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Bayesian data analysis gets its name from Bayes's theorem:

So it's basically about modulating maximum likelihood with priors…
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Bayesian inference in a nutshell

Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments
from data and modeling assumptions to each hypothesis

Use all of probability theory for this

Bayes’s theorem
p(Hypothesis | Data) ∝ p(Hypothesis)× p(Data | Hypothesis)

Data change the support for a hypothesis ∝ ability of
hypothesis to predict the observed data

Law of total probability
p(Hypotheses | Data) =

∑
p(Hypothesis | Data)

The support for a composite hypothesis must account for all
the ways it could be true, via marginalization
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On the key role of marginalization
Bayesian statistics uses all of probability theory, not just Bayes’s
theorem, and not even primarily Bayes’s theorem. . . . Perhaps the
most important theorem for doing Bayesian calculations is the law
of total probability (LTP) that relates marginal probabilities to
joint and conditional probabilities. . . . Arguably, if this approach to
inference is to be named for a theorem, “total probability
inference” would be a more appropriate appellation than “Bayesian
statistics.” It is probably too late to change the name. But it is
not too late to change the emphasis.

— Loredo (2013)

The key distinguishing property of a Bayesian approach is
marginalization instead of optimization, not the prior, or Bayes
rule. . . . Broadly speaking, what makes Bayesian approaches
distinctive is a posterior weighted marginalization over
parameters. . . . Moreover, basic probability theory indicates that
marginalization is desirable.

— Wilson (2020), Wilson & Izmailov (2020)
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Interpreting PDFs

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies

that quantify variability in a sequence of trials. p(x) describes how

the values of x would be distributed among infinitely many trials:

x

PD
F

x is distributed
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Bayesian

Probability quantifies uncertainty in an inductive inference. p(x)

describes how probability is distributed over the possible values x

might have taken in the single case before us:

x

PD
F

x has a single,
uncertain value

P is distributed

This interpretation holds whether x labels data or hypotheses.

9 / 65



Probability & frequency in IID settings

Consider a setting where we assign the same probability to many
independent outcomes (flips of a coin, rolls of a die, searches for
an Earth around a G dwarf. . . ):

• If the probability is high, we expect the outcomes to occur
frequently

• If the probability is low, we expect the outcomes to occur
rarely

In IID repeated trial settings, it seems there should be a
relationship between single-trial probability and multiple-trial
(relative) frequency

Early probabilists—Bernoulli, Bayes, Laplace, etc.—interpreted
probability in a Bayesian way, but sought to derive connections to
frequency in replication settings
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Frequency from probability

Bernoulli’s (weak) law of large numbers: In repeated IID
trials, given P(success| . . .) = α, predict

nsuccess

Ntotal
→ α as Ntotal →∞

If P(success| . . .) does not change from sample to sample, it
may be interpreted as the expected relative frequency

Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the Doctrine
of Chances” → First use of Bayes’s theorem:

Probability for success in next trial of IID sequence:

E(α)→ nsuccess

Ntotal
as Ntotal →∞

If P(success| . . .) does not change from sample to sample, it
may be estimated using relative frequency data
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There is nothing more Bayesian than to be interested in the role of
frequency in inference. But probability is not identified with
frequency—the former is an abstract measure of argument
strength; the latter is (potentially) observable.

Probability as a measure of strength of a data-based argument is
separate from calibration—quantifying long-run performance of a
procedure used in a replication setting. When calibration properties
are of interest, they need to be separately computed.
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Frequentist vs. Bayesian statements
“The data Dobs support hypothesis H . . . ”

Frequentist assessment

“H was selected with a procedure that’s right 95% of the time
over a set {Dhyp} that includes Dobs.”

Probabilities are properties of procedures, not of particular
results. Guaranteed long-run performance is the sine qua non.

Bayesian assessment

“The strength of the chain of reasoning from the model and
Dobs to H is 0.95, on a scale where 1= certainty.”

Probabilities are associated with arguments based on specific,
observed data.

