

Beam Position Monitors: Detector Principle, Hardware and Electronics Peter Forck, Piotr Kowina and Dmitry Liakin Gesellschaft für Schwerionenforschung, Darmstadt

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive shoe box BPM for low frequencies* [→] *electro-static approach*
- ¾ *Capacitive button BPM for high frequencies* [→] *electro-static approach*
- ¾ *Stripline BPM* [→] *traveling wave*
- ¾ *Cavity BPM* [→] *resonator for dipole mode*
- ¾ *Electronics for position evaluation*
- ¾ *Summary*

A BPM is an non-destructive device

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)

[⇒]**Usage with bunched beams!**

It delivers information about:

1. The center of the beam

- ¾ **Closed orbit:** central orbit averaged over many turns, i.e. over many betatron oscillation
- ¾ **Trajectory:** bunch-by-bunch position, e.g. injection matching
	- \Rightarrow Position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- ¾ **Single bunch** position [→] determination of parameters like tune, chromaticity, *β*-function
- ¾ **Time evolution** of a single bunch can be compared to 'macro-particle tracking' calculations
- ¾ **Feedback:** fast bunch-by-bunch damping up to slow and precise closed orbit correction

2. Longitudinal bunch shapes

- ¾ **Bunch evolution** during storage and acceleration
- ¾ For proton LINACs: the **beam velocity** can be determined by two BPMs
- ¾ *Relative* low current measurement down to 10 nA.

General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal: $E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t)$

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor R the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_{i}(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

•The pick-up capacitance *C*: plate \leftrightarrow vacuum-pipe and cable. $I_{im}(t)$ •The amplifier with input resistor *R*. •The beam is a high-impedance current source: *R* $U_{im} = \frac{1}{1 + i \omega RC}$ $I_{im} = \frac{1}{1 + i \omega RC} \cdot I_{im}$ $=\frac{1}{1+i\omega}$ ground $\frac{A}{\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1+i\omega RC}$ 1 1 *i RC* ω $\frac{1}{i\omega RC}\cdot I_{beam}$ = [⋅] [⋅] [⋅] π a β $2\pi a$ βc C $1+i\omega$ *a ^c C* 1 $\equiv Z_{_t}(\omega,\beta)\cdot I_{_{beam}}$ This is a high-pass characteristic with *^ωcut= 1/RC: A* $1 \quad 1 \quad \omega/$ Δ mplitude: $| Z_{t}(\omega) | = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^{2}/\omega^{2}_{cut}}}$ Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$ $\sigma_t(\omega)$ = $\frac{1}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega}{\sqrt{1 + \omega^2/\omega^2}}$ $Z_i(\omega) \models \frac{1}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{1}{\sqrt{1 + \omega^2/\omega^2}}$ *cut*

P. Forck et al., DITANET School March 2011 $\overline{6}$ 6 $\overline{9}$ facilities $\overline{9}$ facilities $\overline{9}$

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

For acceleration frequency 10 MHz $\leq f_{rf}$ < 10 MHz: Large signal strength \rightarrow **high impedance** Smooth signal transmission [→] **50** Ω

Signal Shape for capacitive BPMs: differentiated [↔] proportional

Depending on the frequency range *and* termination the signal looks different: ¾ *High frequency range ^ω >> ωcut :*

$$
Z_t \propto \frac{i\omega/\omega_{\text{cut}}}{\mathbf{F}^* \dot{\mathbf{F}} i\omega/\omega_{\text{cut}}} \to 1 \Longrightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{\text{beam}}(t)
$$

 \Rightarrow **direct image** of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

¾ *Low frequency range ^ω << ωcut:*

$$
Z_t \propto \frac{i\omega/\omega_{\text{cut}}}{1 + i\omega \sqrt{\omega_{\text{cut}}}} \to i\frac{\omega}{\omega_{\text{cut}}} \implies U_{\text{im}}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{\text{beam}}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{\text{beam}}}{dt}
$$

