Rich D. Thomas

AL BURNER STOCKING

Department of Physics, Stockholm University FYSIKUM

11th March 2011, 3rd DITANET workshop, Stockholm, Sweden

People involved

Stockholm University, Atomic and Molecular Physics

H. Cederquist, H. T. Schmidt, M. Larsson, S. Mannervik, S. Rosén, P. Reinhed, K-G Rensfelt, E. Bäckström, N. Haag, A. S. Holm, G. Kälersjö, A. Orbán, F. Seitz, J. Weimer, and H. Zettergren.

Aleman Chester

Stockholm University, MSL G. Andler, M. Björkhage, M. Blom, L. Brännholm, H. Danared, S. Das, F. Hellberg, A. Källberg, S. Leontein, L. Liljeby, P. Löfgren, B. Malm, D. Misra, A. Paál, and A. Simonsson,

Gothenburg University D. Hanstorp

Hanscom AFB-AFRL Al Viggiano

The Swedish Research Council, Knut and Alice Wallenberg Foundation

Introduction

Molecular-reaction illustration

Ion Storage Rings I

Ion Storage Rings II

DESIREE

What can we do that is different and important

Molecules. Why Molecules ? What do these molecules do ? Why is that important?

Dissociative Recombination

CRYRING: The techniques, example results, and what we learn

Magnetic vs Electrostatic Storage: Limitations and advantages

What is it?

Unique opportunities and possibilities

Where are we with DESIREE?

The Future

Introduction: Molecules. Why Molecules Molecules are present in many environments, from ...

How do they influence ... small large How can molecules ... • Protein folding and structure? • form clouds ? Radiation induced cell • probe temperature? to damage? • effect isotopic abundance? • DNA fragmentation? • Drug efficiency? How are molecules ... How can molecules ... • created? •Raise combustion efficiency? • destroyed? to •Make combustion cleaner? •Influence nuclear fusion? Molecules and philosophy ... life beyond life on earth • How do molecules determine life? How are they involved in ... • Are amino acids in space? • ice formation? to Molecules arriving on comets • aurorae? and meteorites? • pollution?

Knowledge on how molecules interact and react is vital to understanding these environments.

Introduction

What about these environments – a few examples

High Level of Ionisation:

Low temperature:

Stellar Radiation, Cosmic Rays & Heat Barrierless reactions; ion-neutral & e⁻-ion

Dissociative Recombination & Mutual Neutralisation

Dissociative Recombination:

What is it - I?

Dissociative Recombination:

What is it - II?

What are the most instructive Techniques?

Experimental Requirements

Ion Storage Rings I

CRYRING

Movie

Ion Storage Rings I

The **Techniques**

Ion Storage Rings I The Techniques

Ion Storage Rings I The Techniques

Phosphor Screen

Ion Storage Rings I The Techniques

XH₂⁺: Heavy X atom, light h atoms

H: Take most energy, large r & sensitive to internal excitation of the heavy atom.

+PitesinCCD Frank

E(H)

KER

∠H-c.m.-H

Ion Storage Rings I

Example Results and What we Learn

Ion Storage Rings I

Example Results and What we Learn

Cosmic ray ionization rate ... 40x higher than previously assumed

Ion Storage Rings I

Example Results and What we Learn

Ion Storage Rings I Example Results and What we Learn

Ion Storage Rings I

Example Results and What we Learn

 $OH_2^+ + e^- \rightarrow O(^{3}P)/O(^{1}D)$ $NH_2^+ + e^- \rightarrow N(^{4}S)/N(^{2}D)/N(^{2}P)$ $CH_2^+ + e^- \rightarrow C(^{3}P)/C(^{1}D)$

Fragment energy distribution

Ion Storage Rings I Example Results and What we Learn

State populations			
Ion	Ground	First	Ratio
	eV	eV	
CH ₂	C(³ P)	C(¹ D)	1.0:1.0
	2.45	1.24	
NH ₂	N(⁴S)	N(² D)	1.1:1.0
	3.94	1.56	
OH_2	O(³ P)	O(¹ D)	3.5:1.0

Conclusions - I

Ion Storage Rings: Magnetic vs Electrostatic

For magnetic storage: **CRYRING, TSR, ASTRID, TARN II**

For 0-eV collisions (DR) m_{max} ~ 100 amu

DR @ CSR (Lanzhou) (increase B·p)

Can study small, astrophysically and atmospherically important systems ...

 H_{3}^{+}, H_{2}^{+} H_2O^+ CH⁺ O_2^+, NO^+ For electrostatic storage: ELISA, DESIREE, CSR

"No" mass limit for the ions that can be stored

 $BE \propto E_{acc} \cdot q$

DR @ CSR (Heidelberg) (still similar m_{max})

We can now study large biologically important systems ... but not DR

amino acids peptides, proteins chromophores **DNA fragments** Nanoparticles

Formation of H₂ Cooling of Gas in Primordial Galaxies

H-

 $\xrightarrow{k_1} \bigcirc + \bigtriangledown$

 $k_2 << k_1$

hn

Associative detachment

Destruction of H⁻?

