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What is astronomy?
Astronomy is the observational study of matter beyond Earth: 

planets in the Solar System, stars in the Milky Way Galaxy, 
galaxies in the Universe, and diffuse matter between these 
concentrations. 

Astrophysics is the study of the intrinsic nature of astronomical 
bodies and the processes by which they interact and evolve. 
This is an indirect, inferential intellectual effort based on the 
assumption that physics – gravity, electromagnetism, 
quantum mechanics, etc – apply universally to distant cosmic 
phenomena.



What is statistics?    (No consensus !!)

– “…  briefly, and in its most concrete form, the object of 
statistical methods is the reduction of data”

(R. A. Fisher, 1922)

– “Statistics is the mathematical body of science that pertains 
to the collection, analysis, interpretation or explanation, and 
presentation of data.”

(Wikipedia, 2014)

– “Statistics is the study of the collection, analysis, 
interpretation, presentation and organization of data.”

(Wikipedia, 2015)

– “A statistical inference carries us from observations to 
conclusions about the populations sampled”

(D. R. Cox, 1958)



Does statistics relate to scientific models?
The pessimists …

“Essentially, all models are wrong, but some are useful.”

(Box & Draper 1987)

“There is no need for these hypotheses to be true, or even to be at 

all like the truth; rather … they should yield calculations which 

agree with observations” (Osiander’s Preface to Copernicus’
De Revolutionibus, quoted by C. R. Rao in Statistics and Truth)

"The object [of statistical inference] is to provide ideas and 

methods for the critical analysis and, as far as feasible, the 

interpretation of empirical data ... The extremely challenging 

issues of scientific inference may be regarded as those of 

synthesising very different kinds of conclusions if possible into a 

coherent whole or theory ... The use, if any, in the process of 

simple quantitative notions of probability and their numerical 

assessment is unclear."     

(D. R. Cox, 2006)



The positivists …

“The goal of science is to unlock nature’s secrets. … Our 
understanding comes through the development of theoretical 
models which are capable of explaining the existing observations as 
well as making testable predictions. … 

“Fortunately, a variety of sophisticated mathematical and 
computational approaches have been developed to help us through 
this interface, these go under the general heading of statistical 
inference.”

(P. C. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, 2005)



Recommended steps in the
statistical analysis of scientific data

The application of statistics can reliably quantify information 
embedded in scientific data and help adjudicate the relevance 
of theoretical models.  But this is not a straightforward, 
mechanical enterprise. It requires: 

Ø exploration of the data
Ø careful statement of the scientific problem
Ø model formulation in mathematical form
Ø choice of statistical method(s)
Ø calculation of statistical quantities             
Ø judicious scientific evaluation of the results   

Astronomers often do not adequately pursue each step  



Why astrostatistics is difficult !

• Modern statistics is vast in its scope and methodology.  It is difficult to 
find what may be useful (jargon problem!), and there are usually several 
ways to proceed.  Very confusing. 

• Some statistical procedures are based on mathematical proofs while 
others are not. It is perilous to violate mathematical truths!  Some 
issues are debated among statisticians, or have no known solution. 

• Scientific inferences should not depend on arbitrary choices in 
methodology & variable scale.  Start with nonparametric & scale-
invariant methods.  Try multiple methods. 

• It can be difficult to interpret the meaning of a statistical result with 
respect to the scientific goal. Statistics is only a tool towards 
understanding nature from incomplete information. 

We should be knowledgeable in our use of statistics 
and judicious in its interpretation



Astronomy & Statistics: A glorious past
For most of western history, 

the astronomers were the statisticians!

Ancient Greeks to today

Best estimate of the length of a year from discrepant data?

• Middle of range:  Hipparcos (4th century B.C.)

