

Beam Position Monitors: Detector Principle, Hardware and Electronics Peter Forck, Piotr Kowina and Dmitry Liakin Gesellschaft für Schwerionenforschung, Darmstadt

Outline:

- ➤ Signal generation → transfer impedance
- \succ Capacitive shoe box BPM for low frequencies \rightarrow electro-static approach
- \succ Capacitive button BPM for high frequencies \rightarrow electro-static approach
- ➤ Stripline BPM → traveling wave
- \succ Cavity BPM \rightarrow resonator for dipole mode
- > Electronics for position evaluation
- > Summary

1

A BPM is an non-destructive device

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)

 \Rightarrow Usage with bunched beams!

It delivers information about:

1. The center of the beam

- Closed orbit: central orbit averaged over many turns, i.e. over many betatron oscillation
- Trajectory: bunch-by-bunch position, e.g. injection matching
 - \Rightarrow Position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- **Feedback:** fast bunch-by-bunch damping up to slow and precise closed orbit correction

2. Longitudinal bunch shapes

- Bunch evolution during storage and acceleration
- ➢ For proton LINACs: the beam velocity can be determined by two BPMs
- **Relative** low current measurement down to 10 nA.

General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal: $E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t)$

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor **R** the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

•The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable. $I_{im}(t)$ •The amplifier with input resistor **R**. •The beam is a high-impedance current source: $U_{im} = \frac{R}{1 + i\omega RC} \cdot I_{im}$ ground $= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \qquad \qquad \frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$ $\equiv Z_t(\omega,\beta) \cdot I_{heam}$ This is a high-pass characteristic with $\omega_{cut} = 1/RC$: Amplitude: $|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^2 / \omega_{cut}^2}}$ Phase: $\varphi(\omega) = \arctan(\omega_{cut} / \omega)$

P. Forck et al., DITANET School March 2011

Beam Position Monitors

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

For acceleration frequency 10 MHz $< f_{rf} <$ 10 MHz: Large signal strength \rightarrow high impedance Smooth signal transmission \rightarrow 50 Ω Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different: \rightarrow *High frequency range* $\omega \gg \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

$$\succ$$
 Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >>1$ ns):

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron: 100 MHz $< f_{rf} < 1$ GHz typically *R*=50 Ω processing to reach bandwidth $C\approx 5$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz *Example:* 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $< f_{rf} < 30$ MHz typically $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$ *Example:* non-relativistic GSI synchrotron $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

P. Forck et al., DITANET School March 2011

G 55 1

Calculation of Signal Shape: Bunch Train

Parameter: $R=50 \ \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled C=100pF, $l=10\text{cm}, \beta=50\%, \sigma_t=100 \text{ ns}$

> Fourier spectrum is composed of lines separated by acceleration f_{rf}

- > Envelope given by single bunch Fourier transformation
- > Differenciated bunch shape due to $f_{cut} >> f_{rf}$

Remark: 1 MHz $< f_{rf} <$ 10MHz \Rightarrow Bandwidth \approx 100MHz = 10 $\cdot f_{rf}$ for broadband observation.

P. Forck et al., DITANET School March 2011

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass \rightarrow **most frequent application**

'Proximity' effect leads to different voltages at the plates:

S(f,x) is called **position sensitivity**, sometimes the inverse is used k(f,x)=1/S(f,x)S is a geometry dependent, non-linear function, which have to be optimized. Units: S=[%/mm] and sometimes S=[dB/mm] or k=[mm].

G 55 1

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- Capacitive 'shoe box' = 'linear cut' BPM

used at most proton synchrotrons

- \succ Capacitive button BPM for high frequencies \rightarrow electro-static approach
- Stripline BPM → traveling wave
- \succ Cavity BPM \rightarrow resonator for dipole mode
- > Electronics for position evaluation

> Summary

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\leq f_{rf} \leq$ 10 MHz \Rightarrow bunch-length >> BPM length.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Other Types of diagonal-cut BPM

Round type: cut cylinder

Same properties as shoe-box:

Other realization: Full metal plates

- \rightarrow No guard rings required
- \rightarrow but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates But horizontal-vertical coupling.

