 (07)

Its experimental verification would be crucial to confirm the validity of our present conceptual framework for analyzing hard hadronic reactions. Its experimental verification would be crucial to confirm the validity of our present conceptual framework for analyzing hard hadronic reactions.

A.B., Bomhof, D'Alesio, Mulders, Murgia, PRL 99 (07)

2005: PIONEERING MEASUREMENTS

2005: PIONEERING MEASUREMENTS

2005: PIONEERING MEASUREMENTS

2005: PIONEERING EXTRACTIONS OF THE SIVERS FUNCTION

Anselmino, Boglione, Collins, D'Alesio, Efremov, Goeke, Kotzinian, Menzel, Metz, Murgia, Prokudin, Schweitzer, Vogelsang, Yuan, hep-ph/0511017

2006: FULL SIDIS ANALYSIS

 $\ell(l) + N(P) \to \ell(l') + h(P_h) + X,$

Bacchetta et al., hep-ph/0611265

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} \\ &= \frac{\alpha^{2}}{x\,y\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \right. \\ &+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\ &+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\ &+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ &+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})}\right] \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right] \bigg\}$$

$$\begin{aligned} & \left[\begin{array}{c} & \int d\sigma \\ dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2 \\ & = \frac{\alpha^2}{x \, y \, Q^2} \, \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos (2\phi_h) \, F_{UU}^{\cos 2\phi_h} \\ & + \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin (2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ & + S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ & + S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \\ & + \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ & + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \\ & + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

$$\begin{aligned} & \left[\begin{array}{c} & \int_{dx} dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2 \\ & = \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos (2\phi_h) \, F_{UU}^{\cos 2\phi_h} \\ & + \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin (2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ & + S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ & + S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ & + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin (2\phi_h - \phi_S) + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ & + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin (2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \\ & + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos (2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right] \end{aligned}$$

$$\begin{aligned} & \int_{dx} \frac{d\sigma}{dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} & \int_{dx} \frac{f_1 \otimes D_1}{\int_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h}} \\ & + \lambda_e \, \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h}} \right] \\ & + S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h \, F_{LL}^{\cos \phi_h}} \right] \\ & + S_T \left[\sin(\phi_h - \phi_S) \, \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + F_{T,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \right] \\ & + \varepsilon \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ & + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ & + S_T \left[\sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ & + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \\ & + \int \left[\int_{U_T}^{\cos(2\phi_h - \phi_S)} \int_{U_T}^{\cos(2\phi_h$$

Twist-2 TMDs

TMDs in black survive integration over transverse momentumTMDs in red are time-reversal oddMulders-Tangerman, NPB 461 (96)Boer-Mulders, PRD 57 (98)

Twist-2 TMDs

TMDs in black survive integration over transverse momentumTMDs in red are time-reversal oddMulders-Tangerman, NPB 461 (96)Boer-Mulders, PRD 57 (98)

 TMDs in black survive integration over transverse momentum

 TMDs in red are time-reversal odd
 Mulders-Tangerman, NPB 461 (96)

 Boer-Mulders, PRD 57 (98)

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

On top of these, there are twist-3 functions

Helicity

(big brother)

Transversity (little brother)

2008 Torino's transversity

2008 Torino's transversity

The dihadron way to transversity has opened

Bacchetta, Courtoy, Radici, PRL 107 (2011)

Hand-held compass

Consolidation

NEW COLLINS AND SIVERS DATA

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} & \text{see, e.g., arXiv:1401.6284, arXiv:1609.06062} \\ &= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right. \\ &+ \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ &+ \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} & \text{see, e.g., arXiv:1401.6284, arXiv:1609.06062} \\ &= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right. \\ &+ \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ &+ \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{h\perp}^2} & \text{see, e.g., arXiv:1401.6284, arXiv:1609.06062} \\ = \frac{\alpha^2}{x\,y\,Q^2} \frac{y^2}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} \\ + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} + S_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \\ + S_L\,\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ + S_T\left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} \\ + \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} \\ + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + S_T\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \\ + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S)\,F_{LT}^{\cos(2\phi_h - \phi_S)}\right]\right\} \end{aligned}$$

28

.

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} & \qquad \text{see, e.g., arXiv:1401.6284, arXiv:1609.06062} \\ &= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right. \\ &+ \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \right. \\ &+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ &+ \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \right. \\ &+ \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}$$

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} & \qquad \text{see, e.g., arXiv:1401.6284, arXiv:1609.06062} \\ &= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \\ &+ \lambda_e \, \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ &+ \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \\ &+ \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} + \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

.

$$\frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2}$$

$$= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \, \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right.$$

$$+ \lambda_e \, \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right]$$

$$+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon(1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right]$$

$$+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \right]$$

$$+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S}$$

$$+ \sqrt{2 \, \varepsilon(1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \right]$$

.

$$\frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h,L}^2} = \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \varepsilon (1+\varepsilon)} \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} + \lambda_e \, \sqrt{2 \varepsilon (1-\varepsilon)} \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2 \varepsilon (1+\varepsilon)} \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] + S_L \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \varepsilon (1-\varepsilon)} \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] + S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + Not all have been published yet + \varepsilon \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2 \varepsilon (1+\varepsilon)} \sin \phi_S \, F_{UT}^{\sin \phi_S} + \sqrt{2 \varepsilon (1+\varepsilon)} \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2 \varepsilon (1-\varepsilon)} \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}$$

Much more "fun" with TMDS...

