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Beam Position Monitors:

Detector Principle, Hardware and Electronics

Peter Forck, Piotr Kowina and Dmitry Liakin
Gesellschaft fiir Schwerionenforschung, Darmstadt

Outline:

» Signal generation — transfer impedance

» Capacitive shoe box BPM for low frequencies — electro-static approach
» Capacitive button BPM for high frequencies —» electro-static approach
» Stripline BPM —» traveling wave

» Cavity BPM  — resonator for dipole mode

» Electronics for position evaluation

» Summary
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Usage of BPMs 9
LAY > "W T . WMoy 7 RS ™
A BPM is an non-destructive device

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored
(exception: Schottky spectra, here the physics 1s due to finite number of particles)

— Usage with bunched beams!
It delivers information about:

1. The center of the beam
» Closed orbit: central orbit averaged over many turns, i.e. over many betatron oscillation
» Trajectory: bunch-by-bunch position, e.g. injection matching
= Position on a large time scale: bunch-by-bunch — turn-by-turn — averaged position
» Single bunch position — determination of parameters like tune, chromaticity, #-function
» Time evolution of a single bunch can be compared to ‘macro-particle tracking’ calculations
» Feedback: fast bunch-by-bunch damping up to slow and precise closed orbit correction

2. Longitudinal bunch shapes
» Bunch evolution during storage and acceleration

» For proton LINACs: the beam velocity can be determined by two BPMs
» Relative low current measurement down to 10 nA.
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General Idea: Detection of Wall Charges %

X NWm T . W =T
The 1image current at the vacuum wall 1s monitored on a high frequency basis

1.e. the ac-part given by the bunched beam.

Iimage(t) - Ibeam (t) Beam Position Monitor BPM

equals Pick-Up PU

image charges

C QO OO o O
N \ L /® A Ibeam(t)
R N

@ eXelele @\jﬁbﬁ

beam pipe

For relativistic velocities, the electric field is mainly transversal: £ J_,lab(t )=y -FE 1 rest (7)

GSX
P. Forck et al., DITANET School March 2011 3 Beam Position Monitors



Principle of Signal Generation of capacitive BPMs : rg

Animation by Rhodri Jones (CERN) —
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Model for Signal Treatment of capacitive BPMs %

X NWm T . W =T
The wall current is monitored by a plate or ring inserted in the beam pipe:

N

Iim(t) V o lont cireuit
R[] | Ua® equivalent circui
beam pipe I I — ground N
ick u o ‘
F s p-_;‘h ,\ ¢ I Iim(t) L_ R | Uim(t)
: Z beam(t) —— r
R
0 S
- b W
I I “— ground
o

| A: area of plate

The image current L. at the plate is given by the beam current and geometry:

e 99w A Q) A 1 () A
" dt 2mal dt 2ma  fc dt 2ma
Using a relation for Fourier transformation: 1, = I,¢'*! =dl,,, /dt = iol,,,,.

) ia)]beam (a))
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Transfer Impedance for capacitive BPM %

X NWm TN . W 'ssSeET

At a resistor R the voltage U, from the image current is measured.
The transfer impedance Z, is the ratio between voltage U,,, and beam current 1,

in frequency domain: Uim(a)) =R - Iim(a)) = Zt(a), ﬂ) ‘ Ibeam(w)°

equivalent circuit

Capacitive BPM:
*The pick-up capacitance C: ‘ A
plate <> vacuum-pipe anq cable. L (t) C R U
The amplifier with input resistor R. — [] im
*The beam is a high-impedance current source:
im — R ) I im Y
I+ioRC - “— ground
:_A Li m.)RC i, l:l—)—iw(?@Z: R
2ma Pec C 1+iwRC Z R I+iwRC

= Zt(w7ﬁ) ) [beam
This 1s a high-pass characteristic with w_,,= 1/RC:

4 1 1 @/
. . . 5 cut2 Phase: (D(Q)) — arCta’n(a)cut /a))
27a IBC C \/1+a) /a) cut By )
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Example of Transfer Impedance for Proton Synchrotron i
X WM TN . maoy g r'eESEE T
The high-pass characteristic for typical synchrotron BPM:
Utm(w) N t(w) 'Ibeam(w) 2 122 B
7 A 1 1 wlo,, 5 o
t 272_a ﬂc C \/1 N 0)2 /a)zcut Qlool b T A =

@ =arctan(w,,, / ®)

Parameter for shoe-box BPM:
C=100pF, I=10cm, p=50%
foui= 0/27=27RC)"

for R=50 Q) = f,, .= 32 MHz | | | |

for R=1 MQ = f,,,~ 1.6 kHz 10710710 10° 10° 10" 10" 10
frequency f [MHz]

- —--high impedance 1 M(}

transfer imp. |Z | [Q]
)_\
)

low impedance 50 3

For acceleration frequency 10 MHz < frf< 10 MHz:
Large signal strength — high impedance
Smooth signal transmission — 50 Q
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Signal Shape for capacitive BPMs: differentiated < proportional g
N
Depending on the frequency range and termination the signal looks different:
» High frequency range o >> w,,,:

j 1 1 A4
2o L0 U, ()=, (0
~ttio/w,, C fc 2ma

= direct image of the bunch. Signal strength Z, oc A/C 1.e. nearly independent on length

