# A 3D OVERVIEW OF THE LAST 20 YEARS 

## Alessandro Bacchetta



## MY PERSONAL PARTICIPATION TO IWHSS WORKSHOPS

- IWHSS 2010 (Venice)

The TMD frontier
> IWHSS 2011 (Paris)
Transverse momentum distributions - theory overview
> IWHSS 2012 (Lisbon)
Overview of transversity

- IWHSS 2015 (Suzdal)

Progress in understanding the transverse structure of the nucleon
> IWHSS 2020 (Trieste, remote)
The 3D nucleon structure
> IWHSS 2022 (here)
A 3D overview of the last 20 years

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

20 years later, we can show pictures like this





Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

In 2002, almost no data about the 3D structure of the proton (in momentum space) was available.

20 years later, we can show pictures like this


A picture of a black hole (2019)

A picture of a black hole (2019)
A picture of a proton (2020)

## TOP FIVE HIGHLY CITED COMPASS PUBLICATIONS



596 results｜$\quad$ cite al
The COMPASS experiment at CERN
COMPASS Collaboration • P．Abbon（SフาN，DAN A，Saclay）et al．（．lan，2007）
Published in：Nuctinstrum．Meth．A 577 （20J7）455－518 • e－Prirt：hep－exj0703049［hep－ex］

First measurement of the transverse spin asymmetries of the deuteron in semi－inclusive deep inelastic $\quad A 2$ scattering
COMPASS Collaboration－V．Yu．Alexakhin（Dubna，JINR）et aL（Feb，2055）
Published in：Fhys．RevLert． 94 （2005）202002 • e－Print：hep－ex／0503002［hep－ex］
（1）pdf
＊）links
$\stackrel{\square}{\circ} \mathrm{OOI}$
E citedatasets
$\geqslant 410$ citations

The Deuteron Spin－dependent Structure Function g 1 （d）and its First Moment
COMPASS Collaboration－V．Yu．Alexakhin（Dubna，JINR）et aL（Sep，2008）
Published in：Fhys．Lett：E 647 ［2007）\＆－17－e－Print：hep－ex／0609038［hep－ex］
［ pdf links
e DOI
E citedatasets
〇 403 citations

Collins and Sivers asymmetries for pions and kaons in muon－deuteron DIS
COMPASS Collaboration • M．Alekseev（Turin U．）et al．（Feb，2008）
Published in：Fhys．Lett：E 673 ［2008）127－135－e－P－int： 0802.2160 ［heo－ex］
B pdf 0 links © DOI E cite 目 datasets 345 citations
A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target $\quad \pi 6$
COMPASS Collaboration－E．S．Ageev et al．（Sep，2006）
Published in：Nuct．Phys． 8765 （2007）31－70 • e－Prirt：hep－ex／0610088［hep－ex］
［ pdf O links e DOI E cite 目 datasets 339 citations
Measurement of the Collins and Sivers asymmetries on transversely polarised protons

## TOP FIVE HIGHLY CITED COMPASS PUBLICATIONS




Old Chinese compass

## Exploration

Hand-held compass

## Consolidation


from IWHSS 2011
-Exploration
-Exploration
-Consolidation
-Exploration

## -Consolidation

- Precision
- Exploration
- first measurements


## - Consolidation

- Precision
- Exploration
- parton-model theory
- first measurements
- Consolidation
-TMD factorization
-many consistent measurements
- Precision
- Exploration
- parton-model theory
- first measurements
- Consolidation
-TMD factorization
-many consistent measurements
- Precision
- full-fledged global analysis
- precision measurements
- Exploration
- parton-model theory
- first measurements
- Consolidation
-TMD factorization
-many consistent measurements
- Precision
-full-fledged global analysis
- precision measurements
- Exploration
- parton-model theory
- first measurements
- Consolidation
-TMD factorization
-many consistent measurements
- Precision
-full-fledged global analysis
- precision measurements
- Exploration
- parton-model theory
- first measurements
- Consolidation
-TMD factorization
-many consistent measurements
- Precision
-full-fledged global analysis
- precision measurements


