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Content
● Coordinate system
● Transverse space
● Transverse phase space
● Phase space dynamics
● Interaction of particles with matter
● Radiation emission by charged particles
● Sampling of distributions in 2D space
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Coordinate System
● Longitudinal coordinate

● defined by the direction of 
motion of the beam

● Axis indicated with s
● Transverse Plane

● Plane orthogonal to the 
close orbit

● Axes usually indicated with 
x and y and referred as 
HORIZONTAL and VERTICAL

xy

s
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Transverse x,y space
● Define a plane orthogonal 

to the beam trajectory 
at a given s

● Record the x,y 
coordinates of each 
particle crossing this 
plane

● Plot on a 2D chart (x, y) 
each particle

x

y
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Transverse phase space
● Beam moves along s
● Each particle moves in a 

different direction
● Velocity has 2 

components
● Transverse  
● Longitudinal 

● Transverse components 
also called x' and y'

s

x

s

y vx, vy and vs are usually
uncorrelated

v

vs
vt

vt

vx

vy

vt=vx x̂+v y ŷ

v s
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Transverse phase space (2)
● Take the same plane as before

● Note x,vx and y,vy for each 
particle crossing the plane

● Plot on a 2D chart (x, vx OR y, 
vy) of each particle

● Rename vx→x', vy→y'

● Area of the ellipse is an 
invariant and is called 
transverse emittance εx, εy

x

x'

y

y'
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Transverse spaces

● The x,y space and the phase space are different things
● Their projections along x or y are however the same 

thing
● Phase spaces contain the information needed for beam 

dynamic calculations
● x,y space is easier to sample
● Perform measurement in x,y and use optics parameters 

and beam dynamic theories to calculate the phase space



March 2011 DITANET school - Transverse profiles - E. Bravin 8

Phase space dynamics
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Courant-Snyder parameters

The phase space ellipse can 
be defined by 4 
parameters: ε, β, α and γ, 
with the relation

The equation of the ellipse 
is

γ=1+α2

β

ε=γ x2+2α x x '+β x ' 2
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Particles transport
In a linear system, like a system composed of drift space and 
quadrupoles, the coordinates of a particle in phase space can 
be transported using a simple matrix notation

[ x1

x1 ' ]=M 1[ x0

x0 ' ] [ x2

x2 ' ]=M 2[ x1

x1 ' ] [ x3

x3 ' ]=M 3[ x2

x2 ' ]

[ x3

x3 ' ]=M 3 M 2 M 1[ x0

x0 ' ]=M 0⇒3[ x0

x0 ' ]
M Drift=[1 L

0 1 ] M Quad=[ cos (√k LQ) 1/√k sin (√k LQ)
−√k sin (√k LQ) cos (√k LQ) ]
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Twiss parameters transport
If one can transport each point of the phase space one can also 
transport the ellipse and thus the Courant-Snyder, a.k.a. Twiss, 
parameters 

[ x1

x1 ' ]=[ c s
c ' s ' ][ x0

x0 ' ] [β1

α1

γ1
]=[ c2 2cs s2

−cc ' cs '+c ' s −ss '
c ' 2 −2c ' s ' s ' 2 ][β0

α0

γ0
]⇒

From the measurement of the beam profiles one obtains σ2=εβ

β1=[c1
2 2c1 s1 s1

2][β0

α0

γ0
] [εβ1

εβ2

εβ3
]=ε[c1

2 2c1 s1 s1
2

c2
2 2c2 s2 s2

2

c3
2 2c3 s3 s3

2][β0

α0

γ0
]
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Twiss parameters measurement

[εβ1

εβ2

εβ3
]=ε M [β0

α0

γ0
] ⇒ M−1[εβ1

εβ2

εβ3
]=[abc]=ε[β0

α0

γ0
]

{
a= εβ0

b= εα0

c= εγ0

γ0=
1+α0

2

β0

⇒ {β0=
a

√ac−b2

α0=
b

√ac−b2

γ0=
c

√ac−b2

ε= √ac−b2
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Sampling of distributions
● Intercepting methods

