Some More Statistical Concepts & Terms Relevant in Gamma-Ray Astronomy*

Ullrich Schwanke Humboldt-Universität zu Berlin

Motivation

- Glen's lectures have introduced unbinned maximum-likelihood estimators and their uses in
 - Point estimation
 - Interval estimation
 - Hypothesis testing
- In the end, the likelihood of an experiment encodes all the information – but it is not always accessible for outside people
- Would like to elaborate on a few concepts and terms that are also relevant for gamma-ray astronomy (and the workshop starting tomorrow)

Content

- Error propagation/change of variables
- Statistical and systematic errors
- Binned maximum likelihood and model testing
- Trial factors /look-elsewhere effect

Content

- Error propagation/change of variables
- Statistical and systematic errors
- Binned maximum likelihood and model testing
- Trial factors /look-elsewhere effect

Variance and Confidence Intervals

Flux (true flux non-negative!)

Measurements within $\pm 1\sigma$ around mean	
Gauss	68.3%
Exponential	86.5%
Uniform distribution	57.7%

$$V(x) = E[(x-E(x))^2]$$

PDF $f(x,16)$

- Lecture 1: sqrt(Variance) as measure of the width of a PDF
- This "error" is not accurate enough ("Probability content" depends on shape/type of PDF)
- A confidence interval (CI) should (i) include the true value of a parameter with some probability (degree of belief, Bayesian) or (ii) belong to an ensemble of CIs a certain fraction of which (confidence level) includes the true value (Frequentist)

Confidence Intervals: Coverage

- Confidence intervals too narrow "undercoverage"
- Measurement appears more precise than it is (should be avoided)
- Correct coverage

- Confidence intervals too broad (i.e. too conservative) "overcoverage"
- Excludes fewer (wrong) hypotheses
- Proper coverage of calculated confidence intervals can be tested with the help of Monte Carlo simulations (see appendix for pseudo codes for the Frequentist and Bayesian case)

Variance and Covariance

Variance and Covariance

PDF
$$f(X_1,X_2|\vec{6})$$

 $(OV(X_1,X_2) = E[(X_1 - \overline{X_1})(X_1 - \overline{X_2})]$

$$\forall (x_1) = \left[\left(x_1 - E(x_1)^2 \right) \right] = \langle ov(x_1, x_2)$$

- If PDF f(x₁,x₂) factorizes as f(x₁,x₂) = f₁(x₁) f₂(x₂) the random variables are mutually independent and their covariance is 0
- Important: The converse statement is not true (i.e. one cannot claim that two variables are independent if their covariance vanishes)
- For N variables, cov(x₁,...,x_N) is a symmetric NxN matrix that is called covariance matrix/variance matrix/error matrix

Correlation Coefficient

$$\begin{cases} \chi_{1} & \dots & \chi_{n} \\ \vdots & \vdots \\ \vdots & \vdots$$

Covariance Matrix (1/2)

$$V[\widehat{\theta}] \geq \left(1 + \frac{\partial b}{\partial \theta}\right)^{2} / E\left[-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right] = MVB \quad \text{(Minimum Variance Bound)}$$

$$e.g. 2 \quad \text{parameters} \quad \text{i)} = 1...2$$

$$V(\widehat{\theta}_{ij}) = - \left[\frac{32 \ln L}{36 \Omega G_{j}}\right]$$

$$= - \frac{32 \ln L}{30 \Omega \Theta_{j}} |_{G_{i}} = \widehat{\theta}_{i}, \quad \Theta_{j} = \widehat{\theta}_{j}$$

- In the ML scheme, the covariance matrix can be estimated (often numerically) from the Hessian Matrix of 2nd derivatives
- Strictly valid (only) in the limit of large N
- PDF of the estimate is then a multivariate Gaussian, no bias

Covariance Matrix (2/2)

- The estimate of the covariance matrix from the derivatives near the optimal parameter values is an approximation
- Approximation will be bad when the likelihood is still non-Gaussian
- The likelihood encodes more information than the covariance matrix (unless N→∞)