» Low frequency range o << @ cut*
oo, @ A A dl

Z, : ——>i— = U, (#)=R-——iawl,,, (1)=R- beam
1+ lq?"z‘a)cut a)cut ﬂc 2ma IBC - 2ma dt

= derivative of bunch, single strength Z, oc A4, 1.e. (nearly) independent on C

Example from synchrotron BPM with 50 Q termination (reality at p-synchrotron : 6>>1 ns):
proportional

| [ [ [
g=In=
B

i =2 4 b i 10
time [ns]

GSN
P. Forck et al., DITANET School March 2011 8 Beam Position Monitors



Examples for differentiated & proportional Shape T
"MW TN . a7 IrRSSE T
Proton LINAC, e-LINAC&synchtrotron:

X

100 MHz < ﬁ’f <1 GHz typically
R=50 Q) processing to reach bandwidth
C=5pF = 1., =1/(2zRC)= 700 MHz
Example: 36 MHz GSI ion LINAC

o
>

low energy 0. 12 MeV/u

/\/\/\?
vV

|
I
hlgher energy 14 MeV/u

<
NN

voltage |V]
& 6 o
Fuv I e R v

|
2«
i

[

I

oW
—
—

— III I| [ I| / |

voltage |V]

o o o
oo W
|
i\—_
[~
—
|

|
=
o

Proton synchtrotron:

1 MHz < ﬁ”f <30 MHz typically

R=1 MQ for large signal i.e. large Z,
C=100 pF = /. . =1/(2nRC) ~10 kHz
Example: non-relativistic GSI synchrotron

f.r: 0.8 MHz —» 5 MHz

time [us]

0
50 . Z 3 1 2
= 25} begin acceleration.: 11 MeV
E of
o —257
S —50¢
o —75
~100 : : - :
0 50 100 150 200
synchrotron circumference [m]
time [us]
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
150 [ T T T T T T T ]
= end acceleration: 1000 MeV
g 100
° 50
] Or
=
S —50¢
—-100

0 50 100 150 200
synchrotron circumference [m]

Remark: During acceleration the bunching-factor is increased: ‘adiabatic damping’.
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Calculation of Signal Shape: Bunch Train i’
X N TN . mOo 7 eSS TR
Train of bunches with R=50 Q termination = f<<f, .

7 T T 2 T T 1.0 T T
g 61 IS 08 b — — — single bunch
5 L i E 1t 1 ¢ bunch train

g g 5
VL g -
g0 Ll

2+ - — o]
E 1 .Eﬂ_l i 1T "oz —;fl i .
a [ 7 @ A

/ ~
0 | 1 ! _2 L ] | 0.0 I\ |

(]
o

4 2 4 6 0 2 4 6
time [us] time [us] frequency [MHz]

Parameter: R=50 QQ = f. =32 MHz, all buckets filled
C=100pF, /=10cm, =50%, o,=100 ns

8 10

» Fourier spectrum is composed of lines separated by acceleration f,,f

» Envelope given by single bunch Fourier transformation

» Differenciated bunch shape due to £, . >> frf

Remark: 1 MHz< frf<10MHz = Bandwidth x100MHz = IOf,,ffor broadband observation.
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Principle of Position Determination with BPM
X N TN . WY S 'EeESET T

The difference between plates gives the beam’s center-of-mass
—most frequent application

‘Proximity’ effect leads to different voltages at the plates:

U —-U beam pipe Uy
y 1 up down + §y ( f) _I p

Sy (f) Uup + Ua’own ple up y from 4 U= Uup - Uc]own
1 AUy p I bTE_____._._-——l Yy ]

R w
X = I : U”ghf _Uleﬁ +5.(f) It is at least:
5.(f) Usignt + Ul ' I m AU <XU/10

S(f,x) is called position sensitivity, sometimes the inverse is used k(f,x)=1/S(f;x)
§ 1s a geometry dependent, non-linear function, which have to be optimized.
Units: $=[%/mm] and sometimes $=[dB/mm] or A~=[mm)].
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Beam Position Monitors:
Detector Principle, Hardware and Electronics

Outline:

» Signal generation —» transfer impedance

» Capacitive ‘shoe box’ = ‘linear cut’ BPM

used at most proton synchrotrons

» Capacitive button BPM for high frequencies —» electro-static approach

» Stripline BPM —» traveling wave

» Cavity BPM  — resonator for dipole mode

» Electronics for position evaluation

» Summary
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Shoe-box BPM for Proton or Ion Synchrotron )
X N TN . maay g RS T
Frequency range: 1 MHz <f, < 10 MHz = bunch-length >> BPM length.