 \Rightarrow **derivative** of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on *C*

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : σ >>1 ns):

Examples for differentiated & proportional Shape

Proton LINAC, e--LINAC&synchtrotron: 100 MHz $\leq f_{rf} \leq 1$ GHz typically $R=50 \Omega$ processing to reach bandwidth $C \approx 5 \text{ pF} \Rightarrow f_{cut} = 1/(2 \pi RC) \approx 700 \text{ MHz}$ *Example:* 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $\leq f_{rf}$ < 30 MHz typically *R*=1 MΩ for large signal i.e. large Z_t $C \approx 100 \text{ pF} \implies f_{cut} \equiv 1/(2 \pi RC) \approx 10 \text{ kHz}$ *Example:* non-relativistic GSI synchrotron f_{rf} : 0.8 MHz \rightarrow 5 MHz
time [us]

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

P. Forck et al., DITANET School March 2011 G. 2003, A decay facilities proton accelerator for p-physics at the future GSI facilities P. Forck et al., DITANET School March 2011 9 Beam Position Monitors

FIFT

^C=100pF, *l*=10cm, *β*=50%, *^σt⁼*100 ns

- \triangleright Fourier spectrum is composed of lines separated by acceleration f_{rf}
- \triangleright Envelope given by single bunch Fourier transformation
- \triangleright Differenciated bunch shape due to $f_{cut} \gt f_{rf}$ **Remark:** 1 MHz< f_{rf} < 10MHz \Rightarrow Bandwidth \approx 100MHz = 10 f_{rf} for broadband observation.

P. Forck et al., DITANET School March 2011 10 facilities P and position Monitors P. Forck et al., DITANET School March 2011

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass [→]**most frequent application**

'Proximity' effect leads to different voltages at the plates:

S(f,x) is called **position sensitivity,** sometimes the inverse is used *k(f,x)=1/S(f,x) S* is a geometry dependent, non-linear function, which have to be optimized. Units: *S*=[%/mm] and sometimes *S*=[dB/mm] or *k*=[mm].

E E T

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive 'shoe box' ⁼'linear cut' BPM*

used at most proton synchrotrons

- ¾ *Capacitive button BPM for high frequencies* [→] *electro-static approach*
- ¾ *Stripline BPM* [→] *traveling wave*
- ¾ *Cavity BPM* [→] *resonator for dipole mode*
- ¾ *Electronics for position evaluation*

¾ *Summary*

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\leq f_{rf} \leq 10$ MHz \Rightarrow bunch-length \geq BPM length.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.

Other Types of diagonal-cut BPM

Round type: cut cylinder

Same properties as shoe-box:

Other realization: Full metal plates

- \rightarrow No guard rings required
- \rightarrow but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates

r en

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive shoe box BPM for low frequencies* [→] *electro-static approach*
- ¾ *Consideration for capacitive button BPM*

Simple electro-static model,, modification for synchrotron light source Comparison shoe box versus button BPM

- ¾ *Stripline BPM* [→] *traveling wave*
- ¾ *Cavity BPM* [→] *resonator for dipole mode*
- ¾ *Electronics for position evaluation*

¾ *Summary*

Button BPM Realization

LINACs, e-synchrotrons: 100 MHz $\leq f_{rf}$ < 3 GHz → bunch length \approx BPM length \rightarrow 50 Ω signal path to prevent reflections

2-dim Model for Button BPM

 \overline{a}

button

beam

'Proximity effect': larger signal for closer plate Ideal 2-dim model: Cylindrical pipe [→] image current density via 'image charge method' for 'pensile' beam:

$$
j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)
$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