Old Chinese compass

## Exploration

## 2002: TRANSVERSITY AND SIVERS FUNCTION

Probing the transverse spin of quarlan scattering inelastic sep

## 2002: TMD UNIVERSALTY

Nontrivial gauge link structure induces surprising behaviors

## SIDIS



Drell-Yan



## 2002: TMD UNIVERSALITY

Nontrivial gauge link structure induces surprising behaviors

## SIDIS



Drell-Yan



Sivers function SIDIS $=-$ Sivers function Drell-Yan
Collins, PLB 536 (O2)

66
[The experimental check of the change of sign] would crucially test the factorization approach to the description of processes sensitive to transverse parton momenta.

66
[The experimental check of the change of sign] would crucially test the factorization approach to the description of processes sensitive to transverse parton momenta.

Efremov, Goeke, Menzel, Metz, Schweitzer, PLB 612 (05)

It is a remarkable and fundamental QCD prediction that really tests all concepts we know of for analyzing hardscattering reactions in strong interactions, and it awaits experimental verification. 88

It is a remarkable and fundamental QCD prediction that really tests all concepts we know of for analyzing hardscattering reactions in strong interactions, and it awaits experimental verification. 88

Bomhof, Mulders, Vogelsang, Yuan, PRD 75 (07)

66Its experimental verification would be crucial to confirm the validity of our present conceptual framework for analyzing hard hadronic reactions. 98

66Its experimental verification would be crucial to confirm the validity of our present conceptual framework for analyzing hard hadronic reactions. 98
A.B., Bomhof, D'Alesio, Mulders, Murgia, PRL 99 (07)

## 2005: PIONEERING MEASUREMENTS



## 2005: PIONEERING MEASUREMENTS



## 2005: PIONEERING MEASUREMENTS



## 2005: PIONEERING EXTRACTIONS OF THE SIVERS FUNCTION



Anselmino, Boglione, Collins, D’Alesio, Efremov, Goeke, Kotzinian, Menzel, Metz, Murgia, Prokudin, Schweitzer, Vogelsang, Yuan, hep-ph/0511017

## 2006: FULL SIDIS ANALYSIS

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X,
$$



## THE 18 SIDIS STRUCTURE FUNCTIONS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## THE 18 SIDIS STRUCTURE FUNCTIONS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \underbrace{}_{1} \underbrace{}_{1} \alpha^{2} D_{1} \frac{y^{2}}{2 y Q^{2}}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& +\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \left.\quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## THE 18 SIDIS STRUCTURE FUNCTIONS



## THE 18 SIDIS STRUCTURE FUNCTIONS



Collins structure function

$$
h_{1} \otimes H_{1}^{\perp}
$$

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

## TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

On top of these, there are twist-3 functions

## Transversity

 (little brother)
## Torino's transversity



## Torino's transversity



## The dihadron way

to transversity has opened



Bacchetta, Courtoy, Radici, PRL 107 (2011)


Hand-held compass

## Consolidation

## NEW COLLINS AND SIVERS DATA



## NEW MULTIPLICITIES DATA

arXiv:1709.07374


## MANY MORE MEASUREMENTS

$d \sigma$
see, e.g., arXiv:1401.6284, arXiv:1609.06062
$\overline{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}}$

$$
\begin{aligned}
= & \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& +\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
\end{aligned}
$$

$$
+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right.
$$

$$
+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

## MANY MORE MEASUREMENTS

$\overline{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}}$

$$
\begin{aligned}
= & \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& +\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
\end{aligned}
$$

$$
+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right.
$$

$$
+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

## MANY MORE MEASUREMENTS

$d \sigma$
see, e.g., arXiv:1401.6284, arXiv:1609.06062
$\overline{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}}$
$=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right.$
$+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]$
$+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]$
$+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right.$
$+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}$
$\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.$
$\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}$

## MANY MORE MEASUREMENTS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## MANY MORE MEASUREMENTS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## MANY MORE MEASUREMENTS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& \quad+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& \quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \quad+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## MANY MORE MEASUREMENTS

$$
\begin{aligned}
& d \sigma \\
& \overline{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right. \\
& +\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\right. \\
& \text { Not all have been published yet } \\
& +\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

