
Some More Statistical Concepts & Terms
Relevant in Gamma-Ray Astronomy*

Introductory Talks for PHYSTAT-Gamma                        27 Sep, 2022

Ullrich Schwanke
Humboldt-Universität zu Berlin

* Not only, of course J



Motivation
• Glen‘s lectures have introduced unbinned

maximum-likelihood estimators and their uses in
• Point estimation
• Interval estimation
• Hypothesis testing

• In the end, the likelihood of an experiment
encodes all the information – but it is not always
accessible for outside people

• Would like to elaborate on a few concepts and
terms that are also relevant for gamma-ray
astronomy (and the workshop starting
tomorrow)
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• Trial factors /look-elsewhere effect
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• Lecture 1: sqrt(Variance) as measure of the width of a PDF
• This „error“ is not accurate enough („Probability content“ depends

on shape/type of PDF)
• A confidence interval (CI) should (i) include the true value of a 

parameter with some probability (degree of belief, Bayesian) or (ii) 
belong to an ensemble of CIs a certain fraction of which (confidence
level) includes the true value (Frequentist)

Measurements within ±1s around mean
Gauss 68.3%
Exponential 86.5%
Uniform distribution 57.7%

Flux (true flux non-negative!)

confidence
interval

Variance and Confidence Intervals



• Correct
coverage

• Confidence
intervals too broad
(i.e. too
conservative) 
“overcoverage“

• Excludes fewer
(wrong) 
hypotheses

• Confidence intervals
too narrow
“undercoverage“ 

• Measurement 
appears more precise
than it is (should be
avoided)

• Proper coverage of calculated confidence intervals can be tested
with the help of Monte Carlo simulations (see appendix for pseudo 
codes for the Frequentist and Bayesian case)

Confidence Intervals: Coverage



Variance and Covariance
• PDF f(x1,x2|𝜃)



• If PDF f(x1,x2) factorizes as f(x1,x2) = f1(x1) f2(x2) the random
variables are mutually independent and their covariance is 0

• Important: The converse statement is not true (i.e. one cannot claim
that two variables are independent if their covariance vanishes)

• For N variables, cov(x1,..,xN) is a symmetric NxN matrix that is called
covariance matrix/variance matrix/error matrix

Variance and Covariance



Correlation Coefficient



Covariance Matrix (1/2)

• In the ML scheme, the covariance matrix can be estimated (often
numerically) from the Hessian Matrix of 2nd derivatives

• Strictly valid (only) in the limit of large N
• PDF of the estimate is then a multivariate Gaussian, no bias



• The estimate of the
covariance matrix from the
derivatives near the optimal 
parameter values is an 
approximation

• Approximation will be bad
when the likelihood is still 
non-Gaussian

• The likelihood encodes more
information than the
covariance matrix (unless
N→∞) 

Covariance Matrix (2/2)

Contours at confidence levels of
39.9% and 86.5%



Removing Correlation (1/2)
• cov(a,b)>0
• cov(a,b)=0
• cov(a,b)<0

• Cov(i,j)-terms (i≠j) can be brought to zero by a suitable
transformation

• The transformation will introduce new parameters that one has to
cite in connection with revised covariance matrix

• Common application: decorrelation energy when fitting spectral
models (flux as a function of energy)



Removing Correlation (2/2)

• ML and Least Squares are equivalent when the PDF is Gaussian
• Recall: Inverting a symmetric 2D matrix scales the off-diagonal element

and changes its sign



• Suppose x follows PDF fx(x|𝜃) and we apply y = f(x)
• Would like to know the PDF fy(y|𝜃‘) for y and the mapping from 𝜃

to 𝜃‘
• Old and new PDF are known for some cases (→table), and the

concept of a characteristic function and transformation formulae
are helpful when deriving the new PDF

• In (experimental) practice, the x is a vector of variables and the
PDF will anyway be quite complicated when one folds in effects
like (energy, space) resolution and acceptance

Transformation (RV=random variable) New PDF
Sum of N xi2 when xi is RV from Norm(0,1) 𝝌2(N)
Sum of N 𝛂ixi when xi from Norm(0,1), 𝛂i constant Gaussian
Quotient of x1 and x2, both from Norm(0,1) Cauchy distribution
Sum of two RV from U(0,1) Triangular distribution

Change of Variables



Poisson
distribution
(mean S+B)

Poisson
distribution
(mean B/𝛂)

Uniform (least 
significant bit..)