● Scanning wires
● Wire grids (Harps)
● Radiative screens

● Non intercepting methods
● Synchrotron light
● Rest gas ionization
● (Inverse Compton scattering / photo dissociation)
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Interaction of particles with 
matter

● Ionization

● Creation of electrons/ions pairs
● Secondary electrons emission (low energy electrons)

● Emission of photons (decay of excited states)
● Elastic and inelastic scattering

● Dislocations
● Production of secondary particles (high energy particles)

● Čerenkov radiation

● Bremsstrahlung

● Optical transition radiation
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Energy deposition

● Energy deposition is probably the most important aspect for 
all intercepting devices

● Signals are often proportional to the deposited energy
● Energy deposition can cause damage to the instrument

● The Bethe-Bloch formula describes energy losses in most 
cases

● The energy lost by the particles is not necessarily deposited 
in the sensor
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Energy deposition - dE/dx
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Secondary emission - SEM
● Linked to ionization
● Surface electrons 

receive sufficient 
energy to travel to the 
surface and leave

● Emission yield depends 
on particles energy, 
material, surface state  
etc.
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Scintillation
● Linked to ionization
● Photons are emitted by the de-

excitation of atomic states populated 
by the passage of the particle

● Emission time ns to hours

1MeV e- on 5μm P43 yields ~ 60 ph.
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● Phosphors have very high light yields, but can only 
be used as thin coating on a rigid support and get 
damaged very quickly

● Normally used only for very low intensity beams
● Ceramics, glasses and crystals are a more popular 

choice in high energy accelerators

● Al
2
O

3
 (Alumina, Aluminium Oxide) is a very common 

choice (usually doped with Cr) because it is a very 
robust ceramic (Cromox) 

Scintillation (2)
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Optical Transition Radiation 
(OTR)

● Radiation is emitted when a 
charged particle crosses the 
boundary of different 
dielectric properties

● Radiation has defined angular 
distribution

● Radiation is radially polarized
● Thickness of radiator not 

important

n̂

Foil
Forward emission

Backward emission

2θ

d 2W
d Ωd ω

≈ N q2

π2 c ( θ
γ−2+θ2)

2

Maximum at θ=
1
γ

W ∝{β2 β≪1
ln(2 γ) γ≫1}

For 50 MeV electrons ~ 0.3 ph./el. 
(λ ∈ [400, 600] nm)

For 100 keV electrons ~ 0.001 ph./el.

θ

W
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Synchrotron radiation
● Charged particles emit 

electromagnetic radiation 
when accelerated

● Bremsstrahlung: reduction 
of velocity

● Synchrotron radiation: 
change of direction

● Synch. rad. from dipole 
magnet emits in a fan

● Radiation from undulator has 
different properties

N

S S S

N N

Dipole magnet

Wiggler / Undulator

P= 1
4 πϵ0

2
3

ce2γ4

ρ2

λ∝
λu

2γ2 W ∝B0
2γ2

ω

dP
/d

ω

θ=
2
γ
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Synchrotron radiation (2)

Log ω

lo
g 

dP
/d

ω

ωcr ωc=
3
2

c γ3

ρ

The red observers will see a pulse which duration is equal to the time it takes to the 
particle to be deviated by an angle 2/γ and an emission spectrum as the one depicted above.