Signal is proportional to actual plate length: | beam Size: 200x70 mm?
lLigy =(a+x)-tana, [, =(a— x) -tana horizontal
Lo -l i vertica
I1 (S
= X=a' ——— Ulet | ] Uright
lright + e _< _[>_
In ideal case: linear reading 1.
Uright B Uleft _ AU ! :
X =4a:- =d- E : ; .
Uyrzght T Uleft 2 U 4 beam
0.3- ' i | @ Horty=-20) guard rings on
' W For (v=0) ground potential
02 A Hor {y=+20)
S0 ;\‘jz:g;}m Shoe-box BPM:
5o o PO :
=M eer=®l  Advantage: Very linear, low frequency dependence
21y 1.e. position sensitivity § is constant
_0'3 : . L] . .
o — T Disadvantage: Large size, complex mechanics

1 1 L) L] 1 L]
80 €0 40 20 0 20 40 60 80
beam position [mm]

high capacitance
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Technical Realization of Shoe-Box BPM %

X "M TN . W 'eEeeET
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u—440 MeV/u

BPM clearance: 180x70 mm?, standard beam pipe diameter: 200 mm.

i Quadrupole
n

. | Linear Ampl.

ESX
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Technical Realization of Shoe-Box BPM ﬁ

RN NAM T . Wmaaw g res=S T
Technical realization at HIT synchrotron of 46 m length for 7 MeV/u—440 MeV/u

BPM clearance: 180x70 mm?, standard beam pipe diameter: 200 mm.

] 70

IR ight
channel
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Other Types of diagonal-cut BPM T tﬂ
BN 7 N 1INETTia e W PSR W
Round type: cut cylinder Wounded strips:

Same properties as shoe-box: Same distance from beam and
capacitance for all plates

Horizontal BPM

But horizontal-vertical coupling.
Vertical BPM

horizontal spiral- vertical spiral-
shaped electrodes shaped electrodes

Signal Out | | Guard Ring

grounded separating
rings in diagonal cuts

RF multicontact connected

Other realization: Full metal plates torend guardring

— No guard rings required
— but mechanical alignment more difficult
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Beam Position Monitors:
Detector Principle, Hardware and Electronics

Outline:

» Signal generation — transfer impedance
» Capacitive shoe box BPM for low frequencies — electro-static approach

» Consideration for capacitive button BPM

Simple electro-static model,, modification for synchrotron light source
Comparison shoe box versus button BPM

» Stripline BPM —» traveling wave

» Cavity BPM  — resonator for dipole mode
» Electronics for position evaluation
» Summary
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Button BPM Realization ' ‘#

LINAC:S, e'—synchotrons: 100 MHz < f; < 3 GHz — bunch length =~ BPM length

r
— 50 Q signal path to prevent reflections

1 1%1 C]ljr ' N-CONNECTOR
Button BPM with 50 Q = U (tH)=R- . beam -

Pc-2ma  dt

FLANGE

Example: LHC-type inside cryostat:
24 mm, half aperture a =25 mm, C =8 pF
= fou= 400 MHz, Z,= 1.3 Q above /. .

INSULATOR

RF RING CONTRCT

ELECTRODE

From C. Bocca

G
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2-dim Model for Button BPM
BN A _~_
‘Proximity effect’: larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe — 1mage current density
via ‘image charge method’ for ‘pensile’ beam:

2

. _ Ibeam a _rz
]1m(¢) o 2 ma a2 + ]/'2 —2ar'005(¢_ 9)

al2
Image current: Integration of finite BPM size: [, =a - J- Jo. (@)d¢
—a/2

1.0 U | I T T 145
aperture a=25 mm

I
a=25mm,6=0°a=30°

— o~ 1.0 - AU o
= 0.8 r=2mm £y o
= r=fmm /| | === AU/EU Pl
c ——-r=10 Fo 05 - e log(U . /U ) "
3 rEUmme g ' BA\V ight/ Vett), -
BO08 [ ----- r=15mm | 4 . - s
o 1 1 o s
E [ II\ gﬂ 0.0 B
= e N \ o~
'E 04 fi/ 1 il
w —0.5 -
P
L
Nl T o N L (gt
—-1.0
15 | | ‘
0 0 —20 —10 0 10 20
¢ [degree] real beam position [mm]
| = | |
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Ideal 2-dim model: Non-linear behavior and hor-vert coupling:
Sensitivity: x=1/8'AU/2ZU with S [%/mm] or [dB/mm]
For this example: center part S=7.4%/mm < k=1/S=14mm

" d

2-dim Model for Button BPM
T . =W )

' ' ' button— = |
1.0 F a=25mm, a=30° = 710 S T ——
—— §=0° 333@3323333@3%@
o5 | — o200 L RS T T AL
- —-— 9=45° %ooo:{gbqowoco’gooo; ;
o0 o @ P @@ oo
[P\ ---6=60° E i §00Q02®eéo©2®poo§ i
~ 0.0 - E OF-t-rfro-o-oueo-so d-g-a-esdee-coo b fo b
D = : 3006@0@@@@@9@&00; :
<] joo@éo‘@@@@ebé@ooi
boo o‘&}'p’.d. &b & p’o,q‘o oo
-05 - A0 e
ioooc;)o'bo'crb’o'éoc:)ooo
ioooc?oooc@:oooci)ooo-
foCco 000 dO00a0 000
~1.0 I — S S SRR S S—
I : I 1 \ | —— -l | 1 1
—20 -10 0 10 20 30 20 10 0 10 20 30
real beam position [mm] x [mm]
, 1 AU : :
The measurement of U delivers: x = —- S — here § =S8 (x, y) i.e. non-linear.