Binomial (n out of N simulated events)

Distribution?
Parameters?
Moments (mean, 
variance) ? 

• Error propagation is a term used by experimentalists
• Error propagation is approximate change of variables

Error Propagation



Approximate Error Propagation



Approximate Error Propagation



• Standard error propagation is only approximate except in the
linear case

• Sampling the input distribution with MC techniques is often an 
alternative

Example Credit: Michael Schmelling

MC Error Propagation



Content
• Error propagation/change of variables
• Statistical and systematic errors
• Binned maximum likelihood and model testing
• Trial factors /look-elsewhere effect



Errors: Statistical vs Systematic

True values

• Statistical errors:
• Deviations to lower and higher

values
• Precision improves with

1/sqrt(N)
• PDF (mostly) known

• Systematic errors:
• Deviations into the same direction
• Repeated measurements (at the

same point) are not independent; 
central limit theorem does not 
apply

• In fact, all measurements are
correlated

• PDF (mostly) unknown

True 
values



Systematic Errors
• Statistical errors can become

systematic ones
• Systematic errors can become

statistical ones (randomizing the
sequence of data)

• There are obvious techniques to
avoid systematic errors (e.g. to
measure ratios)

• Can be identified with suitable
methods (conservation laws, 
measure a quantity as a function
of a variable it should not depend
on)

• Systematic errors and statistical
error occur independently

• Systematic errors can be treated
with the usual statistical methods



Example (1/2)



Example (2/2)



• Systematic errors are likely correlated for the same 
experiment/observatory but not between different 
experiments/observatories

• Vary all points of an experiment in the same direction....

MC Error Propagation: Systematics



• The presence of systematic
errors („nuisance
parameters“) must broaden
confidence intervals

• There are a number of
Bayesian/Frequentist/hybrid 
procedures the (Frequentist) 
coverage of which is tested
with the help of simulations

• Maximum Likelihood errors
with the profile likelihood
method have become a 
standard

Including Systematics



• CI for single
parameters of interest
(e.g. 𝜋) can be obtained
by constructing a 
likelihood ratio that
depends only on this
parameter (1 degree of
freedom)

• All others parameters
𝜃1, ..., 𝜃k are maximised
at all times for the
given value 𝜋= 𝜋0

• Of course, this also 
works for a parameter
space 𝜋1,...,𝜋n

Parameters of interest (mass, flux)

nuisance parameters (efficiency, 
constants)

Profile likelihood:

Profile Likelihood



• Ad-hoc prescriptions when (i) the minimum is in the unphysical range
or (ii) when the required increase leads into the unphysical range

• Important for small N, when log(L) can be highly non-Gaussian
• Software tuned to give proper coverage; provides several PDFs for

data and efficiency etc (see e.g. arXiv:0403059)

-2
 lo

g(
𝝀 ) ∆ = 3.85

(95% CL)

Profile Likelihood
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ML: Unbinned vs Binned

average number of counts expected in bin i



ML: Unbinned vs Binned

• No loss of information due to
binning effects

• Number of terms in L ~ events
• Goodness of fit testing might

require a binning anyway

• Loss of information due to
binning effects (horrible in this
example!)

• Number of terms in L ~ bins
• Goodness of fit testing basically

straightforward



Goodness of Fit
• Number of degrees of

freedom (Ndof) is number
of histogram bins if the
prediction (=model) is
completey defined

• Ndof is decreased by M if
M model parameters are
estimated from the binned
data

• Ndof unclear when the M 
model parameters are
estimated by unbinned ML

• Note: Assume that the bin 
content is “high enough“ 
for Gaussian
approximation



Binned Maximum Likelihood

• Binned ML is popular due to a high number of bins (spatial bins, 
energy bins), the desire for automatization (e.g. catalogue
production and data modelling) and the intimate relation with GOF 