• Observe only once!  (medieval)

• Mean: Brahe (16th c), Galileo (17th c), Simpson (18th c)

• Median with bootstrap (21th c)

19th century

Discrepant observations of planets/moons/comets used to estimate 

orbital parameters using Newtonian celestial mechanics

• Legendre, Laplace & Gauss develop least-squares regression 

and normal error theory (~1800-1820)

• Prominent astronomers contribute to least-squares theory              

(~1850-1900)



The lost century of astrostatistics….

In the late-19th and 20th centuries, statistics moved towards
human sciences (demography, economics, psychology,
medicine, politics) and industrial applications (agriculture, 
mining, manufacturing).  

During this time, astronomy recognized the power of modern 
physics: electromagnetism, thermodynamics, quantum 
mechanics, relativity.  Astronomy & physics were wedded 
into astrophysics.  

Thus, astronomers and statisticians substantially broke contact;
e.g. the curriculum of astronomers heavily involved physics
but little statistics.  Statisticians today know little modern 
astronomy. 



The state of astrostatistics today
(not so good but rapidly improving)

Many astronomical studies are confined to a narrow suite
of familiar statistical methods:

– Fourier transform for temporal analysis (Fourier 1807) 
– Least squares regression (Legendre 1805, Pearson 1901)
– Kolmogorov-Smirnov goodness-of-fit test (Kolmogorov, 1933)
– Principal components analysis for tables (Hotelling 1936)

Even traditional methods are sometimes misused!
• Kolmogorov-Smirnov test has three limitations
• Likelihood ratio test can’t be used for parameters near zero
• Bayesian priors should not be improper

https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test/
Protassov et al. 2002

Tak et al. 2018

https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test/
https://ui.adsabs.harvard.edu/abs/2002ApJ...571..545P/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481..277T/abstract


Under-utilized methodology from the 20th century:  

• modeling (MLE, EM Algorithm, BIC, bootstrap)      
• multivariate classification (LDA, SVM, CART, RFs)
• time series (autoregressive models, state space models)
• spatial point processes (Ripley’s K, kriging)
• nondetections (survival analysis)
• image analysis (computer vision methods, False Detection Rate)
• statistical computing (R)  

Advertisement …

Modern Statistical Methods for Astronomy 
with R Applications
E. D. Feigelson & G. J. Babu,
Cambridge Univ Press, 2012
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Cosmology               Statistics              

Galaxy clustering Spatial point processes, clustering
Galaxy morphology Regression, mixture models
Galaxy luminosity fn Gamma distribution
Power law relationships Pareto distribution 
Weak lensing morphology Geostatistics, density estimation 
Strong lensing morphology Shape statistics
Strong lensing timing Time series with lag
Faint source detection False Discovery Rate
Multiepoch survey lightcurves           Multivariate classification
CMB spatial analysis Markov fields, ICA, etc
LCDM parameters Bayesian inference & model selection
Comparing data & simulation Uncertainty Quantification

Astrostatistics is difficult: it involves many fields of statistics



Recent resurgence in astrostatistics
• Improved access to statistical software:  R/CRAN, Matlab & Python

• A significant fraction of papers in the astronomical literature use modern 
methodology and is growing exponentially
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• Short training courses (Penn State has run tutorials in ~17 nations)

• Cross-disciplinary research collaborations (Harvard, CMU, Penn 
State, CEA-Saclay, Cornell, Imperial College London …)

• Cross-disciplinary conferences (Statistical Challenges in Modern 
Astronomy 1991-2023, Astronomical Data Analysis 1991-2016, SAMSI 
2006/2012/2016, Astroinformatics 2012-2020)

• Scholarly societies: 
• Internationl Stat Institute SIGAstro
• International Astrostatistical Assn
• International Astro Union Commission B3
• American Astro Soc Working Group
• American Stat Assn Interest Group
• LSST Info/Stat Science Collaboration
• IEEE Astro Data Miner Task Force



Several textbooks in astrostatistics

Bayesian Logical Data Analysis for the Physical Sciences: A Comparative 
Approach with Mathematica Support
Gregory, 2005

Practical Statistics for Astronomers
Wall & Jenkins, 2nd ed, 2012

Modern Statistical Methods for Astronomy with R Application, 
Feigelson & Babu, 2012

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical 
Python Guide for the Analysis of Survey Data, 
Ivecic, Connolly, VanderPlas & Gray, 2014 (2nd edition in preparation)

+ many texts written by statisticians to teach specific fields of 
methodology, often with R code.  R has 18K packages growing 
~5/day. A new text with “R” in the title has been published every 
~10 days for the past decade. 