X

In addition, frequency dependence can be calculated by analytic model or numerically.

GSN
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Button BPM at Synchrotron Light Sources %
X A R TR N

Due to synchrotron radiation, the button insulation might be destroyed
—>buttons only in vertical plane possible = increased non-linearity

Optimization: horizontal distance and size of buttons 08 | R
o Cor 06 - s’
0.0’0’ .0-4 3 : .0.0.0
e ¢ 4 ot e
e grs e !
0 0 s 0 00
> 400000 0000
15 1 .ms‘_‘zjg ¢ ¢ 05, 1 115
AR §4° . PO
. *e * :: .’ .* ¢,
L 2 J 06 & @
L) 'S 4
0‘ -0.8 1 :0

| »Beam position swept with 2 mm steps
“" »Non-linear sensitivity and hor.-vert. coupling

> At center S, = 8.5%/mm in this case

1 . (Ul +U4)_(U2 +U3)
S, U +U,+U,;+U,

1 . (Ul +U2)_(U3 +U4)

vertical : y =
From S. Varnasseri, SESAME, DIPAC 2005 \) y U, +U,+U, L(_]_él
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Button BPM at Synchrotron Light Sources i
B\ " "M TN . Wy S eSS
2-dim electro-static simulation:
d ;5=24 mm d ;5=24 mm
OBI * O.f; g *
b S s
** 06 *
..0.0’ . ‘ . .0.0..
’0.’. ‘2415 ::’0°
"E "003621::00’°
(7] 1) > L-O—0—0—08 4—0—00-¢
15 1 .ow:_¢2]§ : ‘00;5.. 1 115
_ ’.. . 5_4 :: ’. * .’0
-0 . FORICER) 4 e ¢ R
0s{ horizontal o't 08 ¢t
1 o‘ -0.8 + :0
x(mm)
d =24 mm »
08| Result: B dyp A
> Hori. § = 8.5%/mm - S
gl T
g » Vert. Sy =5.6%/mm - W
® 021 0 T
04] » x&y dependent e
°*1 vertical polynomial fit possible =+
Sw From S. Varnasseri, SESAME, DIPAC 2005

Beam position swept with 2 mm steps
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Comparison Shoe-Box and Button BPM i
B\ ' 4 "M TN . mOT S O 'RESSEE T
Shoe-Box BPM Button BPM
Precaution Bunches longer than BPM Bunch length comparable to BPM
BPM length (typical) 10 to 20 cm length per plane &1 to 5 cm per button
Shape Rectangular or cut cylinder Orthogonal or planar orientation
Bandwidth (typical) 0.1 to 100 MHz 100 MHz to 5 GHz
Coupling 1 MQ or =1 kQ (transformer) | 50 QO
Cutoff frequency (typical) | 0.01... 10 MHz (C=30...100pF) | 0.3... 1 GHz (C=2...10pF)
Linearity Very good, no x-y coupling Non-linear, x-y coupling
Sensitivity Good, care: plate cross talk Good, care: signal matching
Usage At proton synchrotrons, All electron acc., proton Linacs,
£,4< 10 MHz _f,,f> 100 MHz

horizontal

guard rings on
ground potential

P. Forck et al., DITANET School March




Beam Position Monitors:
Detector Principle, Hardware and Electronics

Outline:

» Signal generation — transfer impedance
» Capacitive shoe box BPM — electro-static approach
» Capacitive button BPM  — electro-static approach

» Stripline BPM — traveling wave e.g. for collider
» Cavity BPM  — resonator for dipole mode

» Electronics for position evaluation
» Summary
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Stripline BPM: General Idea

X N T . OOy 7 RS T

For short bunches, the capacitive button deforms the signal
— Relativistic beam f=I = field of bunches nearly TEM wave

— Bunch’s electro-magnetic field induces a traveling pulse at the strips

— Assumption: Bunch shorter than BPM, Z,.,, =R ;=R,=50 Q and v}, =C iy
AP LHC stripline BPM, /=12 cm
|/'
- it D
port 1 R, Dport2 R,
Ol /4 | A
g beam <= = stp
~—~
1| | 1
beam pipe
pip R R,
1 2
S
|/'
From C. Boccard, CERN
5= M
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Stripline BPM: General Idea

X "M T . S O PRERESSE T
For relativistic beam with &I and short bunches:

— Bunch’s electro-magnetic field induces a traveling pulse at the strip

— Assumption: Iy, , ., <<1[ Z,., =R;=R,=50 Qand v;,,..=

Signal treatment at upstream port 1:

t=0: Beam induced charges at port 1:
— half to R, half toward port 2

t=Il/c: Beam induced charges at port 2:

— half to R,, but due to different sign,
it cancels with the signal from port 1
— half signal reflected

t=2-l/c: reflected signal reaches port 1

Cs Irip

4y

port 1+

no net signal! t=2%l/c

N 2P

A

l/

R. port2 R
Lo 2

beam

n
I \ ——-
e, if bunch repetition=2l/c ==z
* ,.. e el

— Ul(t) = l.ﬁ.zsn’i (]beam(t)_[beam(t_zl/c))
2 27 7"