Long-run performance must be separately evaluated (and is
typically good by frequentist criteria in parametric settings).
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Null hypothesis significance testing (NHST)
Neyman-Pearson testing• Specify simple null hypothesis H0 such that rejecting it implies an

interesting effect is present

• Devise statistic S(D) measuring departure from null predictions

• Divide sample space into probable and improbable parts (for H0);
p(improbable|H0) = α (Type I error rate), with α specified a priori

• If S(Dobs) lies in improbable region, reject H0; otherwise accept it

• Report: “H0 was rejected (or not) with a procedure with false-alarm
frequency α”

Scrit,↵

p
(S

|H
0
)

S(Dobs)

H0

�

S(Dhyp)
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Neyman and Pearson devised this approach guided by
Neyman’s frequentist principle:

In repeated practical use of a statistical procedure, the
long-run average actual error should not be greater than
(and ideally should equal) the long-run average reported
error. (Berger 2003)

A confidence region is an example of a familiar procedure
satisfying the frequentist principle

They insisted that one also specify an alternative, and find the
error rate for falsely rejecting it (Type II error)

For simple null and alternative hypotheses, the optimal S(D)
is the (log) likelihood ratio. For composite hypotheses, the
maximum likelihood ratio is popular (not necessarily optimal).
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Fisher’s p-value testing

Fisher (and others) felt reporting a rejection frequency of α
no matter where S(Dobs) lies in the rejection region does not
accurately communicate the strength of evidence against H0

He advocated reporting the p-value:

p = P(S(D) > S(Dobs)|H0)

Smaller p-values indicate stronger evidence against H0

Astronomers call this the significance level or the false-alarm
probability (FAP). Statisticians don’t—for good reason!

p
(S

|H
0
)

H0

S(Dobs)

p

S(Dhyp)
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ASA 2016 statement
on statistical significance and p-values

• P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

• Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes a
specific threshold.

• By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.

• . . .
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p-values and the FAP fallacy

From the exoplanets literature:

“...the false alarm probability for this signal is rather high at a
few percent.”

“This signal has a false alarm probability of < 4 % and is
consistent with a planet of minimum mass 2.2 M�...”

“This detection has a signal-to-noise ratio of 4.1 with an
empirically estimated upper limit on false alarm probability of
1.0%.”

“We find a false-alarm probability < 10−4 that the RV
oscillations attributed to CoRoT-7b and CoRoT-7c are
spurious effects of noise and activity.”
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All of these statements incorrectly describe the
weight of evidence for a planet, and almost certainly

greatly exaggerate the weight of the evidence

Similar misuses of p-values appear throughout astronomy,
including in Nobel prize winning work discovering the accelerated

expansion of the universe, and the first gravitational wave sources.

We can (must) do better!
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What’s wrong?
“This signal, with S(Dobs) = X, has a FAP of p . . .”

p = P({Dhyp : S(Dhyp) ≥ S(Dobs)}|H0)

Probability . . . given H0

p is computed assuming that H0 always operates

Every alarm is false (i.e., with FAP= 1) in this “world”

For any signal to have FAP6= 1, alternatives to the null must
sometimes act; the FAP will depend on how often they do,
and what they are

Probability. . . including worse departures from null predictions

p is not a property of this signal; it’s the size of the ensemble
of possible null-generated datasets with S(D) > S(Dobs)

Dobs bounds this set on the weakest side
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What a p-value really means

In the voice of Don LaFontaine or Lake Bell:

In a world. . . with absolutely no sources,
with a threshold set so we wrongly claim to

detect sources 100× p% of the time,
this data would wrongly be considered a

detection—and it would be the data
providing the weakest evidence for a source

in that world.