A vision of astrostatistics by 2030 …

• Astronomy graduate curriculum has 1 year of statistical and 
computational methodology 

• Some astronomers have M.S. in statistics or data science

• Astrostatistics and astroinformatics is a well-funded, cross-
disciplinary research field involving a few percent of astronomers    
pushing the frontiers of methodology (similar to astrochemistry)

• Astronomers regularly use advanced methods coded in R. 

• Statistical Challenges in Modern Astronomy meetings are held 
biannually with hundreds of participants



Highlight

Statistical Approaches to Detecting Variability

in Low Count Sources



The Dataset
312 photons from a pre-main sequence star arriving during a 148 ks
Chandra ACIS exposure of the Messier 17 star forming region. 
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Unbinned nonparametric tests for variability

Kolmogorov-Smirnov test
P = 4%

Anderson-Darling test
P = 0.0004%

The K-S test is most sensitive to 
long-timescale variations, and 
does not pick this short-lived 
flare.   The Anderson-Darling 
test is much more effective here.

R: ecdf, ks.test
CRAN: DescTools



Binned tests for variability

The purpose of binning is not to 
approximate a Gaussian 
distribution, but rather to obtain 
an evenly-spaced time series of 
Poisson-distributed count data.   
Here the binwidth is chosen so 
the Poisson intensity is 

l = 2.0 counts/bin  



Binned tests for variability
(without temporal information)

First we apply two tests on the 
distribution of counts, paying no 
attention to the temporal behavior.

We find that the distribution is strongly 
overdispersed where the variance is 
greater than the mean.  For a 
homogeneous Poisson process, the 
variance is equal to the mean (green 
curve).  

Using a c2 test, P < 0.0001% that the 
count distribution arises from a constant 
intensity Poisson process. 

3

CRAN: qcc

Binned tests for variability
(without temporal information)

First we apply two tests on the distribution 
of counts, paying no attention to the 
temporal behavior.

We find that the distribution is strongly 
overdispersed where the variance is 
greater than the mean.  For a 
homogeneous Poisson process, the variance 
is equal to the mean (green curve).  

Using a c2 test, P < 0.0001% that the 
count distribution arises from a constant 
intensity Poisson process. 
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CRAN: qcc



The nonparametric autocorrelation 
function shows strong autocorrelation 
at short lags.

The dashed lines here show 95% 
confidence intervals for Gaussian 
data.  These are underestimates for 
Poisson data.  

R: acf

Binned tests for variability
(with temporal information)



If the autocorrelated behavior is 
stationary (present at all times in the 
lightcurve), then it can often be modeled 
with parametric autoregressive functions 
in the ARMA class. 

Since we have count data, the appropriate 
models are INAR (Integer AR) or PAR     
(Poisson AR) models.  We fit here a linear 
INAR(1) model.  

Surprisingly, this simple linear INAR(1) 
removes most of the flare and the 
residuals show no autocorrelation.  It 
suggests that most of the variations in the 
lightcurve arise from an autoregressive 
stochastic process, such as the ‘avalanche’ 
model of solar flare occurrences. 

CRAN: acp

Binned modeling of variability



Here we assume that the behavior is deterministic 
with flux that jumps discontinuously between 
constant intensity levels.  This is the statistical 
model of Jeff Scargle’s Bayesian Blocks.   

It is a considerable statistical challenge to fit this 
model, as the number and location of 
changepoints is unknown.  Bayesian methods are 
used with different advanced computational 
algorithms: dynamic programming (Scargle) or 
latent variables (Chibb).  