If beam repetition time equals 2-l/c: reflected preceding port 2 signal cancels the new one:

— no net signal at port 1

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1

= Signal depends on direction <> directional coupler: e.g. can distinguish between e and e” in collider

P. Forck et al., DITANET School March 2011
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Stripline BPM: Transfer Impedance i

O

X NWm TN . W 'ssSeET

The signal from port 1 and the reflection from port 2 can cancel = minima in Z,

For short bunches I,,,,(t) = Ne - &t): Z (w)=Z

o ripline length /=30 om, o107

B short bunch & (t)

\
Do
o0 ©

- —
o) )
— T

<
o

transfer imp. |Z| [?] phase ¢ [°]

0.0
frequency f [GHz]|

00 05 10 15 20 25

3.0

Voltage

Strip )

i . Sln(a)l / C) . ei(7r/2—a)l/c)
2

T I T I
—_— o't=0.01.ns i

P 3 4 ]
time [ns]

» Z, show maximum at /=c/4f=//4 i.e. ‘quarter wave coupler’ for bunch train

= [ has to be matched to Voeam

» No signal for [=c/2f=4/2 i.e. destructive interference with subsequent bunch

» Around maximum of |Z: phase shift ¢=0 i.e. direct image of bunch

P feonter=1/4 - ¢/l - (2n-1). For first lope: f,,,, =1/2"f ..o fhigh:3/2 *Jeenter 1-€- andwidth =1/2:f ...
» Precise matching at feed-through required t o preserve 50 QQ matching,.

P. Forck et al., DITANET School March 2011
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Stripline BPM: Finite Bunch Length i
X\ A~ _.{.-2/ R — 1 e N
. 207
The signal at port 1 for a finite bur;chzof lengtho: [, (¢£)=1,-
a — . j _
= Z(@0)=Z,,, —-e 7 2 .sin(al/c) 7PN
20 2 2 2 2
S . a —(t+l/c)* /20 —(t=l/c)* /20
= in time domamn U, (£)=Z,, -—- (e —e )-1,
.- 90 Stripline length /=30 o, o=10 —
c: : — 0,=00tns
o Or . - — 0,=0.Ins
é@ - — 0,=03ns -
Fog0 — : — o,=1ns
= 2.0 - short bunch &(t) 7
= mmeee long bunch ¢,=0.1ns 1 A
~ 15 L 77 long bunch o,=1ns i g .
;L | ’”\\ Fal FA FA Fa 0
ol - Cauti0n° Z, depends on beam’s bunch length ¢ i
o0 L da R i . ! . ! . ! ‘ . | |
0.0 0. . o 0 1 2 3 4 5
frequency f GHZ] time [ns]

» Z(w) decreases for higher frequencies
» If total bunch is too long (+30,>/) destructive interference leads to signal damping

Cure: length of stripline has to be matched to bunch length
5= M
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Realization of Stripline BPM

N N T By o PRRSSE Te,
20 cm stripline BPM at TTF2 (chamber @34mm
And 12 cm LHC type:

From . S. Wilkins, D. Nolle (DESY), C. Boccard (CERN)
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NN TN . WO 7 RS T

TTF2 BPM inside quadrupole

Comparison: Stripline and Button BPM (simplified) i’
BN
Stripline Button
Idea traveling wave electro-static
Requirement | Careful Z,,,=50Q
matching
Signal quality Less deformation of Deformation by
bunch signal finite size and
capacitance
Bandwidth Broadband, Highpass,
but minima butf., <1GHz
Signal Large Small
strength Large longitudinal and | Size <J3cm,
transverse coverage to prevent signal
possible deformation
Mechanics Complex Simple
Installation Inside quadrupole Compact insertion
possible
—improving accuracy
Directivity YES No

From . S. Wilkins,

P. Forck et al., DITANET School March 2011
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Beam Position Monitors:

Detector Principle, Hardware and Electronics

Outline:

» Signal generation — transfer impedance
» Capacitive shoe box BPM — electro-static approach
» Capacitive button BPM  — electro-static approach

» Stripline BPM —» traveling wave e.g. for collider
» Cavity BPM — resonator for dipole mode e.g. for FEL

» Electronics for position evaluation
» Summary
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Cavity BPM: Principle ; ?.

High resolution on # < 1 us time scale can be achieved by excitation of a dipole mode:
o~ E-tield TM110 For pill box the resonator modes given by geometry:
/1 3
> monopf)le TM10 With fy70 o
antenna 1~ / beam — maximum at beam center = strong excitation
7777777777777 - ! > Dipole mode TMy | with fy;;
************** ot — minimum at center = excitation by beam offset

= Detection of dipole mode amplitude

antenna 2/ -
Application:
small e beams ol e P20
and short pulses < ns | | . |
ILC, X-FEL... N A A RS EOSO WU S
( L ) From D. Lipka, | TM011§
‘d0-excitation’ DESY, Hamburg ' ’
—oscillation with ~ “+ : ; ;i : 1
Q= 1000 and t =202 zf ~ 100 ns f/GHz
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Cavity BPM: Example of Realization i a

