Overview of Bayesian methods for multiwavelength gamma-ray astronomy

Tom Loredo
Cornell Center for Astrophysics and Planetary Science, Carl Sagan Institute, \& Dept. of Statistics and Data Science, Cornell U. http://hosting.astro.cornell.edu/~1oredo/

$$
\text { PhyStat-Gamma — 27-30 Sep } 2022
$$

Includes work with Tamás Budavŕi \& Robert Wolpert Grant support from NSF Astronomy \& Statistics (AST-1814840, DMS-2015386)

Bayesian data analysis gets its name from Bayes's theorem:

$$
\begin{aligned}
p(\theta \mid D) & =\frac{p(\theta) p(D \mid \theta)}{p(D)} \\
& =\frac{p(\theta) \mathcal{L}(\theta)}{p(D)}
\end{aligned}
$$

So it's basically about modulating maximum likelihood with priors...

Bayesian inference in a nutshell

Probability as generalized logic
Probability quantifies the strength of arguments
To appraise hypotheses, calculate probabilities for arguments from data and modeling assumptions to each hypothesis
Use all of probability theory for this
Bayes's theorem
p (Hypothesis | Data) $\propto p$ (Hypothesis) $\times p$ (Data | Hypothesis)
Data change the support for a hypothesis \propto ability of hypothesis to predict the observed data

Law of total probability

$$
p(\text { Hypotheses } \mid \text { Data })=\sum p(\text { Hypothesis } \mid \text { Data })
$$

The support for a composite hypothesis must account for all the ways it could be true, via marginalization

On the key role of marginalization

Bayesian statistics uses all of probability theory, not just Bayes's theorem, and not even primarily Bayes's theorem.... Perhaps the most important theorem for doing Bayesian calculations is the law of total probability (LTP) that relates marginal probabilities to joint and conditional probabilities.... Arguably, if this approach to inference is to be named for a theorem, "total probability inference" would be a more appropriate appellation than "Bayesian statistics." It is probably too late to change the name. But it is not too late to change the emphasis.

- Loredo (2013)

The key distinguishing property of a Bayesian approach is marginalization instead of optimization, not the prior, or Bayes rule.... Broadly speaking, what makes Bayesian approaches distinctive is a posterior weighted marginalization over parameters.... Moreover, basic probability theory indicates that marginalization is desirable.

> — Wilson (2020), Wilson \& Izmailov (2020)

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters

Marginalizing vs. profiling
Poisson on/off problem
(4) Priors: More than penalties Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters Marginalizing vs. profiling Poisson on/off problem

4 Priors: More than penalties Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

Interpreting PDFs

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies that quantify variability in a sequence of trials. $p(x)$ describes how the values of x would be distributed among infinitely many trials:

Bayesian

Probability quantifies uncertainty in an inductive inference. $p(x)$ describes how probability is distributed over the possible values x might have taken in the single case before us:

This interpretation holds whether x labels data or hypotheses.

Probability \& frequency in IID settings

Consider a setting where we assign the same probability to many independent outcomes (flips of a coin, rolls of a die, searches for an Earth around a G dwarf...):

- If the probability is high, we expect the outcomes to occur frequently
- If the probability is low, we expect the outcomes to occur rarely

In IID repeated trial settings, it seems there should be a relationship between single-trial probability and multiple-trial (relative) frequency

Early probabilists—Bernoulli, Bayes, Laplace, etc.—interpreted probability in a Bayesian way, but sought to derive connections to frequency in replication settings

Frequency from probability

Bernoulli's (weak) law of large numbers: In repeated IID trials, given $P($ success $\mid \ldots)=\alpha$, predict

$$
\frac{n_{\text {success }}}{N_{\text {total }}} \rightarrow \alpha \quad \text { as } \quad N_{\text {total }} \rightarrow \infty
$$

If P (success $\mid \ldots$) does not change from sample to sample, it may be interpreted as the expected relative frequency

Probability from frequency
Bayes's "An Essay Towards Solving a Problem in the Doctrine of Chances" \rightarrow First use of Bayes's theorem:
Probability for success in next trial of IID sequence:

$$
\mathrm{E}(\alpha) \rightarrow \frac{n_{\text {success }}}{N_{\text {total }}} \quad \text { as } \quad N_{\text {total }} \rightarrow \infty
$$

If P (success $\mid \ldots$) does not change from sample to sample, it may be estimated using relative frequency data

There is nothing more Bayesian than to be interested in the role of frequency in inference. But probability is not identified with frequency-the former is an abstract measure of argument strength; the latter is (potentially) observable.