G 55 1

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➤ Signal generation → transfer impedance
- \succ Capacitive shoe box BPM for low frequencies \rightarrow electro-static approach
- > Consideration for capacitive button BPM

Simple electro-static model,, modification for synchrotron light source Comparison shoe box versus button BPM

- Stripline BPM → traveling wave
- \succ Cavity BPM \rightarrow resonator for dipole mode
- > Electronics for position evaluation

> Summary

Button BPM Realization

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

2-dim Model for Button BPM

a

button

beam

'Proximity effect': larger signal for closer plate **Ideal 2-dim model:** Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

P. Forck et al., DITANET School March 2011

2-dim Model for Button BPM

20

Button BPM at Synchrotron Light Sources

Button BPM at Synchrotron Light Sources

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane	\emptyset 1 to 5 cm per button	
Shape Rectangular or cut cylinder		Orthogonal or planar orientation	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity Very good, no x-y coupling		Non-linear, x-y coupling	
Sensitivity	ensitivity Good, care: plate cross talk		
Usage At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$		All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$	

horizontal

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- \succ Capacitive shoe box BPM \rightarrow electro-static approach
- \succ Capacitive button BPM \rightarrow electro-static approach
- ➤ Stripline BPM → traveling wave e.g. for collider
- $\succ Cavity BPM \rightarrow resonator for dipole mode$
- > Electronics for position evaluation
- > Summary

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

LHC stripline BPM, *l*=12 cm

From C. Boccard, CERN

GSI

Stripline BPM: General Idea

For relativistic beam with $\beta \approx l$ and short bunches:

 \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ Signal treatment at upstream port 1:

t=0: Beam induced charges at **port 1**: \rightarrow half to R_1 , half toward **port 2**

t=l/c: Beam induced charges at **port 2**:

→ half to R_2 , **but** due to different sign, it cancels with the signal from **port 1** → half signal reflected

t=2·l/c: reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: → no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends on direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

G 55 T

Stripline BPM: Transfer Impedance

 F_{center} =1/4 · c/l · (2n-1). For first lope: f_{low} =1/2· f_{center} , f_{high} =3/2 · f_{center} i.e. bandwidth ≈1/2· f_{center} > Precise matching at feed-through required t o preserve 50 Ω matching.

G 55 1

Stripline BPM: Finite Bunch Length

- $> Z_t(\omega)$ decreases for higher frequencies
- ► If total bunch is too long $(\pm 3\sigma_t > l)$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

P. Forck et al., DITANET School March 2011

Beam Position Monitors

G 55 11

Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber Ø34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

e

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button	
Idea	traveling wave	electro-static	
Requirement	Careful $Z_{strip} = 50 \Omega$ matching		
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance	
Bandwidth	Broadband,	Highpass,	
	but minima	but <i>f_{cut}</i> < 1 GHz	
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation	
Mechanics	Complex	Simple	
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion	
Directivity	YES	No	

TTF2 BPM inside quadrupole

GSI

From . S. Wilkins, D. Nölle (DESY)

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- \succ Capacitive shoe box BPM \rightarrow electro-static approach
- \succ Capacitive button BPM \rightarrow electro-static approach
- > Stripline BPM \rightarrow traveling wave e.g. for collider
- > Cavity BPM \rightarrow resonator for dipole mode e.g. for FEL
- > Electronics for position evaluation
- > Summary

Cavity BPM: Principle

High resolution on t < 1 µs time scale can be achieved by excitation of a dipole mode:

P. Forck et al., DITANET School March 2011

Cavity BPM: Example of Realization

P. Forck et al., DITANET School March 2011

Beam Position Monitors

Courtesy of D. Lipka & Y. Honda

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus:

- ➤ Required resolution of 5 nm (yes nano!) in a 6×12 mm diameter beam pipe
- > Achieved world record resolution of 8.7 nm $\pm 0.28(\text{stat}) \pm 0.35(\text{sys})$ nm
 - at ATF2 (KEK, Japan).

Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches f_{rf} < 10 MHz	Very linear No x-y coupling Sensitive For broad beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e ⁻ acc.	<i>f_{rf}</i> > 10 MHz	Simple mechanics	Non-linear, x-y coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for $\beta \approx 1$, short bunches	Directivity 'Clean' signal Large signal	Complex 50 Ω matching Complex mechanics
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches Special appl.	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used, e.g. wall current, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

GSI

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➤ Signal generation → transfer impedance
- \succ Capacitive shoe box BPM \rightarrow electro-static approach
- \succ Capacitive button BPM \rightarrow electro-static approach
- Stripline → traveling wave
- ➤ Cavity BPM → resonator for dipole mode
- Electronics for position evaluation Noise consideration, broadband and narrowband analog processing, digital processing
- *≻Summary*

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity $(\Delta U/\Sigma U \text{ or } \log U_1/U_2)$ defined as $S_x(x, y, f) = \frac{d}{dx} (\Delta U_x / \Sigma U_x) = [\%/mm]$ Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

> influenced by mechanical tolerances and alignment accuracy and reproducibility

▶ by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

> typically: *single bunch*: 10^{-3} of aperture $\approx 100 \,\mu\text{m}$

averaged: 10^{-5} of aperture $\approx 1 \,\mu\text{m}$, with dedicated methods $\approx 0.1 \,\mu\text{m}$

 \blacktriangleright in most case much better than accuracy

electronics has to match the requirements e.g. bandwidth, ADC granularity

Bandwidth: Frequency range available for measurement

≻has to be chosen with respect to required resolution via analog or digital filtering Dynamic range: Range of beam currents the system has to respond

> position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background

- ▶ influenced by thermal and circuit noise, electronic interference
- ➤ can be matched by bandwidth limitation

Signal sensitivity = detection threshold: minimum beam current for measurement

P. Forck et al., DITANET School March 2011

G 55 T

Example for Signal-to-Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1 / S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 4. Signal-to-noise ratio $\Delta U / U_{eff}$ calculation and expressed in spatial resolution σ

Example: button BPM resolution at Synchrotron Light Source SLS at PSI:

Bandwidth:

Turn-by turn = 500 kHz Ramp 250 ms = 15 kHz Closed orbit = 2 kHz

Result:

- Slow readout $\Leftrightarrow \text{low } \Delta f$ $\Rightarrow \text{low } \sigma \text{ due to } \sigma \propto \sqrt{\Delta f}$
- ➤ Low current ⇔ low signal
 - \Rightarrow input noise dominates

From V. Schlott et al. (PSI) DIPAC 2001, p. 69

G 55 T

Comparison: Filtered Signal ↔ Single Turn

Example GSI Synchr.: U^{73+} , $E_{ini}=11.5$ MeV/u \rightarrow 250 MeV/u within 0.5 s, 10⁹ ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination

G 55 W

General Idea: Broadband Processing

> Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$

- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- → ADC: digitalization → followed by calculation of of $\Delta U / \Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100 \ \mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture,

resolution is worse than narrowband processing

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1 / S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 4. Signal-to-noise ratio $\Delta U / U_{eff}$ calculation and expressed in spatial resolution σ

Remark: Additional contribution by non-perfect electronics typically a factor 2 Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

P. Forck et al., DITANET School March 2011

GSI

General Idea: Narrowband Processing

Narrowband processing equals super-heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- ≻ ADC: digitalization → followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing.