N
Basic consideration for detection of Eigen-frequency amplitudes: % _‘
Dipole mode f; ;) separated from monopole mode g

but to finite quality factor Q = Af=f/0
» Frequency f;;,~1...10 GHz

» Waveguide house the antennas
(task: suppression of TMy;, mode signal)

—

I |
Antenna for Joro J110  frequency

dipole mode

FNAL realization: Waveguide —2 I Cavity O113mm —E-field TM110
, input for dipole | )
Cavity: D 113 mm  pode
Gap 15 mm antenna 1/ :beam
MOHO.fOlOZI.lGHZ Gap ,,,,,,,,,,,,, — @— - i
DlpOlefIIOZISGHZ 5mm cﬂ

~ 600
2 l?ad Beam pipe ’ ~
With comparable }%PM G39mm 7 N E-field TMO10
=0.1 pm resolution antenna :
within 1 s Antenna for |
. Antenna for
dipole mode monopole mode From M. Wendt (FNAL)
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Cavity BPM: Suppression of monopole Mode : ‘#

Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to 1, mono <f cut </, dipole

main cavity piece

_1—_/————— .
/ coupling siot Dipole-pole mode

grooves
for wire filler

Courtesy of D. Lipka,
DESY, Hamburg

wave guide

Courtesy of D. Lipka and Y. Honda

Prototype BPM for ILC Final Focus:
» Required resolution of 5 nm (yes nano!) in a 6x12 mm diameter beam pipe
» Achieved world record resolution of 8.7 nm +0.28(stat)x 0.35(sys) nm

at ATF2 (KEK, Japan).

GSN
P. Forck et al., DITANET School March 2011 34 Beam Position Monitors



@,

Comparison of BPM Types (simplified) i’
N\ "W TN . W o O PRERETSE T
Type Usage Precaution Advantage Disadvantage
Shoe-box | p-Synch. Long bunches | Very linear Complex mechanics
frf< 10 MHz No x-y coupling | Capacitive coupling
Sensitive between plates
For broad beams
Button p-Linacs, frf> 10 MHz Simple Non-linear, x-y coupling
all e-acc. mechanics Possible signal
deformation
Stipline colliders best for f~1, Directivity Complex 50 Q2 matching
p-Linacs short bunches ‘Clean’ signal Complex mechanics
all e~ acc. Large signal
Cavity e Linacs Short bunches | Very sensitive Very complex,
(e.g. FEL) | Special appl. high frequency

Remark: Other types are also some time used, e.g. wall current, inductive antenna,
BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

P. Forck et al., DITANET School March 2011
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Beam Position Monitors:

Detector Principle, Hardware and Electronics

Outline:

» Signal generation — transfer impedance
» Capacitive shoe box BPM — electro-static approach
» Capacitive button BPM  — electro-static approach

» Stripline — traveling wave

» Cavity BPM — resonator for dipole mode

» Electronics for position evaluation
Noise consideration, broadband and narrowband analog processing,
digital processing

»Summary
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Characteristics for Position Measurement i
B\ E "W TN . Wy O rRERETSE T,
Position sensitivity: Factor between beam position & signal quantity (4U/2U or logU;/U,)
detinedas g (x,y, f)= dix(AUx /U, )=%/mm|
Accuracy: Ability for position reading relative to a mechanical fix-point (‘absolute position”)
» influenced by mechanical tolerances and alignment accuracy and reproducibility
» by electronics: e.g. amplifier drifts, electronic interference, ADC granularity
Resolution: Ability to determine small displacement variation (‘relative position’)
» typically: single bunch: 1073 of aperture ~ 100 um
averaged: 107 of aperture ~1 um, with dedicated methods =0.1 um
» in most case much better than accuracy
» electronics has to match the requirements e.g. bandwidth, ADC granularity
Bandwidth: Frequency range available for measurement
»has to be chosen with respect to required resolution via analog or digital filtering
Dynamic range: Range of beam currents the system has to respond
» position reading should not depend on input amplitude
Signal-to-noise: Ratio of wanted signal to unwanted background
» influenced by thermal and circuit noise, electronic interference
» can be matched by bandwidth limitation

Signal sensitivity = detection threshold: minimum beam current for measurement
P. Forck et al., DITANET School March 2011 37
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Example for Signal-to-Noise Consideration i
X\ NWm TN . Wm0/ 'EeeEEL T

