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Time Series Analysis 

• TSA in a Zwicky Morphological Box

• Elementary Operations

• Fourier Transform of Unevenly Sampled Data

• Time-Domain Segmentation: Bayesian Blocks

• Time-Domain Models

* The line is similar to a length of time, 
and as the points are the beginning and end of the line, 

so the instants are the endpoints of any given extension of time.
Leonardo da Vinci, Codex Arundel, folio 190v., c. 1500



Definition: A TIME SERIES IS …

• A set of data elements, each of which 
conveys some information about the 
underlying signal, or function of time

• Special case: Sequential Data, when the 
elements can be ordered in time
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Three	Data	Elements

Not	even	sequential!





Solar	Cycle	Variability	and	Surface	Differential	Rotation	
from	Ca	II	K-Line	Time	Series	Data
Jeffrey	Scargle, Stephen	Keil, Pete	Worden
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[Extracted from “A Handbook of Practical Time Series Analysis,” JDS, in preparation.

The following is the expression for the complex Fourier transform of a series of values x
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with weights w
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where all sums are over n = 1, 2, ..., N .

Note the di↵erent ways that x and w enter. x is like a stronger signal; w is like a signal
of a given strength but with more statistical significance

The complex Fourier transform of a sequence of N events occurring at arbitrary times
{t

n

} and with individual weights {w
n

}, is obtained by setting the measured variable x

n

to
unity, and accounting for weights using eqs. (D1-3):

For time-tagged photon data simply replace X

n

with unity; The information is now
carried by the times alone. That is to say, events are treated in more or less the same way
as measurements, but as unit amplitude delta functions in time.

Figure 2 is an example of a power spectrum computed in this way, from a set of 376, 964
gamma-ray photon times for the AGN 3C 273, the same data as described in Meyer, Scargle
and Blandford (2019). As usual, without smoothing the spectrum is noisy. However a
surprising number of large peaks (marked with dotted lines) are not observational noise but
diagnostic of data acquisition aspects of the Fermi observatory. Since they are not features
of the source variability, ideally these corrupting modulations should be removed from the
data to the extent practical.

The lowest special frequency is the fundamental corresponding to the total observation
interval T

obs

. The next highest special frequency corresponds to the precession period of the
Fermi Observatory, namely 53.4 days, marked with the letter “P” on the figures. This cyclic
motion causes a modulation of the flux that is quite obvious in this power spectrum. Perhaps
the modulation expected to be strongest is at the orbital period of about 96.5 minutes,
since the observations are regularly interrupted at this cadence. The default mode of the
observatory is to adjust the orientation by ±35 degrees during alternate orbits, resulting
in additional modulation at twice the orbital period (i.e. a subharmonic of the orbital
frequency). Spectral peaks at both of these frequencies, marked “O” and “O/2”, are quite
prominent in this figure.

But what is the large peak, marked “D” near the frequency of one cycle per day?

weights (extensive)  (intensive) amplitudes

frequencies 
(arbitrary)

time tags
Fourier Transform of Unevenly Spaced Time Series

Studies in astronomical time series analysis. III. 
Fourier Transforms, Autocorrelation Functions, and  Cross-Correlation Functions of Unevenly Spaced Data.

JS, ApJ 343, 874-887

  Treat event (photon) data as !(t - tn)   
… that is, xn = 1  

The Measurable Quantities of Physics 
Tolman, 1917, Phys. Rev. 9, 237–253
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Recovery of Signal Sampled at Random Times 



The	quasi-periodic	oscillations	and	very	low	frequency	noise	
of	Scorpius	X-1	as	transient	chaos	- A	dripping	handrail?

JS,	Steiman-Cameron,	Young,	Donoho,		Crutchfield,	Imamura,		ApJ,		411,	L91

Scalegram:	
log	Wavelet	Power	vs.	log	Scale



Moral Imperatives of Data Analysis
(“Information Husbandry?”)

The Truth: Extract valid information from the data

The Whole Truth:   avoid the sin of omission by not

§ discarding information (data smoothing, binning, rounding, cutting)

§ hiding information (Fourier phase spectra, publication bias)

§ resorting to easy, standard, greedy suboptimal methods (unprincipled 
tapers, multi-point correlation functions, the "data microscope”)

Nothing But the Truth: avoid the sin of lying by 

§ understanding and accounting for random and systematic errors, biases

§ avoiding corruption of true information (data smoothing, binning, rounding)

§ not introducing false information (interpolation, gap filling)

§ cherry picking (trials factor, publication bias, ”physical values”)



Essential	Features of	Bayesian	Blocks:
Best	possible	step-function	fit	to	data

(Exact	Global	Optimum)

The	truth,	the	whole	truth,	nothing	but	the	truth.