Probability as a measure of strength of a data-based argument is separate from calibration-quantifying long-run performance of a procedure used in a replication setting. When calibration properties are of interest, they need to be separately computed.

Frequentist vs. Bayesian statements

"The data $D_{\text {obs }}$ support hypothesis H ..."
Frequentist assessment
"H was selected with a procedure that's right 95% of the time over a set $\left\{D_{\text {hyp }}\right\}$ that includes $D_{\text {obs }}$."

Probabilities are properties of procedures, not of particular results. Guaranteed long-run performance is the sine qua non.

Bayesian assessment
"The strength of the chain of reasoning from the model and $D_{\text {obs }}$ to H is 0.95 , on a scale where $1=$ certainty."

Probabilities are associated with arguments based on specific, observed data.

Long-run performance must be separately evaluated (and is typically good by frequentist criteria in parametric settings).

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters

Marginalizing vs. profiling
Poisson on/off problem
(4) Priors: More than penalties

Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

Null hypothesis significance testing (NHST)

Neyman-Pearson testing

- Specify simple null hypothesis H_{0} such that rejecting it implies an interesting effect is present
- Devise statistic $S(D)$ measuring departure from null predictions
- Divide sample space into probable and improbable parts (for H_{0}); $p\left(\right.$ improbable $\left.\mid H_{0}\right)=\alpha$ (Type I error rate), with α specified a priori
- If $S\left(D_{\text {obs }}\right)$ lies in improbable region, reject H_{0}; otherwise accept it
- Report: " H_{0} was rejected (or not) with a procedure with false-alarm frequency α "

Neyman and Pearson devised this approach guided by
Neyman's frequentist principle:
In repeated practical use of a statistical procedure, the long-run average actual error should not be greater than (and ideally should equal) the long-run average reported error. (Berger 2003)
A confidence region is an example of a familiar procedure satisfying the frequentist principle

They insisted that one also specify an alternative, and find the error rate for falsely rejecting it (Type II error)

For simple null and alternative hypotheses, the optimal $S(D)$ is the (log) likelihood ratio. For composite hypotheses, the maximum likelihood ratio is popular (not necessarily optimal).

Fisher's p-value testing

Fisher (and others) felt reporting a rejection frequency of α no matter where $S\left(D_{\text {obs }}\right)$ lies in the rejection region does not accurately communicate the strength of evidence against H_{0} He advocated reporting the p-value:

$$
p=P\left(S(D)>S\left(D_{\text {obs }}\right) \mid H_{0}\right)
$$

Smaller p-values indicate stronger evidence against H_{0} Astronomers call this the significance level or the false-alarm probability (FAP). Statisticians don't-for good reason!

ASA 2016 statement on statistical significance and p-values

- P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
- By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

p-values and the FAP fallacy

From the exoplanets literature:
"...the false alarm probability for this signal is rather high at a few percent."
"This signal has a false alarm probability of $<4 \%$ and is consistent with a planet of minimum mass $2.2 M_{\odot} \ldots$.."
"This detection has a signal-to-noise ratio of 4.1 with an empirically estimated upper limit on false alarm probability of 1.0\%."
"We find a false-alarm probability $<10^{-4}$ that the RV oscillations attributed to CoRoT-7b and CoRoT-7c are spurious effects of noise and activity."

All of these statements incorrectly describe the weight of evidence for a planet, and almost certainly greatly exaggerate the weight of the evidence

Similar misuses of p-values appear throughout astronomy, including in Nobel prize winning work discovering the accelerated expansion of the universe, and the first gravitational wave sources.

We can (must) do better!

What's wrong?

