Introductory Talks for PHYSTAT-Gamma 27 Sep, 2022

Some More Statistical Concepts & Terms

Relevant in Gamma-Ray Astronomy*

Ullrich Schwanke
Humboldt-Universitat zu Berlin

* Not only, of course ©



o Glen's lectures have introduced unbinned
maximum-likelihood estimators and their uses in

e Point estimation
e Interval estimation
* Hypothesis testing

 In the end, the likelihood of an experiment
encodes all the information — but it is not always
accessible for outside people

 Would like to elaborate on a few concepts and
terms that are also relevant for gamma-ray
astronomy (and the workshop starting
tomorrow)



» Error propagation/change of variables

» Statistical and systematic errors

* Binned maximum likelihood and model testing
» Trial factors /look-elsewhere effect



e Error propagation/change of variables
» Statistical and systematic errors
* Binned maximum likelihood and model testing

o Trial factors /look-elsewhere effect
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Variance and Confidence Intervals

Flux (true flux non-negative!)

Measurements within +1c around mean
Gauss 68.3% ‘ confidence
Exponential 86.5% | interval
Uniform distribution 57.7% T
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* Lecture 1: sqrt(Variance) as measure of the width of a PDF

» This ,error" is not accurate enough (, Probability content™ depends
on shape/type of PDF)

* A confidence interval (CI) should (i) include the true value of a
parameter with some probability (degree of belief, Bayesian) or (ii)
belong to an ensemble of CIs a certain fraction of which (confidence
level) includes the true value (Frequentist)



Confidence Intervals: Coverage
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Confidence intervals
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coverage

overcoverage
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Confidence
intervals too broad
(i.e. too
conservative)
“overcoverage"

Excludes fewer
(wrong)
hypotheses

Proper coverage of calculated confidence intervals can be tested
with the help of Monte Carlo simulations (see appendix for pseudo
codes for the Frequentist and Bayesian case)
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» If PDF f(x4,Xx,) factorizes as f(x;,x,) = fi(x;) f2(x;) the random
variables are mutually independent and their covariance is 0

 Important: The converse statement is not true (i.e. one cannot claim
that two variables are independent if their covariance vanishes)

* For N variables, cov(xy,..,xy) is a symmetric NxN matrix that is called
covariance matrix/variance matrix/error matrix



Correlation Coefficient
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Covariance Matrix (1/2)
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In the ML scheme, the covariance matrix can be estimated (often
numerically) from the Hessian Matrix of 2nd derivatives

o Strictly valid (only) in the limit of large N
PDF of the estimate is then a multivariate Gaussian, no bias

\]




Covariance Matrix (2/2)

02

Inl = InL(f) — 2

InL = L(f) - 1/2

Contours at confidence levels of
39.9% and 86.5%

The estimate of the
covariance matrix from the
derivatives near the optimal
parameter values is an
approximation

Approximation will be bad
when the likelihood is still
non-Gaussian

The likelihood encodes more
information than the

covariance matrix (unless
N—)OO)



Removing Correlation (1/2)

10.0 ® COV(a,b) >0
e cov(ab)=0
e cov(ab)<0
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Cov(i,j)-terms (i#j) can be brought to zero by a suitable
transformation

The transformation will introduce new parameters that one has to
cite in connection with revised covariance matrix

Common application: decorrelation energy when fitting spectral
models (flux as a function of energy)



Removing Correlation (2/2)
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ML and Least Squares are equivalent when the PDF is Gaussian

Recall: Inverting a symmetric 2D matrix scales the off-diagonal element
and changes its sign



Change of Variables

Sum of N x;2 when x; is RV from Norm(0,1) x2(N)

Sum of N a;x; when x; from Norm(0,1), «a; constant Gaussian

Quotient of x; and x,, both from Norm(0,1) Cauchy distribution
Sum of two RV from U(0,1) Triangular distribution

Suppose x follows PDF f,(x | 8) and we apply y = f(x)

Would like to know the PDF f,(y| 6') for y and the mapping from 6
to 6’

Old and new PDF are known for some cases (—table), and the
concept of a characteristic function and transformation formulae
are helpful when deriving the new PDF

In (experimental) practice, the x is a vector of variables and the
PDF will anyway be quite complicated when one folds in effects
like (energy, space) resolution and acceptance