The blue observer being at the edge of the emission cone will see a shorter pulse. As a 
consequence the spectrum of the emission will be broadened and extend to higher 
frequencies (shorter wavelengths) 

2
γ



March 2011 DITANET school - Transverse profiles - E. Bravin 23

(Inverse) Compton scattering

h ν

h ν '

● A low energy photon (few eV) interacts with a high 
energy charged lepton (e-, e+)

● The photon gets boosted and gains energy to the 
expense of the particles

● Cross section is small, but usable for leptons, it is 
however too small for hadrons (protons)

ν '=γ2ν
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Sampling particle distributions
● One dimension sampling

● Wire scanners
● Wire grids
● Rest gas ionization monitors
● Laser Wire Scanner

● Two dimension sampling
● Screens and radiators
● Synchrotron radiation
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Wire scanner

MotorEncoder

Amplifier
ADC

Scintillator

PMT

● Scans a thin wire or a needle across the beam
● Detects secondary emission current or high energy 

secondary particles (scintillator + PMT)

Computer
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Wire scanner (2)

Wire position

P
M

T 
or

 S
E

M
 s

ig
na

l

● The position of the wire 
is read by resolver or an 
encoder and sampled 
simultaneously with the 
signal

● On complex, fast 
mechanism the error on 
the position can be the 
largest contribution, 
need calibration
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Wire scanner (3)
● Secondary emission

● Good for low energy beams (no high energy secondary)
● Small signal
● If the wire becomes too hot it can start to emit thermionic 

electrons spoiling the measurement
● High energy secondary

● No problem with wire heating (well...)
● Strong signal
● Detection may be non homogeneous leading to distorted 

profiles
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Wire scanner (4)

CERN “flying wires”

SLAC SLC high 
resolution 3 axis 

scanners

KEK ATF high 
resolution 3 axis 

scanners
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Wire scanner (5)
● Fast scanners

● Present limit is around 20 m/s
● Usually rotational mechanism
● Acquire profile snapshots during acceleration without need of plateaus
● Reduce wire heating (short scan time)

● Slow scanners

● High wire position accuracy
● Possibly thinner wires (low accelerations)
● More reliable mechanisms
● Long(er) measurement time
● Tighter intensity limits
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SEM Grids (Harps)

Head amplifier Integrator ADC

● The SEM current from each wire or strip is acquired 
independently

● Complex (=expensive) cabling/electronics
● Wire spacing down to a few hundreds microns 

Computer

Can be hundreds of metersCeramic support

Wires
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SEM Grids (2)
● Advantage of Grids 

is single shot 
measurement

● Time resolved 
measurement is 
possible (up to 
~100 MHz)

● Damage to a single 
wire can make 
device unusable
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SEM Grids (3)
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Ionization profile monitor
● Beam creates ionization 

column in rest gas
● Electric field drifts 

electrons toward detector
● Magnetic field guides the 

electron
● MCP+phosphor+CCD detects 

electrons
● If E is reversed ions can be 

detected instead of 
electrons (less need for B 
field)

Magnetic field

Electric field

Beam

e-

ions+

Multi channel plate

Phosphor screenView port

Camera

vacuum chamber

Ionization column

Rest gas
(in LHC LSS ~ 1013 H2/m3)

Electrodes
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Ionization profile monitor (2)
● Image shows a stripe
● Intensity profile of stripe 

proportional to beam profile
● Detector measures only one 

plane
● Transverse drift of electrons 

introduces broadening (need 
intense B field) and creates 
“tails”
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Laser Wire Scanner
● Collide a high power, focused, pulsed laser with an electron beam

● X-ray or γ-ray are produced by Inverse Compton Scattering

● Detect the x-ray / γ-ray or the degraded electrons downstream

● Can also be used on H- beams exploiting the photo neutralization detecting either the neutral H 
atoms or the freed electrons

h sc∝2 h laser
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Laser Wire Scanner (2)
LR

σ0

LR=
2π σ0

2

λ
σ0=

λ f
DL

=λ f /#

DL

There is a physical limit on the smallest laser spot size 
and on the distance over which it can remain focused
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Laser Wire Scanner (4)
● High resolution LWS require

● High power, high quality lasers (mJ, ps, M2~1)
● Complex focusing systems
● Precise scanning systems (as an alternative the beam can be moved 

around)
● The resolution of the laser wire scanners is limited by the minimum 

waist size (of the order of the wavelength)

● A strongly focused laser beam will have a short waist length (Rayleigh 
length) and is not adapted for small beams with large aspect ratios

● Other limiting factors are laser stability, vibrations, x-ray detection (if 
low energy x-rays) 
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Scintillating screens
● Particles passing trough the screen 

excite atoms and molecules
● The screen emits photons that can 

be observed with a TV camera 
(CCD)

● Multiple scattering inside screen 
increases beam divergence

● Typical screens are Al2O3 1mm 
thick. Robust and good for beam 
observation, but not for precise 
profile measurements.