"This signal, with $S\left(D_{\text {obs }}\right)=X$, has a FAP of $p \ldots$.

$$
p=P\left(\left\{D_{\text {hyp }}: S\left(D_{\text {hyp }}\right) \geq S\left(D_{\text {obs }}\right)\right\} \mid H_{0}\right)
$$

Probability ...given \boldsymbol{H}_{0}
p is computed assuming that H_{0} always operates
Every alarm is false (i.e., with FAP $=1$) in this "world"
For any signal to have $\mathrm{FAP} \neq 1$, alternatives to the null must sometimes act; the FAP will depend on how often they do, and what they are

Probability. . . including worse departures from null predictions p is not a property of this signal; it's the size of the ensemble of possible null-generated datasets with $S(D)>S\left(D_{\text {obs }}\right)$
$D_{\text {obs }}$ bounds this set on the weakest side

What a p-value really means

In the voice of Don LaFontaine or Lake Bell:
In a world... with absolutely no sources, with a threshold set so we wrongly claim to detect sources $100 \times p \%$ of the time, this data would wrongly be considered a detection-and it would be the data providing the weakest evidence for a source in that world.

Who wants to say that?! Whence " p-value," a measure of "surprisingness" under the null.

p's one intuitive property

Under the null, the fraction of time $p>X$ is... X
Think of p as an alternative test statistic-a nonlinear mapping of $S(D)$ that has a uniform distribution under the null

p is a surprise-ordered relabeling of the data, with a $U(0,1)$ PDF, and a linearly rising CDF

Surprise isn't enough

The rarity of data "like" $D_{\text {obs }}$ under H_{0} is evidence against H_{0} only if plausible alternatives make $D_{\text {obs }}$ less surprising

Expand the "world" of the p-value calculation:

- Let an alternative, H_{1}, sometimes operate, with probability π_{1} (with null prevalence $\pi_{0}=1-\pi_{1}$)
- Compare the rates for getting the observed p-value under H_{0} and H_{1} (not "observed or smaller p-value")
- Equivalently: Compare the rates for getting $S\left(D_{\text {obs }}\right)$ under H_{0} and H_{1}

This conditional frequentist approach can produce genuine FAPs; it uses $P\left(S\left(D_{\text {obs }}\right) \mid H_{i}\right)$, not tail areas

If the hypotheses are simple and $S(\cdot)$ is sufficient, this corresponds to using Bayes factors

For composite hypotheses (H_{1} here), the marginal likelihood accounts for parameter uncertainty that is ignored by p-values (which typically set parameters equal to best-fit values):

$$
p\left(D \mid H_{i}\right)=\int d \theta_{i} p\left(\theta_{i}\right) p\left(D \mid \theta_{i}, H_{i}\right)
$$

Also, the marginal likelihood uses all of the data, not just the value of a test statistic: in general $p\left(D \mid H_{i}\right) \neq p\left(S(D) \mid H_{i}\right)$

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters Marginalizing vs. profiling Poisson on/off problem
(4) Priors: More than penalties Impacts of priors TTE data: Period searching with adaptive binning
(5) Closing thoughts

$$
\frac{{ }^{\circ}}{+\infty}
$$

Oíón région X-ray (ROSAT)
\qquad Geminga
\div

(3) ${ }^{\text {Hyadases. }}$

- $40614+0$
(\#)
0^{20}
\&
M42

$$
\%
$$

$$
D^{\text {binedill }}
$$

$\theta^{\text {Sirius B }}$

Do GRB sources repeat?

250 GRB directions (1st $\sim 10 \%$ of 4B Catalog)

- 485 out of the 1st 1000 are this close
- 2280 out of the total 2702 are this close

Are there too many close pairs, presuming independence?
Various statistics (nearest neighbor, angular correlation) gave $p \sim 0.001$ to 0.01 assuming independence, isotropy-some also using antipodal correlations!

Coincidence assessment in astronomy

We observe the same region of the sky through various "windows:"

- Multiwavelength astronomy - Different regions of the electromagnetic spectrum
- Multi-messenger astronomy - Different types of radiation
- Electromagnetic
- Neutrinos
- Cosmic rays
- Gravitational radiation
- Time-domain astronomy - Different periods of time

Fundamental questions:

- Are objects/events associated ("counterparts")? \rightarrow Pool information to better characterize underlying phenomenon
- Are objects/events distinct? \rightarrow Discovery!