2-dim Model for Button BPM

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons 0.8 SMA connector housing transition obeying 50 $\,\Omega$ insulator -1.5 $1\vert 5$ button \varnothing 15 \blacktriangleright Beam position swept with 2 mm steps ¾Non-linear sensitivity and hor.-vert. coupling \blacktriangleright At center $S_x = 8.5\%$ /mm in this case \varnothing 1: $\text{horizontal}: x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$ $(U_1 + U_4) - (U_2 + U_3)$ $+ U_{4}$) $- (U_{2} +$ 45 *x* $=$ \cdot *S* $U_1 + U_2 + U_3 +$ 1 \cdot \cdot 2 \cdot \cdot 3 \cdot \cdot 4 vertical : $v = \frac{1}{2} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2}$ $U_1 + U_2$) – $(U_2 + U_1)$ $+ U_2$) $- (U_2 +$ $y = \frac{S_y}{S_y} \cdot \frac{V_1 + V_2 + V_3}{V_1 + V_2 + V_3 + V_3}$ $=$ \cdot $U_1 + U_2 + U_3 + U$ From S. Varnasseri, SESAME, DIPAC 2005 $1 + 2$ $2 + 3 + 24$ P. Forck et al., DITANET School March 2011 21 and proton accelerator for p-physics at the future GSI facilities P. Forck et al., DITANET School March 2011 21 Beam Position Monitors

Button BPM at Synchrotron Light Sources

Comparison Shoe-Box and Button BPM

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive shoe box BPM* [→] *electro-static approach*
- ¾ *Capacitive button BPM* [→] *electro-static approach*
- ¾ *Stripline BPM* [→] *traveling wave e.g. for collider*
- ¾ *Cavity BPM* [→] *resonator for dipole mode*
- ¾ *Electronics for position evaluation*
- ¾ *Summary*

Stripline BPM: General Idea

For short bunches, the *capacitiv***^e** button deforms the signal

- → Relativistic beam *β*≈*1* [⇒] field of bunches nearly TEM wave
- → Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

LHC stripline BPM, *l*=12 cm

From C. Boccard, CERN

65 I

Stripline BPM: General Idea

For relativistic beam with *β*≈*1* and short bunches:

→ Bunch's electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow *Assumption:* l_{bunch} << *l,* Z_{strip} = R_1 = R_2 = 50 Ω and v_{beam} = c_{strip} **Signal treatment at upstream port 1:**

t=0: Beam induced charges at **port 1**: \rightarrow half to R_I , half toward **port 2**

t=l/c: Beam induced charges at **port 2**:

 \rightarrow half to R_2 , *but* due to different sign, it cancels with the signal from **port 1** \rightarrow half signal reflected

t=2·l/c: reflected signal reaches **port 1**

$$
\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip}\big(I_{beam}(t) - I_{beam}\big(t - 2l/c\big)\big)
$$

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: → no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends on direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

r s r

Stripline BPM: Transfer Impedance

Stripline BPM: Finite Bunch Length

 \triangleright If total bunch is too long ($\pm 3σ$ ²*t*) destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

P. Forck et al., DITANET School March 2011 28 get. 2003 Gegan Position Monitors P. Forck et al., DITANET School March 2011

65 I

Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber ∅34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

 e^{\cdot}

Comparison: Stripline and Button BPM (simplified)

TTF2 BPM inside quadrupole

GSI

From . S. Wilkins, D. Nölle (DESY)

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive shoe box BPM* [→] *electro-static approach*
- ¾ *Capacitive button BPM* [→] *electro-static approach*
- ¾ *Stripline BPM* [→] *traveling wave e.g. for collider*
- ¾ *Cavity BPM* [→] *resonator for dipole mode e.g. for FEL*
- ¾ *Electronics for position evaluation*
- ¾ *Summary*

Cavity BPM: Principle

High resolution on $t < 1$ µs time scale can be achieved by excitation of a dipole mode:

P. Forck et al., DITANET School March 2011

Cavity BPM: Example of Realization

Cavity BPM: Suppression of monopole Mode

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to $f_{mono} <$ $f_{cut} <$ f_{dipole}

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus:

- \triangleright Required resolution of 5 nm (yes nano!) in a 6×12 mm diameter beam pipe
- \geq Achieved world record resolution of 8.7 nm \pm 0.28(stat) \pm 0.35(sys) nm
	- at ATF2 (KEK, Japan).