Who wants to say that?! Whence “p-value,” a measure of
“surprisingness” under the null.
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p’s one intuitive property

Under the null, the fraction of time p > X is. . .X

Think of p as an alternative test statistic—a nonlinear mapping of
S(D) that has a uniform distribution under the null

p
(S

|H
0
)

H0

S(Dobs)

p

S(Dhyp) p-value1 0
p
(p

-v
al

u
e|H

0
)

p is a surprise-ordered relabeling of the data, with a U(0, 1) PDF,
and a linearly rising CDF
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Surprise isn’t enough

The rarity of data “like” Dobs under H0 is evidence against H0 only
if plausible alternatives make Dobs less surprising

Expand the “world” of the p-value calculation:

• Let an alternative, H1, sometimes operate, with probability π1

(with null prevalence π0 = 1− π1)

• Compare the rates for getting the observed p-value under H0

and H1 (not “observed or smaller p-value”)

• Equivalently: Compare the rates for getting S(Dobs) under H0

and H1

This conditional frequentist approach can produce genuine FAPs; it
uses P(S(Dobs)|Hi ), not tail areas

If the hypotheses are simple and S(·) is sufficient, this corresponds
to using Bayes factors
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For composite hypotheses (H1 here), the marginal likelihood
accounts for parameter uncertainty that is ignored by p-values
(which typically set parameters equal to best-fit values):

p(D|Hi ) =

∫
dθi p(θi ) p(D|θi ,Hi )

H0

H1

p
(D

|H
i)

Dobs

Dhyp

p(D|H1)

p(D|µ, H1)

Also, the marginal likelihood uses all of the data, not just the value
of a test statistic: in general p(D|Hi ) 6= p(S(D)|Hi )
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Do GRB sources repeat?

250 GRB directions (1st ∼10% of 4B Catalog)
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Subset with neighbor within 3◦ (39)

• 485 out of the 1st 1000 are this close
• 2280 out of the total 2702 are this close

Are there too many close pairs, presuming independence?

Various statistics (nearest neighbor, angular correlation) gave p ∼ 0.001
to 0.01 assuming independence, isotropy—some also using antipodal
correlations!
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Coincidence assessment in astronomy
We observe the same region of the sky through various “windows:”

• Multiwavelength astronomy — Different regions of the
electromagnetic spectrum

• Multi-messenger astronomy — Different types of radiation
I Electromagnetic
I Neutrinos
I Cosmic rays
I Gravitational radiation

• Time-domain astronomy — Different periods of time

Fundamental questions:

• Are objects/events associated (“counterparts”)? → Pool
information to better characterize underlying phenomenon
• Are objects/events distinct? → Discovery!

Fundamental difficulties: Uncertainties in directions and other
observables, measures of closeness, number of candidate
matches. . .
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Bayesian Coincidence Assessment
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Multiplet Bayes Factors

Analytical result using Fisher dist’n (isotropic prior):

Bij =
κiκj

(4π)2 sinh(κi ) sinh(κj)

sinh(R)

R
,

R2 = κ2
i + κ2

j + 2κiκj cos(ni · nj)

Generalization to multiplet of size k :

Bij ...l =
1

(4π)k
sinh(R)

R

(
κi

sinh(κi )

)(
κj

sinh(κj)

)
× · · · ×

(
κl

sinh(κl)

)

R2 = (κini + κjnj + · · ·+ κlnl)
2
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Doublet Bayes factor behavior
vs. nearest-neighbor p-value
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Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence hypothesis, H1

For N = 3 events:

• Three doublets: 1 + 2, 1 + 3, or 2 + 3

• One triplet

The number of alternatives (partitions, $) grows combinatorially!

• Model building: Assign sensible priors to partitions

• Computation: Find & sum over important partitions
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Challenge: Large, complex localizations

LIGO+VIRGO GW source localizations

See Friday’s talks by Budavári and Salvato for more. . .
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Nuisance parameters and marginalization

To model most data, we need to introduce parameters besides
those of ultimate interest: nuisance parameters.

Example

We have data from measuring a rate r = s + b that is a sum
of an interesting signal s and a background b.

We have additional data just about b.

What do the data tell us about s?
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Marginal posterior distribution
To summarize implications for s, accounting for b uncertainty,
marginalize:

p(s|D,M) =

∫
db p(s, b|D,M)

∝ p(s|M)

∫
db p(b|s,M)L(s, b)

= p(s|M)Lm(s)

with Lm(s) the marginal likelihood function for s:

Lm(s) ≡
∫

db p(b|s)L(s, b)

Maximum likelihood suggests instead computing the profile
likelihood:

Lp(s) ≡ L(s, b̂s), b̂s = best b given s
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Marginalization vs. profiling

For insight: Suppose the prior is broad compared to the likelihood
→ for a fixed s, we can accurately estimate b with max likelihood
b̂s , with small uncertainty δbs .