Fundamental difficulties: Uncertainties in directions and other observables, measures of closeness, number of candidate matches...

Bayesian Coincidence Assessment

Not associated

Associated

$$
\begin{aligned}
p\left(d_{1}, d_{2} \mid H_{0}\right) & =\int d \boldsymbol{n}_{1} p\left(\boldsymbol{n}_{1} \mid H_{0}\right) \ell_{1}\left(\boldsymbol{n}_{1}\right) & \\
& \times \int d \boldsymbol{n}_{2} \cdots & p\left(d_{1}, d_{2} \mid H_{1}\right)=\int d \boldsymbol{n} p\left(\boldsymbol{n} \mid H_{1}\right) \ell_{1}(\boldsymbol{n}) \ell_{2}(\boldsymbol{n})
\end{aligned}
$$

Multiplet Bayes Factors

Analytical result using Fisher dist'n (isotropic prior):

$$
\begin{aligned}
B_{i j} & =\frac{\kappa_{i} \kappa_{j}}{(4 \pi)^{2} \sinh \left(\kappa_{i}\right) \sinh \left(\kappa_{j}\right)} \frac{\sinh (R)}{R} \\
R^{2} & =\kappa_{i}^{2}+\kappa_{j}^{2}+2 \kappa_{i} \kappa_{j} \cos \left(\boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j}\right)
\end{aligned}
$$

Generalization to multiplet of size k :

$$
\begin{gathered}
B_{i j \ldots l}=\frac{1}{(4 \pi)^{k}} \frac{\sinh (R)}{R}\left(\frac{\kappa_{i}}{\sinh \left(\kappa_{i}\right)}\right)\left(\frac{\kappa_{j}}{\sinh \left(\kappa_{j}\right)}\right) \times \cdots \times\left(\frac{\kappa_{l}}{\sinh \left(\kappa_{l}\right)}\right) \\
R^{2}=\left(\kappa_{i} \boldsymbol{n}_{i}+\kappa_{j} \boldsymbol{n}_{j}+\cdots+\kappa_{l} \boldsymbol{n}_{l}\right)^{2}
\end{gathered}
$$

Doublet Bayes factor behavior

vs. nearest-neighbor p-value

Challenge: Large hypothesis spaces

For $N=2$ events, there was a single coincidence hypothesis, H_{1}
For $N=3$ events:

- Three doublets: $1+2,1+3$, or $2+3$
- One triplet

The number of alternatives (partitions, ϖ) grows combinatorially!

- Model building: Assign sensible priors to partitions
- Computation: Find \& sum over important partitions

Challenge: Large, complex localizations

LIGO+VIRGO GW source localizations

See Friday's talks by Budavári and Salvato for more. . .

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters

Marginalizing vs. profiling
Poisson on/off problem
(4) Priors: More than penalties Impacts of priors TTE data: Period searching with adaptive binning
(5) Closing thoughts

Nuisance parameters and marginalization

To model most data, we need to introduce parameters besides those of ultimate interest: nuisance parameters.

Example
We have data from measuring a rate $r=s+b$ that is a sum of an interesting signal s and a background b.
We have additional data just about b.
What do the data tell us about s ?

Marginal posterior distribution

To summarize implications for s, accounting for b uncertainty, marginalize:

$$
\begin{aligned}
p(s \mid D, M) & =\int d b p(s, b \mid D, M) \\
& \propto p(s \mid M) \int d b p(b \mid s, M) \mathcal{L}(s, b) \\
& =p(s \mid M) \mathcal{L}_{m}(s)
\end{aligned}
$$

with $\mathcal{L}_{m}(s)$ the marginal likelihood function for s :

$$
\mathcal{L}_{m}(s) \equiv \int d b p(b \mid s) \mathcal{L}(s, b)
$$

Maximum likelihood suggests instead computing the profile likelihood:

$$
\mathcal{L}_{p}(s) \equiv \mathcal{L}\left(s, \hat{b}_{s}\right), \quad \hat{b}_{s}=\text { best } b \text { given } s
$$