Contours at confidence levels of 39.9% and 86.5%

Removing Correlation (1/2)

- Cov(i,j)-terms (i≠j) can be brought to zero by a suitable transformation
- The transformation will introduce new parameters that one has to cite in connection with revised covariance matrix
- Common application: decorrelation energy when fitting spectral models (flux as a function of energy)

Removing Correlation (2/2)

$$-\ln L = \frac{1}{2} \sum_{k} \left[\frac{1}{k} - \frac{(\alpha \times k + b)}{6k} \right]^{2} + const.$$

$$-\frac{\partial enL}{\partial a} = \sum_{k} \left[\frac{1}{k} - \frac{(\alpha \times k + b)}{6k} \right] \left(-\frac{x_{k}}{6k} \right)$$

$$-\frac{\partial^{2}enL}{\partial b \partial a} = \sum_{k} \left(-\frac{a}{6k} \right) \left(-\frac{x_{k}}{6k} \right) = \sum_{k} \frac{x_{k}}{6k}$$

$$+ \text{ranstormation}:$$

$$\frac{x_{k}^{2}}{6k} = \frac{x_{k}}{6k} - \frac{1}{N} \sum_{k} \frac{x_{k}}{6k}$$

- ML and Least Squares are equivalent when the PDF is Gaussian
- Recall: Inverting a symmetric 2D matrix scales the off-diagonal element and changes its sign

Change of Variables

Transformation (RV=random variable)	New PDF
Sum of N x_i^2 when x_i is RV from Norm(0,1)	$\chi^2(N)$
Sum of N $\alpha_i x_i$ when x_i from Norm(0,1), α_i constant	Gaussian
Quotient of x_1 and x_2 , both from Norm(0,1)	Cauchy distribution
Sum of two RV from U(0,1)	Triangular distribution

- Suppose x follows PDF $f_x(x | \theta)$ and we apply y = f(x)
- Would like to know the PDF f_y(y | θ`) for y and the mapping from θ to θ`
- Old and new PDF are known for some cases (→table), and the concept of a characteristic function and transformation formulae are helpful when deriving the new PDF
- In (experimental) practice, the x is a vector of variables and the PDF will anyway be quite complicated when one folds in effects like (energy, space) resolution and acceptance

Error Propagation

- Error propagation is a term used by experimentalists
- Error propagation is approximate change of variables

Approximate Error Propagation

$$y = f(x_1 - x_N) = [(x_1 - x_1) + \sum_{i=1}^{N} dx_i]_{x_i} (x_i - x_i)$$

$$V(y_1) = [(y_1 - E(y_1)^2)] = \sum_{i=1}^{N} dx_i]_{x_i} dx_j \left[E(x_i - x_1)(x_i - x_i) \right]$$

$$V(y_1) = [(y_1 - E(y_1)^2)] = \sum_{i=1}^{N} dx_i]_{x_i} dx_j \left[E(x_i - x_1)(x_i - x_i) \right]$$

$$V(y_1) = [(y_1 - E(y_1)^2)] = \sum_{i=1}^{N} dx_i]_{x_i} dx_j \left[x_i - x_1(x_i - x_i) \right]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_1)^2] = [(x_1 - x_1)^2]$$

$$V(y_1) = [(x_1 - x_$$

Approximate Error Propagation

$$y_{2} = f_{2}(x_{1}...x_{N}) \quad E[x_{1}] = M.$$

$$y_{2} = f_{2}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{2} = f_{2}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{2} = E[y_{2}](y_{2} - E[y_{2}]) = \sum_{i=1}^{N} df_{i}df_{i}E[(x_{i}-y_{i})(x_{i}+y_{i})]$$

$$y_{2} = f_{2}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{3} = f_{2}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{4} = f_{2}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{5} = f_{5}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{6} = f_{6}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{7} = f_{7}(x_{1}...x_{N}) + \sum_{i=1}^{N} df_{i}(x_{i}-y_{i}) ...$$

$$y_{8} = f_{6}(x_{1}...x_{N}) + \sum_{i=1}^{N$$

MC Error Propagation

Example:
$$E = \frac{2x_1}{1+x_2}$$

 $x_1y_1z_1$ from $G(1n_1n_1)$
 $\frac{df}{dx}\Big|_{x_1} = \frac{df}{dx}\Big|_{x_2} = 1$
 $\frac{df}{dx}\Big|_{x_1} = \frac{1}{1+x_2}$