BE

Comparison of BPM Types (simplified)

Remark: Other types are also some time used, e.g. wall current, inductive antenna, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

65 I

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ¾ *Signal generation* [→] *transfer impedance*
- ¾ *Capacitive shoe box BPM* [→] *electro-static approach*
- ¾ *Capacitive button BPM* [→] *electro-static approach*
- ¾ *Stripline* [→] *traveling wave*
- ¾ *Cavity BPM* [→] *resonator for dipole mode*
- ¾ *Electronics for position evaluation Noise consideration, broadband and narrowband analog processing, digital processing*
- ¾*Summary*

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity ($\Delta U/\Sigma U$ or $\log U_1/U_2$) defined as *x*(, ,) ⁼ () [∆]*Ux* /Σ*Ux* ⁼ [] %/mm *dxd ^S ^x ^y ^f*

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

 \triangleright influenced by mechanical tolerances and alignment accuracy and reproducibility

 \triangleright by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

 \triangleright typically: *single bunch*: 10⁻³ of aperture ≈ 100 µm

averaged: 10^{-5} of aperture ≈1 µm, with dedicated methods ≈0.1 µm

 \triangleright in most case much better than accuracy

 \triangleright electronics has to match the requirements e.g. bandwidth, ADC granularity

Bandwidth: Frequency range available for measurement

¾has to be chosen with respect to required resolution via analog or digital filtering **Dynamic range:** Range of beam currents the system has to respond

 \triangleright position reading should not depend on input amplitude **Signal-to-noise:** Ratio of wanted signal to unwanted background

- \triangleright influenced by thermal and circuit noise, electronic interference
- \triangleright can be matched by bandwidth limitation

Signal sensitivity = detection threshold: minimum beam current for measurement

P. Forck et al., DITANET School March 2011 $\frac{37}{}$ 8eam Position Monitors Beam Position Monitors

Example for Signal-to-Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_{i}(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{\text{eff}}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 4. Signal-to-noise ratio *∆^U* / *Ueff* calculation and expressed in spatial resolution *^σ*

Example: button BPM resolution at Synchrotron Light Source SLS at PSI:

Bandwidth:

Turn-by turn = 500 kHz Ramp 250 ms = 15 kHz Closed orbit = 2 kHz

Result:

- \Rightarrow low σ due to $\sigma \propto \sqrt{\Delta f}$ ¾ **Slow readout** ⇔ low *∆f*
- ¾ **Low current** ⇔ low signal
	- \Rightarrow input noise dominates

From V. Schlott et al. (PSI) DIPAC 2001, p. 69

eer

Comparison: Filtered Signal [↔] Single Turn

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination

HETT

General Idea: Broadband Processing

¾ Hybrid or transformer close to beam pipe for analog *∆^U* & *Σ^U* generation or *Uleft* & *Uright*

- \triangleright Attenuator/amplifier
- \triangleright Filter to get the wanted harmonics and to suppress stray signals
- ¾ ADC: digitalization [→] followed by calculation of of *∆U /ΣU*

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to ≈ 100 µm for shoe box type, i.e. $\approx 0.1\%$ of aperture,

resolution is worse than narrowband processing

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_{t}(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{\text{eff}}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 4. Signal-to-noise ratio *∆^U* / *Ueff* calculation and expressed in spatial resolution *^σ*

Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

P. Forck et al., DITANET School March 2011 G. 10th, 2004, A decay for p-physics at the future GSI facilities P

400

80

 $\operatorname{\sf 8f}_{{\mathfrak 0}}$

300

 $9f_{0}$

 $10f_n$

100

120

140

500

65T

General Idea: Narrowband Processing

Narrowband processing equals super-heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- \triangleright Attenuator/amplifier
- \triangleright Mixing with accelerating frequency f_{rf} \Rightarrow signal with sum and difference frequency \triangleright Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- \triangleright Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- ¾ Rectifier: synchronous detector
- ¾ ADC: digitalization [→] followed calculation of *∆U/ΣU*

Advantage: spatial resolution about 100 time better than broadband processing.