No	loss	of	information	or	resolution	by	pre-binning

Single	parameter:	prior	on	number	of	blocks
(penalty	for	model	complexity)

Mediates	the	bias-variance	trade-off



• Data
Points	ordered	in	time

• Blocks	(sets	of	consecutive	data	points)	
Block	Shape	Model
Block	Fitness	(objective	function)

• Segmented	Model:	partition	into	blocks
Total	Fitness	=	Sum	of	Block	Fitness
Optimize	Total	Fitness	over	all	2N possible	partitions

(Optimum	number	of	blocks	
automatically	determined!)

• One	parameter, a	penalty	constant,
derived	from	the	prior	on	the	number	of	blocks;
calibrate	to	an	acceptable	false	positive	rate.



Bayesian	Blocks	can	use	ANY Data	Mode
• point	measurements:	X(	tn )
• time-tagged	events:	tn
• time-to-spill	
• categorical																																																	
• data	with	gaps
• circular	data
• uneven	sampling
• exposure	variation
• real-time	or	retrospective
• arbitrary	mixtures	of	data	modes
• multivariate	data	(with	or	without	the	constraining	the	

change-points	to	be	the	same)
• higher	dimensions
• auxiliary	information
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GC	Islands	in	the	Human	Genome
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What	good	are	Segmented	Time	Series	Representations?
Detect	and	characterize	statistically	significant

variability	supported	by	the	data.	

Detect	and	characterize,	without	bins	or	smoothing:
◆ Pulses	(aka	“flares”)	
◆ Pulse	shapes	(including	the	Arrow	of	Time)
◆ Variability	index
◆ Variability	time	scales	(min,	max,	distribution,	…)
◆ Transient	event	triggers	(real-time	mode)

…	and	implement:
◆ Exploratory	Data	Analysis
◆ Time	series	classification
◆ Noise	suppression
◆ Visual	displays
◆ Data	compression
◆ Data	adaptive	histograms



Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Jeffrey D. Scargle, Jay P. Norris, Brad Jackson, James Chiang  arxiv.org/abs/1207.5578

Bellman,	R.	1961,	On	the	approximation	of	curves	by	line	segments	using	dynamic	
programming,	Communications	of	the	ACM,	4,	284.

o Flexible w.r.t. data mode
o O(N2) or faster
o Exact global optimum
o Statistically significant features
o Noise suppressed
o No smoothing
o Unlimited dynamic range

Fiducial	histogram
of	photon	times





Most likely of the 10468 possible segmentations of these 1554 data points! 

Crab Nebula rises above the status of a constant calibration source!



Standard	Methods	to	Fix	the
Number	and	Width	of	Bins	
in	Histograms	…	
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The	problem	with	Sturges’	rule	for	constructing	histograms,		Rob	J	Hyndman	(1995)
https://robjhyndman.com/publications/sturges/

“It	is	known	that	Sturges’	rule	leads	to	oversmoothed	histograms,	but	Sturges’	derivation	of	
his	rule	has	never	been	questioned.	…	the	argument	leading	to	Sturges’	rule	is	wrong	…”
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So	what	is	the	best	number	of	bins?
Scott,	K.	Knuth,	etc.	…	?

Better	yet,	discard	constraint	of	equal	bins:	Bayesian	Blocks



Starting value 
for fit routine 

Fermi Flux Histogram: Crab Nebula



Given two different flux time series: how related are they?

The	ubiquitous	correlation	coefficient characterizes	
linear	relations	…	but	is	insensitive	to	non-linear	ones.	

-

-

- -

--
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Hierarchy	of	Degrees	of	Relationship
between	two	processes	X	and	Y

Uncorrelated: E [	X(t)	Y(t)	]	=	0	

Martingale	Property:	E [	X(t)	|	Y(t)]	=	E [	X(t)	]
E [	Y(t)	|	X(t)]	=	E [	Y(t)	]

Independent: F(X,Y)	=	F(X)	F(Y)
(F:	PDF,	CDF,	characteristic	function)

(Expectations)

(Distributions)

(Inner	Product)



Example:	a	white	noise	process	for	which	correlation	is	useless	



Measure	(in)dependence	between	two	time	series
D(X,Y)	==	<	F(X,Y)	,	F(X)	F(Y)	>

F	can	be:
• Differential	Probability	Distribution	
• Cumulative	Probability	Distribution
• Characteristic	Function	…

< ,		> can	be:

• Mean	Square	Difference
• Mutual	Information
• D.Wolpert’s Bayesian	Histogram	Comparator
• Earth-Mover’s	Distance
• Copula,	etc.,	etc.,	etc.