Marginalization vs. profiling

For insight: Suppose the prior is broad compared to the likelihood \rightarrow for a fixed s, we can accurately estimate b with max likelihood \hat{b}_{s}, with small uncertainty δb_{s}.

$$
\begin{aligned}
& \mathcal{L}_{m}(s) \equiv \int d b p(b \mid s) \mathcal{L}(s, b) \\
& \approx p\left(\hat{b}_{s} \mid s\right) \mathcal{L}\left(s, \hat{b}_{s}\right) \delta b_{s} \quad \text { best } b \text { given } s \\
& b \text { uncertainty given } s
\end{aligned}
$$

Profile likelihood $\mathcal{L}_{p}(s) \equiv \mathcal{L}\left(s, \hat{b}_{s}\right)$ gets weighted by a parameter space volume factor
E.g., Gaussians: $\hat{s}=\hat{r}-\hat{b}, \quad \sigma_{s}^{2}=\sigma_{r}^{2}+\sigma_{b}^{2}$, and δb_{s} is const.

Background subtraction is a special case of background marginalization.

Flared/skewed/bannana-shaped: \mathcal{L}_{m} and \mathcal{L}_{p} differ

General result: For a linear (in params) model sampled with Gaussian noise, and flat priors, $\mathcal{L}_{m} \propto \mathcal{L}_{p}$. Otherwise, they will likely differ.

In measurement error problems the difference can have dramatic consequences (due to proliferation of latent parameters)

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters

Marginalizing vs. profiling
Poisson on/off problem
4) Priors: More than penalties

Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

The on/off problem for Poisson counting data

Basic problem

- Look off-source; unknown background rate b Count $N_{\text {off }}$ photons in interval $T_{\text {off }}$
- Look on-source; rate is $r=s+b$ with unknown signal s Count $N_{\text {on }}$ photons in interval $T_{\text {on }}$
- Infer s

Conventional solution

$$
\begin{array}{ll}
\hat{b}=N_{\text {off }} / T_{\text {off }} ; & \sigma_{b}=\sqrt{N_{\text {of }}} / T_{\text {off }} \\
\hat{r}=N_{\text {on }} / T_{\text {on }} ; & \sigma_{r}=\sqrt{N_{\text {on }}} / T_{\text {on }} \\
\hat{s}=\hat{b}-\hat{b} ; & \sigma_{s}=\sqrt{\sigma_{r}^{2}+\sigma_{b}^{2}}
\end{array}
$$

But \hat{s} can be negative!
Multiple ad hoc fixes (ca. 1989) all failed in some regime

Examples

Spectra of X-ray, γ-ray sources

Sample sizes are never large. . . once N is "large enough," you can start subdividing the data to learn more. ... N is never enough because if it were "enough" you'd already be on to the next problem for which you need more data. - Andrew Gelman (blog entry, 31 July 2005)

Bayesian solution to on/off problem

The likelihood function is a product of separate Poisson distributions for the off-source and on-source data:

$$
\mathcal{L}(s, b)=\frac{\left(b T_{\text {off }}\right)^{N_{\text {off }}}}{N_{\text {off }}!} e^{-b T_{\text {off }}} \times \frac{\left[(s+b) T_{\text {on }}\right]^{N_{\text {on }}}}{N_{\text {on }}!} e^{-(s+b) T_{\text {on }}}
$$

Adopting flat priors for (s, b), the joint posterior is

$$
p\left(s, b \mid N_{\text {on }}, N_{\text {off }}, \mathcal{C}\right) \propto(s+b)^{N_{\text {on }}} b^{N_{\text {off }}} e^{-s T_{\text {on }}} e^{-b\left(T_{\text {on }}+T_{\text {off }}\right)}
$$

Note if $b=0$, the (normalized) posterior distribution is a gamma distribution,

$$
p\left(s, b=0 \mid N_{\text {on }}, N_{\text {off }}, \mathcal{C}\right)=\frac{T_{\text {on }}\left(s T_{\text {on }}\right)^{N_{\text {on }}}}{N_{\text {on }}!} e^{-s T_{\text {on }}}
$$