1. Signal voltage givenby: U, (f)=Z,(f)-1,,,, (f)
2. Position information from voltage difference: X = 1/S-AU /22U

3. Thermal noise voltage given by: U, (R,Af) = \/ 4k, -T-R-Af

4. Signal-to-noise ratio AU / U, off calculation and expressed in spatial resolution &

P Level [dB .
g0 60 o E_TO [dBm] 20 Example: button BPM resolution at
VT T T T Synchrotron Light Source SLS at PSI:
e : : ; ] .
(M., B 5 5 | Bandwidth:
gy 4 . : '
E 0.1 'Er. ..... ..lt..‘. vei e e e« REERERE . I . ...... ]. l L v .]. I ........ _E Turn—by turn — 500 kHZ
B I.| .:'.. : NN ‘ll ura ] B
= i .... "u :,,J“ . | Ramp 250 ms = 15 kHz
2001 L T l=-| [ mp0ms] .| Closed orbit =2 kHz
= ; v '-'ql v :
é i LT I ..!:==.‘lil..ll 1 Result:
E 0.001 I' Slosed orbit | SERY irate e, te, | > Slow readout < low Af
. oo e 1 .=‘_.._.._..-._......_.. ..... -
Ampllﬁer Gain: . : i = low o due to O oC 4/ Af
[ ol o2 G3/G& ERIGH G7 ENGE » Low current < low signal
0.0001 L— vl Bl : : :
0.1 1 10 100 1000 = input noise dominates
Beam Current [mA| From V. Schlott et al. (PSI) DIPAC 2001, p. 69
5= M
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Comparison: Filtered Signal <> Single Turn 4
- "M TN . moor S RS
Example GSI Synchr.: U73+, Ein/’:1 1.5 MeV/u— 250 MeV/u within 0.5 s, 107 ions

1000 turn average for closed orbit

Variation < 30 pm (sufficient for application)-

1 2 3 4
turn *10°

Single turn e.g. for tune
Variation = 150 pm

2 3 4
turn *10°

1 » Position resolution < 30 um

(BPM half aperture a=90 mm)

| > average over 1000 turns

corresponding to =1 ms
or =1 kHz bandwidth

] » Turn-by-turn data have

much larger variation

However: not only noise contributes but additionally beam movement by betatron oscillation
= broadband processing i.e. turn-by-turn readout for tune determination

P. Forck et al., DITANET School March 2011
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General Idea: Broadband Processing )
X "M TEEENTTL R IPERETSE T
amp./att. lowpass ADC
Broadband processing diff or left
2|0
00

sum or right

trigger

» Hybrid or transformer close to beam pipe for analog AU & XU generation or U left & Uright

» Attenuator/amplifier
» Filter to get the wanted harmonics and to suppress stray signals

» ADC: digitalization — followed by calculation of of AU /2U

Advantage: Bunch-by-bunch possible, versatile post-processing possible
Disadvantage: Resolution down to = 100 um for shoe box type , i.e. =0.1% of aperture,

resolution is worse than narrowband processing
| =
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General: Noise Consideration i7"
B\ " "M TN . BT RS Ty
1. Signal voltage givenby: U, (f)=Z2,(f)-1,,,(f)
2. Position information from voltage difference: X = 1/S-AU /22U
3. Thermal noise voltage given by: U, (R,Af) = \/ 4k, -T-R-Af
4. Signal-to-noise ratio AU / U, off calculation and expressed in spatial resolution &
50 Exanfple: GSI—LIINAC IWith /‘15{':36 1|\/[Hz

Signal-to-noise AU/ U,z is influenced by: = 10 MMH
— a
> Input signal amplitude 120 | | | | | | L]

= 100
— large or matched Z, CF T Mime s ™
: _ — [ [ [ [
» Thermal noise at R = 50 Q for T=300 K PER FFT of bunch signal A
or for shoe box R =1 MQ o -fa 03 8 MHz bandwidth i
> Bandwidth Af T Ho ol tlo -

—> Restriction of frequency width
because the power is concentrated
on the harmonics of £,

amplitude [arb.u.]
o o
B o
—
|

L
C_

oo

0 100 200 [soo : 400 500
onC . : . . frequency [MHz
Remark: Additional contribution by non-perfect electronics typically a factor 2

Moreover, pick-up by electro-magnetic interference can contribute = good shielding required
GSH
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General Idea: Narrowband Processing S

A
B\ - NSRS T ooy S CEREETSE T™
. acc. frequency + offset
Narrowband processing synchronous
band pass detector ADC
I\amp.latt. RE LO 2@ ﬂ left
F [0
mixer
X right
Y
Ay i
trigger

acc. frequency + offset
Narrowband processing equals super-heterodyne receiver (e.g. AM-radio or spectrum analyzer)
» Attenuator/amplifier

» Mixing with accelerating frequency f,. = signal with sum and difference frequency
» Bandpass filter of the mixed signal (e.g at 10.7 MHz)

» Rectifier: synchronous detector

» ADC: digitalization — followed calculation of AU/ZU

Advantage: spatial resolution about 100 time better than broadband processing.
Disadvantage: No turn-by-turn diagnosis, due to mixing = ’long averaging time’

For non-relativistic p-synchrotron: — variable f,,fleads via mixing to constant intermediate freq.

IE5S N
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Analog versus Digital Signal Processing 9
B\ o "MW TN . W0 S 'EESET T

Modern instrumentation uses digital techniques with extended functionality.