- Standard error propagation is only approximate except in the linear case
- Sampling the input distribution with MC techniques is often an alternative

Content

- Error propagation/change of variables
- Statistical and systematic errors
- Binned maximum likelihood and model testing
- Trial factors /look-elsewhere effect

Errors: Statistical vs Systematic

- Statistical errors:
- Deviations to lower and higher values
- Precision improves with 1/sqrt(N)
- PDF (mostly) known

- **Systematic errors:**
- Deviations into the same direction
- Repeated measurements (at the same point) are not independent; central limit theorem does not apply
- In fact, all measurements are correlated
- PDF (mostly) unknown

Systematic Errors

- Statistical errors can become systematic ones
- Systematic errors can become statistical ones (randomizing the sequence of data)
- There are obvious techniques to avoid systematic errors (e.g. to measure ratios)
- Can be identified with suitable methods (conservation laws, measure a quantity as a function of a variable it should not depend on)
- Systematic errors and statistical error occur independently
- Systematic errors can be treated with the usual statistical methods

Example (1/2)

$$C = (Stat + (JASt = (Stat + JAST)) = S^{2} + JA$$

$$C = (Stat + (JASt = (Stat + JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST) + (JAST)) = S^{2}$$

$$C = (Stat + (JAST) + (JAST) + (JAST) + (JAST))$$

$$C = (Stat + (JAST) + (JAST) + (JAST) + (JAST) + (JAST)$$

$$C = (Stat + (JAST) + (JAST) + (JAST) + (JAST) + (JAST) + (JAST)$$

$$C = (Stat + (JAST) + ($$

Example (2/2)

$$V(z_1 \pm z_2) = 5_1^2 + 6_2^2 + 2(5^2 \pm 5^2)$$

MC Error Propagation: Systematics

- Systematic errors are likely correlated for the same experiment/observatory but not between different experiments/observatories
- Vary all points of an experiment in the same direction....

Including Systematics

- The presence of systematic errors ("nuisance parameters") must broaden confidence intervals
- There are a number of Bayesian/Frequentist/hybrid procedures the (Frequentist) coverage of which is tested with the help of simulations
- Maximum Likelihood errors with the profile likelihood method have become a standard

Signal events parameter bachground

Parameter events

Non - & Noft

As: The efficiency time

(expressed as area)

Profile Likelihood

- CI for single parameters of interest (e.g. π) can be obtained by constructing a likelihood ratio that depends only on this parameter (1 degree of freedom)
- All others parameters θ_{1} , ..., θ_{k} are maximised at all times for the given value $\pi = \pi_{0}$
- Of course, this also works for a parameter space $\pi_{1,...}$, π_{n}

Parameters of interest (mass, flux)

$$L(\boldsymbol{\pi}, \boldsymbol{\theta}|X) = \prod_{i=1}^{n} f(X_i|\boldsymbol{\pi}, \boldsymbol{\theta})$$

nuisance parameters (efficiency, constants)

Profile likelihood:

$$\lambda(\boldsymbol{\pi}_0|X) = \frac{\sup \{L(\boldsymbol{\pi}_0, \boldsymbol{\theta}|X); \boldsymbol{\theta}\}}{\sup \{L(\boldsymbol{\pi}, \boldsymbol{\theta}|X); \boldsymbol{\pi}, \boldsymbol{\theta}\}}$$