1Multiple Poisson changepoint modeling



Pre-Main Sequence X-ray Super-Flares 29
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Figure 11. Poisson regression model with two changepoints for the second ObsID of Chandra source 182023.95-161212.3, a
pre-main sequence star in the M 17 star forming region. See text for details. Further examples of the top panel are shown in
Figure 1.

The Chib (1998) formulation of the Poisson multiple changepoint problem, with the software implementation of
Martin et al. (2011) and Brandt (2010), should give solutions very similar to the Bayesian Blocks formulation of
Scargle et al. (2013). Its graphical output, illustrated in Figure 11, allows flexible scientific interpretation. We have
chosen changepoints when a component’s probability crosses the 50% boundary, but another user might choose a
90% criterion for a more conservative evaluation of change. There are also situations where several components
simultaneously contribute to the model; caution might be warranted in selecting changepoints in such cases.

C. DERIVATION OF STELLAR PROPERTIES

New parallax-based distances are obtained for many MYStIX and SFiNCs star forming regions by Cantat-Gaudin
et al. (2018); Kuhn et al. (2019) and other recent Gaia-based studies. Details are given in Table 1. These new
distances allow us to re-calculate X-ray luminosities from Chandra fluxes, which are derived from Chandra count rates
and median energies using the scalings of Getman et al. (2010).

Multiple changepoint model 
for an inhomogeneous 
Poisson process using  the 
latent variable algorithm
of Chibb (1998).    

Getman & Feigelson, ApJ 916:32 2021

CRAN: acp, MCMCpack



Multivariate detection of source variability

Though typically studied 
as a univariate time series, 
Chandra data is a Poisson 
process in four 
dimensions:  RA, Dec, 
energy & time.  For 
crowded fields, a 
multivariate treatment can 
be effective.   

Here is a movie of the 
vicinity of the flaring M17 
pre-main sequence star.  
It shows the (RA, Dec, 
time) datacube with 
photon energy in color. 4D_Automark

Xu+ ApJ 2021



Change-point Detection and Image Segmentation for Time Series of Astrophysical 
Images

C. Xu, H. Gunther, V.Kashyap, T. Lee & A. Zezas,   AJ 161:184 (2021)

Model is piecewise constant flux with multiple changepoints for a Poisson process (similar to 
Bayesian Blocks).  Model selection based on minimum description length (MDL) criterion.
Algorithm is computationally intensive, requiring preprocessing and good starting points  
Python code is available: 4D_Automark (Github)

The Automark method is very general, finding changepoints 
in space, time and energy



Some book references

• P. Del Moral & S. Penev, Stochastic Processes: From Applications to Theory (2017)
• J. Kingman, Poisson Processes  (1993)
• A. Tartakovsky, I. Nikiforov & M. Basseville, Sequential Analysis: Hypothesis Testing 

and Changepoint Detection (2014)
• J. Hilbe, Modeling Count Data (2014)
• O. Pons, Estimations and Tests in Change-Point Models (2018)

• J. Grandell, Mixed Poisson Processes (1997)
• R. Streit, Poisson Point Processes: Imaging, Tracking and Sensing (2010)



Highlight conclusions

A wide variety of statistical procedures are available to detect and 
characterize variability in low-count-rate X-ray sources. Most of these 
methods are not used by X-ray astronomers. 

They can be roughly classified as: nonparametric and Poisson-based 
hypothesis tests for variability; tests based on binned count rate 
distributions; autoregressive and changepoint models based on Poisson 
processes; and multivariate methods.  

Each method has distinctive capabilities and limitations.  Some methods are 
from classical statistics, others are focused on Poisson processes, and 
others are emerging from astrostatistical innovations.

Existing software packages (e.g. CIAO, XRONOS) are completely 
inadequate for this problem.    Codes for many methods are available in R; 
these are easily wrapped into Python.   