Traditional analog processing

BPM analog | Analog frequency Analog demodulator digital
—_—> —

signal translator and filter output

Analog

Digital Digital processing (triggered by telecommunication development)

BPM analog | Analog fre Digital | | Digital digital
g_: g Irequency | | | P18 | g 8 3

signal translator filter Signal Proc. output

Digital receiver as modern successor of super heterodyne receiver
» Basic functionality is preserved but implementation is very different
» Digital transition just after the amplifier & filter or mixing unit

» Signal conditioning (filter, decimation, averaging) on FPGA
Advantage of DSP: Versatile operation, flexible adoption without hardware modification
Disadvantage of DSP: non, good engineering skill requires for development, expensive

IE5S N
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Digital Signal Processing Realization i
X f \
' f;’f j:[ Timing ] Digital Signal Processing
f;fev f_sample
amp BP-Tilter ADC gain corr. decimation L.P-TFilterl IP-Filter2
L 1 X X
Plate A —» 5 >— A D E DDC Y Y Plate A
: 1 T |E
. ol o o
Plate B ——— —§ N D _cg DDC ~ ~ Plate B
Plate C § R : : : § e o
ate L ——» o N D %‘ DDC ~ ~ Plate C
S ! ! t =
Plate D — | & 2ol 20 2 ~
= N D i DDC ~ Ay Plate D
f anhlog ! digital T T wideband '"l '"l narrowband
[ Automatic Gain Control and Switching | [Data out [Data out

A

» Analog multiplexing and filtering
» Digital corrections and data reduction on FPGA

Commercially available electronics

used at many synchrotron light sources

P. Forck et al., DITANET School March 2011
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LIBERA Digital BPM Readout: Analog Part and Digitalization 9

BN\ " g "MW TN . a7 IrRSSE T
frf — Crossbar multiplexing of
iming Digital S
all channels at =13 kHz (analo
f;’ev f_sample ( g)
' g A ic gai Iby0...31 dB
! " 1| Automatic gain contro
Plate A ———» @ >; %‘z ' A —_ § g y
E ] 1 E filter 10 MHz(@yf, (analog)
Plate B —»| 5 A i
g — | ©] == || Digitalization with ~117 MHz
Plate € —— © T D 2 | | matched to sub-harmonics of f,.¢
Q 1 i .
Plate D ?% ]t A * : . 2| | = Undersampling: every 4t bunch
» ~ D "
T anplog <«— ' —» digital T H— Digital compensation of
[ Automatic Gain Control and Switching ampliﬁcation variation
Digital de-multiplexing

Typical values for a Synchrotron Light Source:

frf =352 or 500 MHz, revolution f.,,, ¥ 1 MHz, sampling at 4/(4*4+1) * f o= 117.6 MHz for 500 MHz

IE5S N
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LIBERA Digital BPM Readout: Digital Signal Processing %
AWM TN . Wm0 O 'EEEE TV

X

Jry
f;fev

Plate A ———»
Plate B —»

Plate C —»

analog crossbar switch ]

Plate D ———»

-

Digital Down Conversion

for data reduction

yighal Processing

Digital Low Pass Filter
— output for turn-by-turn data
— fast out with =10 kHz rate

e.g. for closed orbit feedback

Digital Low Pass Filter

— slow out with =10 Hz

HH

Data available on digital port.
Additionally, used for AGC

deci ion [.P-Filter]l [.P-Filter2
A T [
D N N Plate A
'Y '
DDC ~ N Plate B
2
~ ~ Plate C
P '?\0
DDC ~ ~ Plate D
L’
wideband l l narrowband
A — i
[Data out J [Data out J

Turn-by-turn acquisition:
Triggering ADC with f,,,~ IMHz

Remark: For p-synchrotrons direct ‘baseband’ digitalization with 125 MS/s due to f,,f<10 MHz.
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Trendsetting technology
for future demands

Comparison of BPM Readout Electronics (simplified) i
N\ "W T WY eSS T
Type Usage | Precaution | Advantage Disadvantage
Broadband p-sychr. | Long bunches | Bunch structure signal Resolution limited by noise
Post-processing possible
Required for fast feedback
Narrowband | all Stable beams High resolution No turn-by-turn
synchr. | >100 rf-periods Complex electronics
Narrowband | all Stable beams Highest resolution No turn-by-turn, complex
+Multiplexing | synchr. | >10ms Only for stable storage
Digital Signal | all Several bunches | Very flexible Limited time resolution
Processing ADC 125 MS/s | High resolution by ADC — undersampling

complex and expensive

P. Forck et al., DITANET School March 2011
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Summary 9

B\ o "MW T . oy S TREERSE ™
With BPMs the center in the transverse plane is determined for bunched beams.
Beam — detector coupling is given by transfer imp. Z(w) = signal estimation I, .. — U;,,
Different type of BPM:
Shoe box = linear cut: for p-synchrotrons with frf <10 MHz
Advantage: very linear. Disadvantage: complex mechanics
Button: Most frequently used at all accelerators, best for frf > 10 MHz
Advantage: compact mechanics. Disadvantage: non-linear, low signal
Stripline: Taking traveling wave behavior into account, best for short bunches
Advantage: precise signal. Disadvantage: Complex mechanics for 50 (2, non-linear
Cavity BPM: dipole mode excitation — high resolution ‘1um@]1us® <> application: FEL

Electronics used for BPMs: Thank you for your attention !
Basics: Resolution in space «<» resolution in time i.e. the bandwidth has to match the application

Broadband processing: Full information available, but lower resolution, for fast feedback
Analog narrowband processing: high resolution, but not for fast beam variation
Digital processing: very flexible, but limited ADC speed, more complex — state-of-the-art.
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