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier & filter or mixing unit
- ➢ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

G 55 T

Digital Signal Processing Realization

- Analog multiplexing and filtering
- Digital corrections and data reduction on FPGA

Commercially available electronics used at many synchrotron light sources

GSI

LIBERA Digital BPM Readout: Analog Part and Digitalization

Typical values for a Synchrotron Light Source:

 $f_{rf} = 352 \text{ or } 500 \text{ MHz}$, revolution $f_{rev} \approx 1 \text{ MHz}$, sampling at $4/(4*4+1)*f_{rf} = 117.6 \text{ MHz}$ for 500 MHz

G 55 H

LIBERA Digital BPM Readout: Digital Signal Processing

Remark: For p-synchrotrons direct 'baseband' digitalization with 125 MS/s due to f_{rf} <10 MHz.

Comparison of BPM Readout Electronics (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Narrowband +Multiplexing	all synchr.	Stable beams >10ms	Highest resolution	No turn-by-turn, complex Only for stable storage
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC \rightarrow undersampling complex and expensive

GSI

With BPMs the center in the transverse plane is determined for bunched beams. Beam \rightarrow detector coupling is given by transfer imp. $Z_t(\omega) \Rightarrow$ signal estimation $I_{beam} \rightarrow U_{im}$ Different type of BPM:

Shoe box = linear cut: for p-synchrotrons with $f_{rf} < 10$ MHz

Advantage: very linear. Disadvantage: complex mechanics Button: Most frequently used at all accelerators, best for $f_{rf} > 10$ MHz

Advantage: compact mechanics. **Disadvantage:** non-linear, low signal **Stripline:** Taking traveling wave behavior into account, best for short bunches

Advantage: precise signal. Disadvantage: Complex mechanics for 50 Ω , non-linear Cavity BPM: dipole mode excitation \rightarrow high resolution '1µm@1µs' \leftrightarrow application: FEL

Electronics used for BPMs:

Thank you for your attention !

Basics: Resolution in space \leftrightarrow resolution in time i.e. the bandwidth has to match the application **Broadband processing:** Full information available, but lower resolution, for fast feedback **Analog narrowband processing:** high resolution, but not for fast beam variation **Digital processing:** very flexible, but limited ADC speed, more complex \rightarrow state-of-the-art. Proceedings related to this talk:

P. Forck et al., Proc. *CAS on Beam Diagnostics*, Dourdon CERN-2009-005 (2009), available at cdsweb.cern.ch/record/1071486/files/cern-2009-005.pdf

General descriptions of BPM technologies:

[1] R.E. Shafer, *Proc. Beam Instr. Workshop BIW 89*, Upton, p. 26, available e.g. at www.bergoz.com/products/MX-BPM/MX-BPM-downloads/files/Shafer-BPM.pdf (1989).

[2] S.R. Smith, Proc. Beam Instr. Workshop BIW 96, Argonne AIP 390, p. 50 (1996).

[3] G.R. Lambertson, *Electromagnetic Detectors*, Proc. Anacapri, Lecture Notes in Physics 343, Springer-Verlag, p. 380 (1988).

[4] E. Schulte, in Beam Instrumentation, CERN-PE-ED 001-92, Nov. 1994 p. 129 (1994).

[5] D.P. McGinnis, Proc. Beam Instr. Workshop BIW 94, Vancouver, p. 64 (1994).

[6] J.M. Byrd, Bunched Beam Signals in the time and frequency domain, in *Proceeding of the School on Beam Measurement*, Montreux, p. 233 World Scientific Singapore (1999).

[7] J. Hinkson, ALS Beam Instrumentation, available e.g. at <u>www.bergoz.com/products/MXBPM/MX-BPM-downloads/files/Hinkson-BPM.pdf</u> (2000).

[8] D. McGinnis, Proc. PAC 99, New York, p. 1713 (1999).

[9] R. Lorenz, Proc. Beam Instr. Workshop BIW 98, Stanford AIP 451, p. 53 (1998).

G 55 1