Error Propagation
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e Error propagation is a term used by experimentalists
o Error propagation is approximate change of variables



Approximate Error Propagation
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Approximate Error Propagation
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MC Error Propagation

t=2*x*y/(1+z*z), x,y,z from G(1,1)
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» Standard error propagation is only approximate except in the

linear case

 Sampling the input distribution with MC techniques is often an

alternative

Example Credit: Michael Schmelling



» Error propagation/change of variables

o Statistical and systematic errors

* Binned maximum likelihood and model testing
» Trial factors /look-elsewhere effect



True values ‘| ¢+~

Errors: Statistical vs Systematic
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values

Precision improves with
1/sqrt(N)
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Systematic errors:

Deviations into the same direction

Repeated measurements (at the
same point) are not independent;
central limit theorem does not
apply

In fact, all measurements are
correlated

PDF (mostly) unknown



Systematic Errors

Statistical errors can become
systematic ones

Systematic errors can become
statistical ones (randomizing the
sequence of data)

There are obvious techniques to
avoid systematic errors (e.g. to
measure ratios)

Can be identified with suitable
methods (conservation laws,
measure a quantity as a function
of a variable it should not depend
on)

Systematic errors and statistical
error occur independently

Systematic errors can be treated
with the usual statistical methods
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MC Error Propagation: Systematics

t=2*x*y/(1+2z*z), x,y,z from G(1,1) Energy [eV]
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» Systematic errors are likely correlated for the same
experiment/observatory but not between different
experiments/observatories

* Vary all points of an experiment in the same direction....



Including Systematics

The presence of systematic
errors (,,nuisance
parameters") must broaden
confidence intervals

There are a number of
Bayesian/Frequentist/hybrid
procedures the (Frequentist)
coverage of which is tested
with the help of simulations

Maximum Likelihood errors
with the profile likelihood
method have become a
standard
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Profile Likelihood

» CI for single

parameters of interest Parameters of interest (mass, flux)
(e.g. m) can be obtained | n
by constructing a
likelihood ratio that L(m,0|1X) =] f(Xi|r,6)
depends only on this 1 i—1
parameter (1 degree of
freedom) nuisance parameters (efficiency,
» All others parameters constants)
01, ..., O are maximised
at all times for the Profile likelihood:

given value = r

» Of course, this also
works for a parameter sup {L(ﬂ'(), 9|X); 9}

space ;.. AlmolX) = sup {L(m,0|X); 7,0}




-2 log(A)

Profile Likelihood
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Ad-hoc prescriptions when (i) the minimum is in the unphysical range
or (ii) when the required increase leads into the unphysical range

Important for small N, when log(L) can be highly non-Gaussian

Software tuned to give proper coverage; provides several PDFs for
data and efficiency etc (see e.g. arXiv:0403059)



» Error propagation/change of variables

» Statistical and systematic errors

e Binned maximum likelihood and model testing
» Trial factors /look-elsewhere effect



ML: Unbinned vs Binned
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ML: Unbinned vs Binned
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* No loss of information due to
binning effects

* Number of terms in L ~ events
* Goodness of fit testing might

require a binning anyway
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Loss of information due to
binning effects (horrible in this
example!)

Number of terms in L ~ bins

Goodness of fit testing basically
straightforward



entries per bin

Goodness of Fit

—— prediction
b data with error bars
100 -

80 A

60 -

40 -

20 A

Number of degrees of
freedom (Ndof) is number
of histogram bins if the
prediction (=model) is
completey defined

Ndof is decreased by M if
M model parameters are
estimated from the binned
data

Ndof unclear when the M
model parameters are
estimated by unbinned ML

Note: Assume that the bin
content is “high enough"
for Gaussian
approximation



Binned Maximum Likelihood
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 Binned ML is popular due to a high number of bins (spatial bins,
energy bins), the desire for automatization (e.g. catalogue
production and data modelling) and the intimate relation with GOF

* The value of -2 log(likelihood) at the maximum is asymptotically
Chi2 distributed and can be used in tests immediately



Binned Maximum Likelihood
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Binned Maximum Likelihood
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» This value (called CSTAT) is used as test statistic in model
comparisons