Lm(s) ≡
∫

db p(b|s)L(s, b)

≈ p(b̂s |s) L(s, b̂s ) δbs

best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter
space volume factor

E.g., Gaussians: ŝ = r̂ − b̂, σ2
s = σ2

r + σ2
b, and δbs is const.

Background subtraction is a special case of background marginalization.

42 / 65



Flared/skewed/bannana-shaped: Lm and Lp differ

Lp(s) Lm(s)

s

b

b̂s

s

b

b̂s

Lp(s) Lm(s)

General result: For a linear (in params) model sampled with
Gaussian noise, and flat priors, Lm ∝ Lp.
Otherwise, they will likely differ.

In measurement error problems the difference can have dramatic
consequences (due to proliferation of latent parameters)
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The on/off problem for Poisson counting data
Basic problem

• Look off-source; unknown background rate b
Count Noff photons in interval Toff

• Look on-source; rate is r = s + b with unknown signal s
Count Non photons in interval Ton

• Infer s

Conventional solution

b̂ = Noff/Toff ; σb =
√
Noff/Toff

r̂ = Non/Ton; σr =
√
Non/Ton

ŝ = r̂ − b̂; σs =
√
σ2
r + σ2

b

But ŝ can be negative!

Multiple ad hoc fixes (ca. 1989) all failed in some regime
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Examples
Spectra of X-ray, γ-ray sources

Bassani et al. 1989 Di Salvo et al. 2001

Sample sizes are never large. . . once N is “large enough,” you can start subdividing the
data to learn more. . . . N is never enough because if it were “enough” you’d already
be on to the next problem for which you need more data. — Andrew Gelman (blog
entry, 31 July 2005)
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Bayesian solution to on/off problem

The likelihood function is a product of separate Poisson
distributions for the off-source and on-source data:

L(s, b) =
(bToff)Noff

Noff !
e−bToff × [(s + b)Ton]Non

Non!
e−(s+b)Ton

Adopting flat priors for (s, b), the joint posterior is

p(s, b|Non,Noff , C) ∝ (s + b)NonbNoff e−sTone−b(Ton+Toff)

Note if b = 0, the (normalized) posterior distribution is a gamma
distribution,

p(s, b = 0|Non,Noff , C) =
Ton(sTon)Non

Non!
e−sTon
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Now marginalize over b;

p(s|Non,Noff , C) =

∫
db p(s, b | Non, C)

∝
∫

db (s + b)NonbNoff e−sTone−b(Ton+Toff)

Expand (s + b)Non and do the resulting Γ integrals:

p(s|Non,Noff , C) =
Non∑

i=0

Ci
Ton(sTon)ie−sTon

i !

Ci ∝
(

1 +
Toff

Ton

)i
(Non + Noff − i)!

(Non − i)!

Posterior is a weighted sum of Gamma distributions, each assigning a
different number of on-source counts to the source. (Evaluate via
recursive algorithm or confluent hypergeometric function.)
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Example on/off joint PDFs
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Example on/off marginal PDFs—Short integrations

Ton = Toff = 1
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Example on/off marginal PDFs—Long background integrations

Ton = 1,Toff = 10
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Credible vs. confidence regions

Bayesian credible regions are not frequentist confidence regions:

• Credible regions guarantee exact average coverage, averaging
over true rates wrt the prior

• Confidence regions guarantee minimum coverage—infimum
over all possible true rates (conservative)

• Parametric model credible regions using flat priors are
approximate confidence regions, with coverage error
O(1/

√
N). Using a reference prior improves this. Sometimes

there is a “probability matching prior” that makes it exact.
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credible

conditional
coverage

conditional
coverage

avg. cond’l coverage = CLmin. cond’l coverage = CL

set of x0 vals drawn
from prior predictive
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µ ⇠ p(µ)

x0 ⇠ p(x0|µ)
more common
in this order:
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Roles of the prior
Prior has two roles

• Modulate the likelihood to incorporate relevant prior
information

• Convert likelihood from “intensity” to “measure”
→ enable accounting for size of parameter space

Physical analogy

Heat Q =

∫
d~r cv (~r)T (~r)

Probability P ∝
∫

dθ p(θ)L(θ)

Maximum likelihood focuses on the “hottest” parameters.