Much more "fun" with TMBS...

Generalized universality gauge links Soft factors nondiagonal evolution twist-3

> factorization breaking

Much more "fun" with TMBS...

Generalized universality gauge links Soft factors nondiagonal evolution twist-3

factorization breaking

TMD STRUCTURE

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1 NP}(x, b_{T}^{2}; \zeta_{f}, Q_{0})$$

see, e.g., Ji, Ma, Yuan, PRD 71 (05) Collins, "Foundations of Perturbative QCD" (11) Rogers, Aybat, PRD 83 (11) Echevarria, Idilbi, Scimemi JHEP 1207 (12)

TMD STRUCTURE

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1 NP}(x, b_{T}^{2}; \zeta_{f}, Q_{0})$$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_*}$$

see, e.g., Ji, Ma, Yuan, PRD 71 (05) Collins, "Foundations of Perturbative QCD" (11) Rogers, Aybat, PRD 83 (11) Echevarria, Idilbi, Scimemi JHEP 1207 (12)

TMD STRUCTURE

$$\hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|; \mu, \zeta) = \int d^{2}\mathbf{k}_{\perp} e^{i\mathbf{b}_{T} \cdot \mathbf{k}_{\perp}} f_{1}^{a}(x, \mathbf{k}_{\perp}^{2}; \mu, \zeta)$$

$$perturbative Sudakov form factor$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} (\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\sqrt{\zeta_{f}}}) \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1NP}(x, b_{T}^{2}; \zeta_{f}, Q_{0})$$

$$\mu_{b} = \frac{2e^{-\gamma_{E}}}{b_{*}} \quad \text{collinear PDF} \quad \text{Collins-Soper kernel} \\ \text{(perturbative)} \quad \text{nonperturbative part of TMD}$$

see, e.g., Ji, Ma, Yuan, PRD 71 (05) Collins, "Foundations of Perturbative QCD" (11) Rogers, Aybat, PRD 83 (11) Echevarria, Idilbi, Scimemi JHEP 1207 (12)

TMD FITS OF UNPOLARIZED DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	parton model	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	parton model	✓ (separately)	✓ (separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NNLL	×	×	~	~	223
EIKV 2014 arXiv:1401.5078	NLL	1 (x,Q ²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLL'	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	NLL	✓	~	~	~	8059
SV 2017 arXiv:1706.01473	NNLL'	×	×	~	~	309
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	~	457
SV 2019 arXiv:1912.06532	N ³ LL ⁻	~	~	~	~	1039
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	~	~	353
MAP22 arXiv:2206.07598	N ³ LL ⁻	~	~	~	~	2031

.

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

EXAMPLE OF AGREEMENT WITH DATA

RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

The MAP22 cut is already considered to ge "generous", but the physics seems to be the same for a much wider $P_{\rm T}$

"CONSOLIDATED" SIVERS FUNCTION FITS

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 Echevarria, Kang, Terry, arXiv:2009.10710 *Bury, Prokudin, Vladimirov, arXiv:2103.03270*

SIVERS SIGN CHANGE

Sivers function SIDIS = - Sivers function Drell-Yan Collins, PLB 536 (02)

SIVERS SIGN CHANGE

SIVERS SIGN CHANGE

Agreement with sign change of Sivers function (but the significance is still low)

"CONSOLIDATED" TRANSVERSITY FITS

"CONSOLIDATED" TRANSVERSITY FITS

TENSOR CHARGE AND COMPARISON WITH LATTICE QCD

Tensor charge

$$\delta q \equiv g_T^q = \int_0^1 dx \ \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

- ★ Alexandrou et al., arXiv:1703.08788
- Gupta et al., arXiv:1806.09006
- Anselmino et al., arXiv:1303.3822
- Kang et al., arXiv:1505.05589
- Lin et al., arXiv:1710.09858
- Radici et al., arXiv:1802.05212

► Proton multiplicities

- ► Proton multiplicities
- ► Transversely polarized deuteron data

- ► Proton multiplicities
- Transversely polarized deuteron data
- ► Pion DY unpolarized cross section

- ► Proton multiplicities
- Transversely polarized deuteron data
- ► Pion DY unpolarized cross section
- All structure functions for proton and deuteron, with identified hadrons and multidimensional binning

WHAT ARE THE BIG OPEN ISSUES?

.

.

. . . .

WHAT ARE THE BIG OPEN ISSUES?

 Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
- ► Can we compare the phenomenology to lattice QCD?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
- ► Can we compare the phenomenology to lattice QCD?
- ► Can we look for physics beyond the Standard Model?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
- ► Can we compare the phenomenology to lattice QCD?
- ► Can we look for physics beyond the Standard Model?
- ► How do we use the knowledge of the structure of the proton?

COMPASS

COMPASS pioneered the study of the 3D structure of the nucleon and is the main actor in the consolidation phase