Beam

Motor

Light

Camera
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Scintillating screens (2)
● Optical setup may introduce deformations (ex 45° 

screens)
● Need to perform off line corrections and calibrations
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Scintillating screens (2)
● Photons created inside the 

screen can escape
● The image observed is 

distorted
● Thickness of the screen 

should be small (compared 
to beam size)

● Observation at 90° is easy 
to use, but very bad for 
quality, also for field depth 
and aberrations

B

Screen

A is what we would like to observe
B is what we really obtain

B

Observation

Beam

Observation

A

A
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OTR radiators
● Use backward emission
● Reflecting properties of 

radiator are important (metal 
foil or metal coating)

● Use thin foil (few μm) or 
“wafers”, typically Al coated 
Si ~300 μm

● Angle of radiator depends on 
beam momentum

● For dense beams use carbon 
foils or SiC wafers

Beam

Motor

Camera

 

 n

1/

φ
φ

φ=
1
2(π2 +

1
γ )
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OTR example (DESY)

Often beams are far 
from Gaussian especially 
in linacs

Camera must be 
protected from 
radiation requiring a 
complex optical lines

Filters are needed to 
avoid saturating the 
camera
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Synchrotron radiation

Source

Slit for definition of source
(angular selection)

Beam

Dipole magnet

Camera

● Radiation inside magnet is constant

● Radiation at the entrance and exit edge has higher frequency 
components (shorter pulse) “edge radiation”

● Magnet also useful for separating photons from particles

● Source normally near entrance or even entrance edge

● Resolution limited by diffraction

Separation

resolution≈λ γ
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Light sensors
● 1D sensors (Can be fast up to hundreds of MHz)

● Photo diode array
● Linear CCD
● Segmented photomultiplier

● 2D sensors (usually slow ~50Hz, possible up to 100 kHz)
● image CCD
● image CMOS
● (Segmented photomultiplier)
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Light sensors (2)
● 1D arrays (photo diodes or photo multipliers)

● Parallel readout of each channel allows high speed, but 
limits resolution

● 1D CCD 
● serial readout, good resolution, but reduced speed

● 2D CCD or CMOS
● serial readout, very good resolution, but reduced speed.
● Special sensors with local memory and partial parallel 

readout allow higher acquisition speed.
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Light sensors (3)
● Photomultipliers are radiation resistant (glass and metal)
● CCD and CMOS are silicon based and thus not very tolerant 

to radiation
● Tube cameras (ex. VIDICON) are radiation hard, but have 

worse resolution and sensitivity
● Special fast cameras contain loads of memory and 

electronics and are very sensitive to radiation (and 
expensive)

● Sensitivity of image sensors can be increased using image 
intensifiers, but usually at the expense of resolution
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1D vs. 2D
● The 2D image contains the whole 

spatial information
● With only 2 1D profiles (X and Y) it 

is impossible to see coupling (rotated 
ellipse in x,y) or other effects

● Need at least the profile along a 
third direction (45°)

● Assuming bi-Gaussian beam with tilt: 
σI, σII, θ.

● 3 D.O.F. need 3 samples

x

y 45°

θ
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Measurement accuracy
● Accuracy of measurement depends on

● Detector size

● Min ±3σ
● Number of points

● Min 2 points per σ
● Accuracy of each point

● Both position and signal
● Noise level

● Use fit wherever possible
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Thank you very much for your 
attention

Questions?
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