Now marginalize over b;

$$
\begin{aligned}
p\left(s \mid N_{\text {on }}, N_{\text {off }}, \mathcal{C}\right) & =\int d b p\left(s, b \mid N_{\text {on }}, \mathcal{C}\right) \\
& \propto \int d b(s+b)^{N_{\text {on }}} b^{N_{\text {off }}} e^{-s T_{\text {on }}} e^{-b\left(T_{\text {on }}+T_{\text {off }}\right)}
\end{aligned}
$$

Expand $(s+b)^{N_{\text {on }}}$ and do the resulting Γ integrals:

$$
\begin{aligned}
p\left(s \mid N_{\mathrm{on}}, N_{\mathrm{off}}, \mathcal{C}\right) & =\sum_{i=0}^{N_{\mathrm{on}}} C_{i} \frac{T_{\mathrm{on}}\left(s T_{\mathrm{on}}\right)^{i} e^{-s T_{\mathrm{on}}}}{i!} \\
C_{i} & \propto\left(1+\frac{T_{\mathrm{off}}}{T_{\mathrm{on}}}\right)^{i} \frac{\left(N_{\mathrm{on}}+N_{\mathrm{off}}-i\right)!}{\left(N_{\mathrm{on}}-i\right)!}
\end{aligned}
$$

Posterior is a weighted sum of Gamma distributions, each assigning a different number of on-source counts to the source. (Evaluate via recursive algorithm or confluent hypergeometric function.)

Example on/off joint PDFs

$$
T_{\text {on }}=T_{\text {off }}=1
$$

$$
T_{\text {on }}=1, T_{\text {off }}=10
$$

Example on/off marginal PDFs—Short integrations

Example on/off marginal PDFs—Long background integrations

Credible vs. confidence regions

Bayesian credible regions are not frequentist confidence regions:

- Credible regions guarantee exact average coverage, averaging over true rates wrt the prior
- Confidence regions guarantee minimum coverage-infimum over all possible true rates (conservative)
- Parametric model credible regions using flat priors are approximate confidence regions, with coverage error $O(1 / \sqrt{N})$. Using a reference prior improves this. Sometimes there is a "probability matching prior" that makes it exact.

Testing Coverage

Bayesian MC

credible
$\mathrm{CL}=0.9$ //eenfidenee level $\mathrm{N}=1000$ //attempts mu1- $=1042=0$ for (every pessible $\because 0$) $\{$ //test coverage for this x0 coverage $=0$
BayesLimit(CL,x0,mu1,mu2) //sample posterior for $(i=0 ; i<N ; i=i+1)\{$ mu0 ~ $\mathrm{p}(\mathrm{mu} \mid \mathrm{x0}) \mathrm{p}(\mathrm{mu}) / \mathrm{p}(\mathrm{x0})$
\}
coverage $=$ coverage $/ \mathrm{N}$
//eoverage-should-equal-CL
avg. cond'l coverage $=C L$
more common $\quad \mu \sim p(\mu)$
in this order:
$x_{0} \sim p\left(x_{0} \mid \mu\right)$

set of x 0 vals drawn from prior predictive
coveral coverage

Agenda

(1) Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters Marginalizing vs. profiling Poisson on/off problem
(4) Priors: More than penalties Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

Roles of the prior

Prior has two roles

- Modulate the likelihood to incorporate relevant prior information
- Convert likelihood from "intensity" to "measure" \rightarrow enable accounting for size of parameter space

Physical analogy

$$
\text { Heat } \quad Q=\int d \vec{r} c_{v}(\vec{r}) T(\vec{r})
$$

$$
\text { Probability } \quad P \propto \int d \theta p(\theta) \mathcal{L}(\theta)
$$

Maximum likelihood focuses on the "hottest" parameters. Bayes focuses on the parameters with the most "heat."
A high- T region may contain little heat if its c_{v} is low or if its volume is small.
A high- \mathcal{L} region may contain little probability if its prior is low or if its volume is small.

Frequentist penalized maximum likelihood methods multiply the likelihood by a penalty function, $r(\theta)$ (e.g., a regularizer):

$$
\arg \max r(\theta) \mathcal{L}(\theta)
$$

The penalty function shifts the location of the maximum
This looks like a prior, but because Bayesian calculations integrate over θ, the prior can do much more than shift the location of the mode.