Computing	cumulative	distributions	F(X,Y)	,	F(X),		F(Y)

Given	data:		x(tn),	y(tn),	n	=	1,	2,	…	,	N
(tn need	not	be	evenly	spaced)

F2(xn,yn)	=	#(x	<=	xn and	y	<=	yn)	/	N
F1(xn)	=	#(x	<=	xn)	/	N
F1(yn)	=	#(y	<=	yn)	/	N

D(X,Y)	=	<<	[	F2(xn,yn)	- F1(xn)	F1(yn)	]	2 >>



Why	are	Dependence	Measures	
not	Used	as	much	as	Correlations?
Correlations	(and	Correlation	Functions)

• Bi-Linear	in	the	Data
• Directly	computable	from	the	time	series
•Widely	used	standard	tool	(the	Lemming	effect)
• Easily	computable	

Dependence	Measures	(and	Functions)
• Not	Bi-Linear	in	the	Data
• Require	estimates	of	probability	distributions
(But	bin-free	estimates	are	straightforward)
•Many	ways	to	measure	F(X,Y)	vs.	F(X)F(Y)
• Theoretical	analysis	difficult



Dependence in the Statistics Literature

Goodman (1997)
Statistical Methods … the Midway View of Nonindependence
The Practice of Data Analysis, Essays in Homor of John W. Tukey, Princeton U. Press, 

Szekely, Rizzo and Bakirov (2007)
Measuring and Testing Dependence  by Correlation of Distances
Annals of Statistics, 35, 2769-2794.

Ding and Li (2015) 
Copula Correlation: An Equitable Dependence Measure and Extension of 
Pearson's Correlation  1312.7214

Yakir et al (2016)
Measuring Dependence Powerfully and Equitably  1505.02213

Richards (2017) 
Distance Correlation: A New Tool for Detecting Association and Measuring 
Correlation Between Data Sets 1709.06400

Kagan and Szekely (2019)
Calibrating Dependence between Random Elements 1903.04663



A combined radio and GeV γ -ray view of the 2012 and 2013 flares of Mrk 421
T. Hovatta et al., MNRAS 448, 3121–3131 (2015) 





Dynamic	Cross-Correlation	

Dynamic	Cross-Dependence	



Bayesian Blocks Bibliogrpahy

Studies in Astronomical Time Series Analysis. 
VI. Bayesian Block Representations
Scargle, J., Norris, J., Jackson, B. and Chiang, J.
The Astrophysical Journal, 764, 167 (2013)
Our Blog: http://bayesianblocks.blogspot.com/

Jake Vanderplas’ Blog Dynamic Programming in Python: Bayesian Blocks 
http://jakevdp.github.com/blog/2012/09/12/dynamic-programming-in-python/

Starship Asterisk* APOD and General Astronomy Discussion Forum
Bayesian Blocks: Detecting local variability in time series
http://asterisk.apod.com/viewtopic.php?f=35&t=29458

An algorithm for optimal partitioning of data on an interval
Jackson, Scargle, Barnes, Arabhi, Gioumousis, Gwin, Sangtrakulcharoen, Tan, Tun Tao Tsai
IEEE Signal Processing Letters, 2005, 12, 105

Studies in Astronomical Time Series Analysis. 
V. Bayesian Blocks, a New Method to Analyze Structure in Photon Counting Data
Scargle, 1998,  Astrophysical Journal, 504, 405 

Obsolete	algorithm

✘



The Wold Theorem: Any Stationary Process has an 
exact Moving Average (and/or Auto-regressive) Representation

Gaussian	R	—>	AR	=	Gauss-Markov	=	OU

X	=	C	* R	+	D
(random	+	deterministic)



In

The	Moving	Average	as	a	Shot	Noise	Process

In	the	Wold	Representation	the	filter	C	(pulse)	is
•minimum	delay
•causal
•constant	in	time	

!



The	Arrow	of	Time?



Convenient	algebra	of	pulse	shapes
Implemented	via	the	z-transform.



Generalized Wold Theorem:  Any Stationary Process has 
a family of equivalent, exact AR and/or MA Representations

Two Possible Solutions to the Arrow of Time:
(1) two-sided (acausal) models + new fitness measures

(2) “local” models, such as Bayesian Blocks

All this, and more, in JS, Studies in Astronomical Time Series Analysis: 
I. Modeling Random Processes in the Time Domain, ApJS. 1981, 45, 1-71

If	the	Moving	Average	has	M	coefficients
there	are	2M C’s	(with	different,	but	white,	R’s)

that	yield	exactly	equivalent	representations	of	X.
One	minimum	delay,	one	maximum	delay;	others	mixed	delay.

Conjecture:	the	unique	R	of	the	“correct”	MA	is	IID.
—>	minimum	dependence	blind	deconvolution!