## Much more "fun" with TMOS'... IWHSS 2010

## Much more "fun" with TMÓs WHSS 2010 <br> .

Generalized universality

## Soft factors

nondiagonal evolution
twist-3

## factorization breaking

## Much more "fun" with TMifom IWHSS 2010 Much more "fun" with TMOS...

## Generalized universality

## Soft factors

nondiagonal evolution
twist-3
factorization breaking

## TMDS IN SEMI-INCLUSIVE DIS



## TMDS IN SEMI-INCLUSIVE DIS



At small transverse momentum, the dominant part is given by TMDs.

## TMDS IN SEMI-INCLUSIVE DIS



At small transverse momentum, the dominant part is given by TMDs.
The analysis is usually done in Fourier-transformed space

## TMDS IN SEMI-INCLUSIVE DIS



At small transverse momentum, the dominant part is given by TMDs.
The analysis is usually done in Fourier-transformed space
TMDs formally depend on two scales, but for convenience I set them equal.

## TMD STRUCTURE

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\left.\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right.}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\mathrm{resum}}+g_{K}} f_{1 N P}\left(x, b_{T}^{2} ; \zeta_{f}, Q_{0}\right)
$$

## TMD STRUCTURE

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)}\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\mathrm{resum}}+g_{K}} f_{1 N P}\left(x, b_{T}^{2} ; \zeta_{f}, Q_{0}\right) \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{*}}
\end{aligned}
$$

see, e.g., Ji, Ma, Yuan, PRD 71 (05)
Collins, "Foundations of Perturbative QCD" (11)
Rogers, Aybat, PRD 83 (11)
Echevarria, Idilbi, Scimemi JHEP 1207 (12)

## TMD STRUCTURE

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

## perturbative Sudakov form factor



```
see, e.g., Ji, Ma, Yuan, PRD }71\mathrm{ (05)
Collins, "Foundations of Perturbative QCD" (11)
Rogers, Aybat, PRD 83 (11)
Echevarria, Idilbi, Scimemi JHEP 1207 (12)
```


## TMD FITS OF UNPOLARIZED DATA

|  | Framework | HERMES | COMPASS | DY | Z production | $N$ of points |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pavia 2013 <br> arXiv:1309.3507 | parton model | $\checkmark$ | $x$ | $x$ | $x$ | 1538 |
| $\begin{gathered} \text { Torino } 2014 \\ \text { arXiv:1312.6261 } \end{gathered}$ | parton model | (separately) | (separately) | $x$ | $x$ | $\begin{gathered} 576(\mathrm{H}) \\ 6284(\mathrm{C}) \end{gathered}$ |
| DEMS 2014 <br> arXiv:1407.3311 | NNLL | $x$ | $x$ | $\checkmark$ | $\checkmark$ | 223 |
| EIKV 2014 <br> arXiv:1401.5078 | NLL | $1\left(\mathrm{x}, \mathrm{Q}^{2}\right) \mathrm{bin}$ | $1\left(x, Q^{2}\right)$ bin | $\checkmark$ | $\checkmark$ | 500 (?) |
| SIYY 2014 <br> arXiv:1406.3073 | NLL' | $x$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 200 (?) |
| Pavia 2017 <br> arXiv:1703.10157 | NLL | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 8059 |
| $\begin{gathered} \text { SV } 2017 \\ \text { arXiv:1706.01473 } \end{gathered}$ | NNLL' | $x$ | $x$ | $\checkmark$ | $\checkmark$ | 309 |
| $\begin{gathered} \text { BSV } 2019 \\ \text { arXiv:1902.08474 } \end{gathered}$ | NNLL' | $x$ | $x$ | $\checkmark$ | $\checkmark$ | 457 |
| $\begin{gathered} \text { SV } 2019 \\ \text { arXiv:1912.06532 } \end{gathered}$ | N3LL- | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1039 |
| $\begin{gathered} \text { Pavia } 2019 \\ \text { arXiv:1912.07550 } \end{gathered}$ | N3LL | $x$ | $x$ | $\checkmark$ | $\checkmark$ | 353 |
| MAP22 <br> arXiv:2206.07598 | N3LL- | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 2031 |