Profile Likelihood

- Ad-hoc prescriptions when (i) the minimum is in the unphysical range or (ii) when the required increase leads into the unphysical range
- Important for small N, when log(L) can be highly non-Gaussian
- Software tuned to give proper coverage; provides several PDFs for data and efficiency etc (see e.g. arXiv:0403059)

Content

- Error propagation/change of variables
- Statistical and systematic errors
- Binned maximum likelihood and model testing
- Trial factors /look-elsewhere effect

ML: Unbinned vs Binned

2; average number of counts expected in bin i

ML: Unbinned vs Binned

- No loss of information due to binning effects
- Number of terms in L ~ events
- Goodness of fit testing might require a binning anyway
- Loss of information due to binning effects (horrible in this example!)
- Number of terms in L ~ bins
- Goodness of fit testing basically straightforward

Goodness of Fit

$$\chi^2 = \sum_{i=1}^{\text{bins}} \left(\frac{n_i - n_i}{5_i} \right)^2$$

- Number of degrees of freedom (Ndof) is number of histogram bins if the prediction (=model) is completey defined
- Ndof is decreased by M if M model parameters are estimated from the binned data
- Ndof unclear when the M model parameters are estimated by unbinned ML
- Note: Assume that the bin content is "high enough" for Gaussian approximation

Binned Maximum Likelihood

- Binned ML is popular due to a high number of bins (spatial bins, energy bins), the desire for automatization (e.g. catalogue production and data modelling) and the intimate relation with GOF
- The value of -2 log(likelihood) at the maximum is asymptotically Chi² distributed and can be used in tests immediately

Binned Maximum Likelihood

Binned Maximum Likelihood

$$-2 \log L = \sum_{i} \left(\frac{2i-hi}{hi}\right)^{2}$$

$$\Rightarrow \frac{1}{h_{i}} = \frac{1}{2i+h(-2i)} = \left(\frac{1}{2i} - \frac{(h_{i}-2i)}{2i^{2}}\right)$$

$$= \frac{1}{2i} \left(1 - \frac{h_{i}}{2i} + 1\right)$$

$$= \frac{1}{2i} \left(1 - \frac{h_{i}}{2i} + 1\right)$$

$$= \frac{1}{2i} \left(1 - \frac{h_{i}}{2i} + 1\right)$$

This value (called CSTAT) is used as test statistic in model comparisons

Content

- Error propagation/change of variables
- Statistical and systematic errors
- Binned maximum likelihood and model testing
- Trial factors /look-elsewhere effect

Trials

- Signal searches are often applied repeatedly to several data sets (e.g. transient events) or in many locations (slices/bins in energy/mass/ space) of the same (fixed) data set
- Estimators like the detection significance have to be corrected for the number of trials
- Remark: a full judgement (i.e. interpretation) of the result can depend on measurements conducted by others or earlier

(Naive) Correction for Trials

$$(\Lambda - P)^{N} = \Lambda - P_{N}$$

Probality that signal level S was not reached in any of the N trials

- p: probability that some signal level S (e.g. number of events) is reached in a single trial (pre-trial probability)
- p_N: probability that one gets a signal level S after N identical trials (post-trial probability)
- P values can be converted to Gaussian significances as explained in lecture 1
- Remark: Expect numerical problems when evaluating the formula above directly (see appendix for a more stable version)

Complications

- The naive formula assumed identical trials which is often not the case
- Trials are often not independent (e.g. due to overlapping background or signal regions)
- Trial factors also occur when an extended parameter space (e.g. mass) is covered
- The number of trials N is hard to estimate; one is then usually conservative and avoids underestimating N
- MC simulations are straightforward but have computing demands (O(10⁷) simulations for 5sigma effect!)