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- \triangleright Basic functionality is preserved but implementation is very different
- \triangleright Digital transition just after the amplifier & filter or mixing unit
- ¾ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

r su

Digital Signal Processing Realization

LIBERA Digital BPM Readout: Analog Part and Digitalization

Typical values for a Synchrotron Light Source:

 f_{rf} = 352 or 500 MHz, revolution $f_{rev} \approx 1$ MHz, sampling at $4/(4*4+1) * f_{rf} = 117.6$ MHz for 500 MHz

r su

LIBERA Digital BPM Readout: Digital Signal Processing

Remark: For p-synchrotrons direct 'baseband' digitalization with 125 MS/s due to *frf* **<**10 MHz.

Comparison of BPM Readout Electronics (simplified)

GSI

With BPMs the center in the transverse plane is determined for bunched beams. Beam \rightarrow detector coupling is given by transfer imp. $Z_t(\omega) \Rightarrow$ signal estimation $I_{beam} \rightarrow U_{im}$ **Different type of BPM:**

Shoe box = linear cut: for p-synchrotrons with *frf* **<** 10 MHz

Advantage: very linear. **Disadvantage:** complex mechanics **Button:** Most frequently used at all accelerators, best for *frf* **>** 10 MHz

Advantage: compact mechanics. **Disadvantage:** non-linear, low signal **Stripline:** Taking traveling wave behavior into account, best for short bunches

Advantage: precise signal. **Disadvantage:** Complex mechanics for 50 Ω, non-linear **Cavity BPM**: dipole mode excitation \rightarrow high resolution ' $1\mu m(\partial \ln x) \leftrightarrow$ application: FEL

Electronics used for BPMs:

Thank you for your attention !

Basics: Resolution in space \leftrightarrow resolution in time i.e. the bandwidth has to match the application **Broadband processing:** Full information available, but lower resolution, for fast feedback **Analog narrowband processing:** high resolution, but not for fast beam variation **Digital processing:** very flexible, but limited ADC speed, more complex \rightarrow state-of-the-art.

Proceedings related to this talk:

P. Forck et al., Proc. *CAS on Beam Diagnostics*, Dourdon CERN-2009-005 (2009), available at cdsweb.cern.ch/record/1071486/files/cern-2009-005.pdf

General descriptions of BPM technologies:

[1] R.E. Shafer, *Proc. Beam Instr. Workshop BIW 89,* Upton, p. 26, available e.g. at www.bergoz.com/products/MX-BPM/MX-BPM-downloads/files/Shafer-BPM.pdf (1989).

[2] S.R. Smith, *Proc. Beam Instr. Workshop BIW 96,* Argonne AIP 390, p. 50 (1996).

[3] G.R. Lambertson, *Electromagnetic Detectors,* Proc. Anacapri, Lecture Notes in Physics 343, Springer-Verlag, p. 380 (1988).

[4] E. Schulte, in *Beam Instrumentation*, CERN-PE-ED 001-92, Nov. 1994 p. 129 (1994).

[5] D.P. McGinnis, *Proc. Beam Instr. Workshop BIW 94,* Vancouver, p. 64 (1994).

[6] J.M. Byrd, Bunched Beam Signals in the time and frequency domain, in *Proceeding of the School on Beam Measurement,* Montreux, p. 233 World Scientific Singapore (1999).

[7] J. Hinkson, ALS Beam Instrumentation, available e.g. at www.bergoz.com/products/MXBPM/MX-BPM-downloads/files/Hinkson-BPM.pdf (2000).

[8] D. McGinnis, *Proc. PAC 99*, New York, p. 1713 (1999).

[9] R. Lorenz, *Proc. Beam Instr. Workshop BIW 98,* Stanford AIP 451, p. 53 (1998).

r: sem