Bayes focuses on the parameters with the most “heat.”

A high-T region may contain little heat if its cv is low or if its

volume is small.

A high-L region may contain little probability if its prior is low or if

its volume is small.
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Frequentist penalized maximum likelihood methods multiply the
likelihood by a penalty function, r(θ) (e.g., a regularizer):

arg max r(θ)L(θ)

The penalty function shifts the location of the maximum

This looks like a prior, but because Bayesian calculations integrate
over θ, the prior can do much more than shift the location of the
mode.

Relevant ideas:

• Curse of dimensionality (hi-D geometry)

• Concentration of measure (measure theory)

• Typical sets (information theory)

These all indicate that, in hi-D spaces with a kind of symmetry
(product spaces), volume (probability!) can accumulate in
unanticipated ways
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Pulsars from Radio to Gamma Rays
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Pulsar Searching: Entry-Level Nonparametrics

X-ray/γ-ray arrival time series, N = dozens to millions

Goal: Detect periodicity

Rate = avg. rate A × periodic shape ρ (params S)

r(t) = Aρ(ωt − φ)

Inhomogeneous point process likelihood (for T � period)

L(A, ω, φ,S) =
[
ANe−AT

]∏

i

ρ(ωti − φ)

Marginal likelihood for ω, φ, S

L(ω, φ,S) =
∏

i

ρ(ωti − φ)

Various models implemented . . .
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Piecewise-constant model (Gregory & Loredo 1992)

• Take ρ(θ) = fk in M phase bins

• Use flat prior on fk over simplex
∑

k fk = 1

• Analytically marginalize over shape →

p ∝ (M − 1)!

(N + M − 1)!

[
n1! n2! . . . nM !

N!

]
entropy!

• Numerically marginalize over phase, frequency

• Model-average over M to predict light curve
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X-Ray Pulsar PSR 0540-693 (Gregory & TL 1996)
3300 events over 105 s, many gaps, Rayleigh test fails

David MacKay & John Skilling observed that the odds falls
surprisingly quickly with increasing # of bins. . .
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Can We Do Better?

The flat stepwise shape prior is. . . flat!

Flat prior, m=5 Flat prior, m=30
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• Adopt symmetric Dirichlet prior:

p(f ) = δ

(
1−

∑

k

fk

)∏

k

f α−1
k

• Cross-model consistency requirement:
4-bin prior should become 2-bin prior when binned up, etc.

• Aggregation consistency → α = C/M

Aggr’n-consistent prior, m=30

Still work to do. . .
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Theme: Parameter space volume
Bayesian calculations sum/integrate over parameter/hypothesis
space!

(Frequentist calculations average over sample space & typically optimize

over parameter space.)

• Credible regions integrate over parameter space

• Marginalization weights the profile likelihood by a volume
factor for the nuisance parameters

• Marginal likelihoods have parameter space volume factors that
can penalize models for unncecessary complexity

• Prediction, uncertainty propagation, model averaging. . .

Many virtues of Bayesian methods can be attributed to this
accounting for the “size” of parameter space. This idea does not
arise naturally in frequentist statistics (but it can be added “by
hand”—ignoring Fisher!).
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A frontier: Bayesian neural nets
Neural nets are large, composite models with thousands to millions of
weight parameters, w :

log[p(w |D)] = log[π(w)] + log[L(w)] + C

= log[π(w)]− Loss(w) + C

Deep neural net loss landscape

See: Loss surfaces. . . and What Are Bayesian Neural Network Posteriors Really Like?
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