Thanks

Testing Coverage

Frequentist MC

```
CL = 0.9 //confidence level
N = 1000 //experiments
mu1 = mu2 = 0
for( every possible true mu0 ){
  //test coverage for this mu0
  coverage = 0
  //simulate experiments
  for(i=0;i<N;i=i+1){
    x0 \sim p(x | mu0)
    FreqLimit(CL,x0,mu1,mu2)
    if( mu1<=mu0<=mu2 )
      coverage = coverage + 1
 coverage = coverage/N
 //coverage should equal CL
```

Bayesian MC

```
CL = 0.9 //confidence level
N = 1000 //attempts
mu1 = mu2 = 0
for( every possible x0 ){
  //test coverage for this x0
  coverage = 0
  BayesLimit(CL,x0,mu1,mu2)
 //sample posterior
 for(i=0;i<N;i=i+1){
    mu0 \sim p(mu|x0)p(mu)/p(x0)
    if( mu1<=mu0<=mu2 )
     coverage = coverage + 1
 coverage = coverage/N
 //coverage should equal CL
```

x,mu: random variables x0,mu0: drawn from PDF

Trial Correction

$$p_n = 1 - (1 - p)^n = 1^n - (1 - p)^n = (p + (1 - p))^n - (1 - p)^n$$

$$= \sum_{j=0}^n \binom{n}{j} p^j (1 - p)^{n-j} - (1 - p)^n = \sum_{j=1}^n \binom{n}{j} p^j (1 - p)^{n-j}$$

Approximation for small p: just keep the first two terms in the sum

$$p_n = np(1-p)^{n-1} + \frac{n(n-1)}{2}p^2(1-p)^{n-2}$$

Likelihood-based CI

- In L(μ)=In L(μ_{max})-1/2 for 1 parameter
- In $L(\mu_1, ..., \mu_k) = In L(\mu_{max,1}, ..., \mu_{max,k}) 1/2 F(k,CL)$
- F(k,CL) is a constant factor
- Integral from 0 to F(k,CL) over a χ²-distribution with k degrees of freedom gives CL
 - F(1,68.3%)=1
 - F(2,39.3%)=1, F(2,68.3%)=2.3
 - F(3,68.3%)=3.53

Multivariate Gaussian

$$f(\mathbf{X}) = \frac{1}{(2\pi)^{k/2} |\mathcal{X}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})^{\mathrm{T}} \mathcal{X}^{-1} (\mathbf{X} - \boldsymbol{\mu})\right]$$

$$\mathcal{X} = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \cdots & \rho_{1N}\sigma_1\sigma_N \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & & \vdots \\ \vdots & & \ddots & & \\ \vdots & & & \ddots & \vdots \\ \rho_{1N}\sigma_1\sigma_N & \cdots & \cdots & \cdots & \sigma_N^2 \end{pmatrix}$$

- k Gaussian random variables
- Vector of RV X = (x₁, ..., x_k)
- Vector of means $\mu = (\mu_1, ..., \mu_k)$
- Correlated unless covariance matrix V is diagonal
- V has k(k-1)/2 (off diagonal) + k (diagonal) = k(k+1)/2 independent parameters
- V is positive definite
- Bell-shaped in k dimensions

Multivariate Gaussian in 2D

$$f(X,Y) = \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{(1-\rho^2)}} \times \exp\left[-\frac{1}{2(1-\rho^2)} \left\{ \frac{(X-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(X-\mu_X)(Y-\mu_Y)}{\sigma_X \sigma_Y} + \frac{(Y-\mu_Y)^2}{\sigma_Y^2} \right\} \right]$$

$$\mathcal{X} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

- k=2 Gaussian random variables X and Y
- 2 means μ_x and μ_k
- 2x2 covariance matrix (3 parameters)

Covariance Form

$$f(\mathbf{X}) = \frac{1}{(2\pi)^{k/2} |\mathcal{Y}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} (\mathbf{X} - \boldsymbol{\mu})^{\mathrm{T}} \mathcal{Y}^{-1} (\mathbf{X} - \boldsymbol{\mu})\right]$$
Covariance form Q

- **Contours of constant** probability are given by Q=constant
- Q is distributed as $\chi^2(\mathbf{k})$, (independent of $\mu!$)
- Can estimate the probability content of a hyperellipsoid by integrating over the $\chi^2(k)$ distribution