• The value of -2 log(likelihood) at the maximum is asymptotically
Chi2 distributed and can be used in tests immediately



Binned Maximum Likelihood



Binned Maximum Likelihood

• This value (called CSTAT) is used as test statistic in model
comparisons
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Trials

• Signal searches are often applied repeatedly to several data sets (e.g. 
transient events) or in many locations (slices/bins in energy/mass/ 
space) of the same (fixed) data set

• Estimators like the detection significance have to be corrected for the
number of trials

• Remark: a full judgement (i.e. interpretation) of the result can depend
on measurements conducted by others or earlier
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(Naive) Correction for Trials

• p: probability that some signal level S (e.g. number of events) is reached
in a single trial (pre-trial probability)

• pN: probability that one gets a signal level S after N identical trials (post-
trial probability)

• P values can be converted to Gaussian significances as explained in 
lecture 1

• Remark: Expect numerical problems when evaluating the formula above
directly (see appendix for a more stable version)

Probality that signal
level S was not reached
in any of the N trials



Complications
• The naive formula assumed

identical trials which is often not 
the case

• Trials are often not independent
(e.g. due to overlapping
background or signal regions)

• Trial factors also occur when an 
extended parameter space (e.g. 
mass) is covered

• The number of trials N is hard to
estimate; one is then usually
conservative and avoids
underestimating N

• MC simulations are
straightforward but have
computing demands (O(107) 
simulations for 5sigma effect!)



Thanks



CL = 0.9    //confidence level
N = 1000  //experiments
mu1 = mu2 = 0
for( every possible true mu0 ){

//test coverage for this mu0
coverage = 0

//simulate experiments
for(i=0;i<N;i=i+1){

x0 ~ p(x|mu0)
FreqLimit(CL,x0,mu1,mu2)
if( mu1<=mu0<=mu2 ) 

coverage = coverage + 1
}
coverage = coverage/N
//coverage should equal CL

}

CL = 0.9    //confidence level
N = 1000  //attempts
mu1 = mu2 = 0
for( every possible x0 ){

//test coverage for this x0
coverage = 0
BayesLimit(CL,x0,mu1,mu2)

//sample posterior
for(i=0;i<N;i=i+1){

mu0 ~ p(mu|x0)p(mu)/p(x0)

if( mu1<=mu0<=mu2 ) 
coverage = coverage + 1

}
coverage = coverage/N
//coverage should equal CL 

}

Frequentist MC Bayesian MC

x,mu : random variables       x0,mu0 : drawn from PDF

Testing Coverage



Trial Correction

Approximation for small p: just keep the first two terms in the sum



• ln L(𝛍)=ln L(𝛍max)-1/2  for 1 parameter
• ln L(𝛍1 , .. , 𝛍k)=ln L(𝛍max,1 , .. , 𝛍max,k ) - 1/2 F(k,CL)
• F(k,CL) is a constant factor
• Integral from 0 to F(k,CL) over a 𝝌2-distribution with k

degrees of freedom gives CL
• F(1,68.3%)=1 
• F(2,39.3%)=1, F(2,68.3%)=2.3
• F(3,68.3%)=3.53  

k=2: 
Q<=1 (39.3%)
Q<=2.3 (68.3%)

Correlation
coefficient
𝞀=0.5

Likelihood-based CI



Multivariate Gaussian

• k Gaussian random variables
• Vector of RV X = (x1, ... ,xk)
• Vector of means 𝛍 = (𝛍1, ... ,𝛍k)
• Correlated unless covariance matrix V is diagonal
• V has k(k-1)/2 (off diagonal) + k (diagonal) = k(k+1)/2 

independent parameters
• V is positive definite
• Bell-shaped in k dimensions



Multivariate Gaussian in 2D

• k=2 Gaussian random variables X and Y
• 2 means 𝛍x and 𝛍k
• 2x2 covariance matrix (3 parameters)



Covariance Form

Covariance form Q

• Contours of constant
probability are given
by Q=constant

• Q is distributed as
𝝌2(k), (independent
of 𝛍!)

• Can estimate the
probability content of
a hyperellipsoid by
integrating over the
𝝌2(k) distribution