## $x$ - Q2 COVERAGE



MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti,
Piacenza, Radici, Signori, arXiv:2206.07598


Scimemi, Vladimirov, arXiv:1912.06532

## $x$ - Q2 COVERAGE



MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti,
Piacenza, Radici, Signori, arXiv:2206.07598


Scimemi, Vladimirov, arXiv:1912.06532

## EXAMPLE OF AGREEMENT WITH DATA



## RESULTING TMDS



FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the $68 \%$ CL.

## REGION OF VALIDITY OF TMD FORMALISM



## REGION OF VALIDTTY OF TMD FORMALISM



The MAP22 cut is already considered to ge "generous", but the physics seems to be the same for a much wider $\mathrm{P}_{\mathrm{T}}$

## "CONSOLIDATED" SIVERS FUNCTION FITS



Bacchetta, Delcarro,
Pisano, Radici, arXiv:2004.14278


Echevarria, Kang, Terry, arXiv:2009.10710


Bury, Prokudin, Vladimirov, arXiv:2103.03270

## SIVERS SIGN CHANGE

## Sivers function SIDIS = - Sivers function Drell-Yan

Collins, PLB 536 (02)

## SIVERS SIGN CHANGE

## Sivers function SIDIS $=-$ Sivers function Drell-Yan

Collins, PLB 536 (02)


## SIVERS SIGN CHANGE

Echevarria, Kang, Terry, arXiv:2009.10710


## SIVERS SIGN CHANGE



## "CONSOLIDATED" TRANSVERSITY FITS





Lin et al.,
arXiv:1710.09858



## "CONSOLIDATED" TRANSVERSITY FITS





Radici, Bacchetta,
arXiv:1802.05212


Martin, Bradamante, Barone, arXiv:1412.5946


## TENSOR CHARGE AND COMPARISON WITH LATTICE QCD

Tensor charge

$$
\delta q \equiv g_{T}^{q}=\int_{0}^{1} d x\left[h_{1}^{q}\left(x, Q^{2}\right)-h_{1}^{\bar{q}}\left(x, Q^{2}\right)\right]
$$



* Alexandrou et al., arXiv:1703.08788
- Gupta et al., arXiv:1806.09006
- Anselmino et al., arXiv:1303.3822
- Kang et al., arXiv:1505.05589
- Lin et al., arXiv:1710.09858
- Radici et al., arXiv:1802.05212

JAM Coll., arXiv:2205.00999


## WHAT CAN STILL BE DONE BY COMPASS?

## WHAT CAN STILL BE DONE BY COMPASS?

- Proton multiplicities


## WHAT CAN STILL BE DONE BY COMPASS?

- Proton multiplicities
> Transversely polarized deuteron data


## WHAT CAN STILL BE DONE BY COMPASS?

- Proton multiplicities
> Transversely polarized deuteron data
- Pion DY unpolarized cross section


## WHAT CAN STILL BE DONE BY COMPASS?

- Proton multiplicities
> Transversely polarized deuteron data
- Pion DY unpolarized cross section
- All structure functions for proton and deuteron, with identified hadrons and multidimensional binning


## WHAT ARE THE BIG OPEN ISSUES?

## WHAT ARE THE BIG OPEN ISSUES?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)


## WHAT ARE THE BIG OPEN ISSUES?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
> Can we compare the phenomenology to lattice QCD?


## WHAT ARE THE BIG OPEN ISSUES?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
> Can we compare the phenomenology to lattice QCD?
- Can we look for physics beyond the Standard Model?


## WHAT ARE THE BIG OPEN ISSUES?

- Are we sure about our interpretation of the measurements? (higher twist, normalization issues...)
> Can we compare the phenomenology to lattice QCD?
- Can we look for physics beyond the Standard Model?
> How do we use the knowledge of the structure of the proton?