Relevant ideas:

- Curse of dimensionality (hi-D geometry)
- Concentration of measure (measure theory)
- Typical sets (information theory)

These all indicate that, in hi-D spaces with a kind of symmetry (product spaces), volume (probability!) can accumulate in unanticipated ways

Agenda

1. Understanding Bayesian vs. frequentist inferences
(2) Cross-identification: p-values and alternatives p-values are not FAPs
Spatio-temporal coincidence assessment
(3) Nuisance parameters

Marginalizing vs. profiling
Poisson on/off problem
(4) Priors: More than penalties

Impacts of priors
TTE data: Period searching with adaptive binning
(5) Closing thoughts

Pulsars from Radio to Gamma Rays

GAMMA-RAY PULSARS

Pulsar Searching: Entry-Level Nonparametrics

Events: $ا ل$ ل $ل$ ل

Time
X-ray $/ \gamma$-ray arrival time series, $N=$ dozens to millions
Goal: Detect periodicity
Rate $=$ avg. rate $A \times$ periodic shape $\rho($ params $\mathcal{S})$

$$
r(t)=A \rho(\omega t-\phi)
$$

Inhomogeneous point process likelihood (for $T \gg$ period)

$$
\mathcal{L}(A, \omega, \phi, \mathcal{S})=\left[A^{N} e^{-A T}\right] \prod_{i} \rho\left(\omega t_{i}-\phi\right)
$$

Marginal likelihood for $\omega, \phi, \mathcal{S}$

$$
\mathcal{L}(\omega, \phi, \mathcal{S})=\prod_{i} \rho\left(\omega t_{i}-\phi\right)
$$

Various models implemented . . .

Piecewise-constant model (Gregory \& Loredo 1992)

- Take $\rho(\theta)=f_{k}$ in M phase bins
- Use flat prior on f_{k} over simplex $\sum_{k} f_{k}=1$
- Analytically marginalize over shape \rightarrow

$$
p \propto \frac{(M-1)!}{(N+M-1)!}\left[\frac{n_{1}!n_{2}!\ldots n_{M}!}{N!}\right] \quad \text { entropy! }
$$

- Numerically marginalize over phase, frequency
- Model-average over M to predict light curve

> X-Ray Pulsar PSR 0540-693 (Gregory \& TL 1996) 3300 events over 10^{5} s, many gaps, Rayleigh test fails

David MacKay \& John Skilling observed that the odds falls surprisingly quickly with increasing \# of bins...

Can We Do Better?

The flat stepwise shape prior is. . . flat!

Flat prior, $m=5$

Flat prior, $m=30$

- Adopt symmetric Dirichlet prior:

$$
p(\boldsymbol{f})=\delta\left(1-\sum_{k} f_{k}\right) \prod_{k} f_{k}^{\alpha-1}
$$

- Cross-model consistency requirement: 4-bin prior should become 2-bin prior when binned up, etc.
- Aggregation consistency $\rightarrow \alpha=C / M$

Aggr'n-consistent prior, m=30

Still work to do. . .

Theme: Parameter space volume

Bayesian calculations sum/integrate over parameter/hypothesis space!
(Frequentist calculations average over sample space \& typically optimize over parameter space.)

- Credible regions integrate over parameter space
- Marginalization weights the profile likelihood by a volume factor for the nuisance parameters
- Marginal likelihoods have parameter space volume factors that can penalize models for unncecessary complexity
- Prediction, uncertainty propagation, model averaging...

Many virtues of Bayesian methods can be attributed to this accounting for the "size" of parameter space. This idea does not arise naturally in frequentist statistics (but it can be added "by hand"-ignoring Fisher!).

A frontier: Bayesian neural nets

Neural nets are large, composite models with thousands to millions of weight parameters, w :

$$
\begin{aligned}
\log [p(w \mid D)] & =\log [\pi(w)]+\log [\mathcal{L}(w)]+C \\
& =\log [\pi(w)]-\operatorname{Loss}(w)+C
\end{aligned}
$$

Deep neural net loss landscape

See: Loss surfaces. . . and What Are Bayesian Neural Network Posteriors Really Like?