Most Fundamental Reaction

Photodissociaiton

eutralisation

Savin: Recent re

Accurate Measure Accurate Accurate Neasure ... or low T factor 3-4 uncertainty in MN ... in the primordial universe

Ion Storage Rings II

Double ElectroStatic Ion Ring ExperimEnt: DESIREE

Single-ring, i.e. "ELISA-Type" IONS PHOTONS Ø 0 00 Ö . .[©]. . **Ö** Lifetimes of metastable ions **Energy-redistribution in clusters** ÖÖ Ör 10 6 00

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE

The Merging section – Controlling the collision energy

The velocity of the centre-of-mass, v =

 $\frac{\mathbf{m}_{\mathrm{H}}}{\mathbf{m}_{\mathrm{H}} + \mathbf{m}_{\mathrm{L}}} \mathbf{v}_{\mathrm{H}} + \frac{\mathbf{m}_{\mathrm{L}}}{\mathbf{m}_{\mathrm{H}} + \mathbf{m}_{\mathrm{L}}} \mathbf{v}_{\mathrm{L}}$

Collision energy available in the center-of-mass, T_{CM} =

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE

The Merging section – Controlling the collision energy

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE The Merging section –

Calculating possible reaction rates, i.e. is something worth doing?

The rate of, e.g., MN in the merging section of length L is given by:

Rate =
$$\frac{I_{H}I_{L}}{e^{2}} \frac{v_{rel}}{v_{H}v_{L}} \frac{L\sigma}{A_{max}}$$
 I_{H}, I_{L} : ion currents. Largest beam x-section area, A_{max}
 $\sigma = \sigma (T_{CM}')$

Assuming again $m_{H}=m_{L}$, Rate = $\frac{I_{H}I_{L}}{e^{2}}\sqrt{\frac{m_{L}T_{CM}}{(T_{H}-U_{tune})(T_{L}+U_{tune})}}$ $\frac{L\sigma(T_{CM})}{A_{max}}$

impact parameter **b**:

 $\mathbf{r}_{\min} = \mathbf{b} = \frac{[T_{CM}^{\prime}(eV) b/13.6]}{1 + \sqrt{1 + [T_{CM}^{\prime}(eV) b/13.6]^2}}$

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE The Merging section – Count rates

Rate =
$$\frac{I_H I_L}{e^2} \frac{v_{rel}}{v_H v_L} \frac{L\sigma}{A_{max}}$$

 $I_H = I_L = 500 \text{ nA},$
 $m_H = H^+, m_L = H^+,$
 $T_H = 26 \text{ keV}, T_L = 24 \text{ keV},$
 $A_{max} = 2 \text{ cm}^2, L = 7.5 \text{ cm},$
 $R_{crit} = 35 \text{ a}_0$

Ion Storage Rings II Double ElectroStatic Ion Ring ExperimEnt: DESIREE The Merging section – Imaging, and using arrival times

Background free!

Molecular Fusion!

• Investigate thresholds and reactive collisions: $Na^+ + PO_3^- \rightarrow Na + PO_2 + O \Delta H = \approx +0.4 \text{ eV}$ $Na^+ + PO_3^- \rightarrow Na + PO + O_2 \Delta H = \approx +0.8 \text{ eV}$ vs $Na^+ + PO_3^- \rightarrow NaO + PO_2, \Delta H = \approx -2.4 \text{ eV}$

What Can We Do That Is Different?

CRYRING/TSR

Resonant Ion-Pair Formation $AB^+ + e^- \rightarrow A^+ + B^ HD^+ + e^- \rightarrow H^+ + D^-$

DESIREE Associative Attachment $A^{+} + B^{-} \rightarrow AB^{+} + e^{-}$ $H^{+} + D^{-} \rightarrow HD^{+} + e^{-}$

"Run the theory backwards"?

- Should we expect to see resonance in AB⁺ production?
 - Initial state dependencies

DESIREE For Testing of

Cryogenerators
 Feedthroughs
 Detectors
 Bake-out
 Laser Ports
 A test cryostat was built for ion-trap experiments.

Publications from testing

S. Rosén *et al.*, Rev. Sci. Instrum. 78, 113301 (2007)
P. Reinhed *et al.*, Phys. Rev. Lett 103, 213002 (2009)
P. Reinhed *et al*, NIM A 621, 83 (2010)

Complete DESIREE technical paper

R. D. Thomas et al., submitted to Rev. Sci. Instrum. Feb. 2011

First stored ions in ...

Thanks for your attention