» Error propagation/change of variables

» Statistical and systematic errors

* Binned maximum likelihood and model testing
e Trial factors /look-elsewhere effect



background subtraction, no signal

Event Map
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significance

» Signal searches are often applied repeatedly to several data sets (e.g.
transient events) or in many locations (slices/bins in energy/mass/
space) of the same (fixed) data set

» Estimators like the detection significance have to be corrected for the
number of trials

 Remark: a full jJudgement (i.e. interpretation) of the result can depend
on measurements conducted by others or earlier



(Naive) Correction for Trials

N
&-(?\ . - /) — VON

Probality that signal — _ N
level S was not reached E OON = N— (12— P )
in any of the N trials

p: probability that some signal level S (e.g. number of events) is reached
in a single trial (pre-trial probability)

pn: probability that one gets a signal level S after N identical trials (post-
trial probability)

P values can be converted to Gaussian significances as explained in
lecture 1

Remark: Expect numerical problems when evaluating the formula above
directly (see appendix for a more stable version)



Complications

Event Map
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The naive formula assumed
identical trials which is often not
the case

Trials are often not independent
(e.g. due to overlapping
background or signal regions)

Trial factors also occur when an
extended parameter space (e.g.
mass) is covered

The number of trials N is hard to
estimate; one is then usually
conservative and avoids
underestimating N

MC simulations are
straightforward but have
computing demands (0(107)
simulations for 5sigma effect!)






Testing Coverage

Frequentist MC

CL = 0.9 //confidence level

N = 1000 //experiments

mul=mu2=0

for( every possible true mu0 ){
| [test coverage for this mu0O
coverage = 0

/ /simulate experiments
for(i=0;i<N;i=i+1){
x0 ~ p(x| mu0)
FreqLimit(CL,x0,mul,mu?2)
if( mul<=mul0<=mu2)
coverage = coverage + 1

h

coverage = coverage/N

/ [ coverage should equal CL
by

X,mu : random variables

Bayesian MC

CL = 0.9 //confidence level
N = 1000 //attempts
mul=mu2=0
for( every possible x0 ){
[ [ test coverage for this x0
coverage = 0
BayesLimit(CL,x0,mul,mu?2)
/ /sample posterior
for(i=0;i<N;i=i+1){
mu0 ~ p(mu|x0)p(mu)/p(x0)

iIf( mul<=mul0<=mu2)
coverage = coverage + 1

h

coverage = coverage/N

/ [ coverage should equal CL
by

x0,mu0 : drawn from PDF




Trial Correction

pp = 1=(1—=p)" = 1"-(1-p)" = (p+(1-p)"-(1-p)"

n n

Z(?>pj(1*p)”_j—(1—p)” = Z<?>pj(1—z?)"_j

3=0 j=1

Approximation for small p: just keep the first two terms in the sum
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Likelihood-based CI

InL . k=2:
: Q<=1 (39.3%)

Q<=2.3 (68.3%)

* t
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Correlation

coefficient
p=0.5

Kpoi/1 - p?

In L(n)=In L(nmax)-1/2 for 1 parameter
In L(“‘ll "y “k)=|n L(“max,l IALLE { “maxrk) - 1/2 F(kICL)
F(k,CL) is a constant factor

Integral from 0 to F(k,CL) over a y2-distribution with k
degrees of freedom gives CL

* F(1,68.3%)=1
e F(2,39.3%)=1, F(2,68.3%)=2.3
 F(3,68.3%)=3.53



Multivariate Gaussian
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* k Gaussian random variables

* Vector of RV X = (X3, ... ,Xg)

» Vector of means p = (1y, «=s ,Hk)

» Correlated unless covariance matrix V is diagonal

* V has k(k-1)/2 (off diagonal) + k (diagonal) = k(k+1)/2
independent parameters

* Vs positive definite

» Bell-shaped in k dimensions



Multivariate Gaussian in 2D
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» k=2 Gaussian random variables Xand Y
e 2 means p, and p,
* 2x2 covariance matrix (3 parameters)



Covariance Form

1 T y,-1
X) = - - V X —
Covariance form Q

N |

fk(x) Xz
0.5 1

» Contours of constant
probability are given
by Q=constant

* Qs distributed as
x2(k), (independent
of u!)

» Can estimate the
probability content of

. : : : : : ; — a hypere_llipsoid by
o 1 2 3 4 5 6 7 8 integrating over the
x2(k) distribution
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