Functioning Principle of Gaseous Detectors

Outline:

- Generalities
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

J. Pancin, GANIL/STP

A CO	Material	500MeV/u	50MeV/u	5MeV/u
⁴⁰ Ca	2mm BC400 (scintillating plastic)	$\Delta E = 227 MeV$ $\delta E = 0.08 MeV/u$ $\delta \theta = 0.4 mrad$	1385 0.11 3.5	Stopped ! Rg=70µm
S.	0.2mm Silicon (solid state detector)	42 0.04 0.27	185 0.03 2.4	Stopped ! Rg=46µm
ous Detect	1cm Ar at 1bar (gas detector+windows)	13 0.023 0.17	57.8 0.01 1.5	Stopped ! Rg=7mm
3/10, Gase	10cm C₄H ₁₀ at 10mbar (low pressure detector+thin windows)	0.29 0.003 0.014	1.28 0.002 0.11	6.02 0.002 1.14
Skhölm OBA	1µm Mylar [©] foil (window) with detector off beam (gas detectors or)	0.14 0.002 0.01	0.64 .001 0.10	2.9 0.001 0.93
	0.2µm carbon foil (emissive foil) with detector off beam (gas detectors)	0.02 0.0008 0.004	0.087 0.0006 0.035	0.39 0.0005 0.34
1	Te	ool : LISE++ code by O.	Tarasov and D. B	azin

Losses, Straggling and Detection Set-up

ı

Voltage, volts

- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

Ionization in gas: primary ionization

Electron-ion air production:

- Coulomb interaction between the electric field of the particle and of the molecules of the medium produce electron-ion pairs
 - $\Rightarrow X + p \rightarrow X^+ + p + e^-$
- Excitation: Ne+p → Ne*+ p
 Ne* + Ar → Ne + Ar* + e⁻ (Penning effect)
- Multiple ionizing collisions follow Poisson's statistics:

$$P_k^n = \frac{n^k}{k!} e^{-n}$$

 $n: \text{ average}$
 $k: \text{ actual number}$

Ionization in gas: secondary ionization

A second ionization process can occur with δ ray electrons: primary electrons with enough energy to ionize the gas: effects on the total number of ionization electrons !! (and spatial resolution as well)

Total ionization:

$n_T = \Delta E/Wi = dE/dx \times \Delta x/Wi$

Wi: energy for 1 pair creation, gas dependent

 $n_T/n_p \approx 3$

piral 2				Ioniz	ation	1			
S	GAS	Density	Ex	EI	WI	dE/dx	N _P	NT	
		g cm ⁻²	eV	eV	eV	keV cm ⁻¹	cm ⁻¹	cm	
	Ne	0.839 10-3	16.7	21.6	30	1.45	13	50	
5	Ar	1.66 10-3	11.6	15.7	25	2.65	25	100	
	Xe	5.495 10 ⁻³	8.4	12.1	22	6.87	41	312	
	CH ₄	0.667 10-3	8.8	12.6	30	1.61	37	54	
	C ₂ H ₆	1.26	8.2	11.5	26	2.91	48	112	
	i-C4H10	2.49 10-3		10.6	26	5.67	90	220	
	CO ₂	1.84 10-3	7	13.8	34	3.35	35	100	
	CF ₄	3.78 10-3	10	16	54	6.38	63	120	
	E_x , E_i : first excitation and ionization potentials w _i : average energy per ion pair n _P , n _T : primary and total ion pairs per cm for 1 proton at MI								
	• Q=C energ	CV, if C=10 p y deposit in A	F we hav	ve 1 µV of	signal on	lly for 10 keV	7		

• In SC, Wi around 4 eV and density factor of 10^3 which gives 10 mV signal in same conditions

 \Rightarrow Avalanche process needed!!

Electron attachment

 n_{T} : number of total electrons but free or not?

 $e^{-} + A \rightarrow A^{-} (+hv)$: influence of electronegative atoms (O, F...)

The attachment cross section: strong influence of the gas mixture (quasi no attachment in pure noble gas) and the applied electric field

- Ditanet Stockhölm 08/03/10, Gaseous Detectors
- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

Electron and ion mouvement

Dissipation of the energy gained in the ionization till reach thermal energies (Maxwell distribution), and recombinate

k Boltzmann's constant, $v = \sqrt{\frac{8kT}{\pi m}}$ T the temperature *m* the mass

A charges distribution diffuses by multiple collisions (Gaussian law):

$$\frac{dN}{dx} = \frac{N_0}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

 N_0 total number of charges x distance D diffusion coefficient

 $v_e = 10^7 \text{ cm/s}$

v_{He}=10⁵ cm/s

Then the linear and volume r.m.s. of the spread are:

$$\sigma_x = \sqrt{2Dt}$$
 radial spread of ions in air in normal conditions:
about 1 mm after 1 second

Electron and ion mouvement

Mobility μ

Electrons and ions drift in the gas, the drift velocity of electrons (much smaller size) factor of 10^2 to 10^3 higher than for ions

 $\mu = v/E$: mobility with v the drift velocity and E the electric field

	Gas	Ion	(cm^2/Vs)
	He	He ⁺	10.2
• Towar constant makility on to high showin field	Ar	Ar ⁺	1.7
• Ions: constant mobility up to high electric field	H ₂ O	H_2O^+	0.7
\rightarrow V only proporting to E×Po/P	Ar	$(OCH_3)_2CH_2^+$	1.51
\rightarrow v ₊ only proportinal to $L \times 10/1$	Iso-C ₄ H ₁₀	$(OCH_3)_2CH_2^+$	0.55
	(OCH ₃) ₂ CH ₂	$(OCH_3)_2CH_2^+$	0.26
	Ar	IsoC ₄ H ⁺ ₁₀	1.56
$V_{\text{He}+}=0.01 \text{ cm/}\mu\text{s}$ at 1 kV/cm	Iso-C ₄ H ₁₀	IsoC ₄ H ⁺ ₁₀	0.61
	Ar	CH ⁺	1.87
	CH₄	CH ⁺	2.26
	Ar	CO_2^+	1.72
Electrons:	CO ₂	CO ⁺	1.09

Electrons:

net Stockhölm 08/03/10. Gaseous De

Drift velocity $V_{\perp} = (e/2m).E.\tau$ with τ mean time between 2 collisions σ and hence τ depends on electron energy

 $\lambda_{e} \sim \lambda_{e\text{-atomique}} \Rightarrow$ quantum coupling effects like Ramsauer effect in Argon Typical value \approx cm/µs (1.5 cm/ µs in He+iC4H10 at 1 kV/cm)

In Time Projection Chambers (TPC), the dispersive factor \approx transverse diffusion (center of gravity of charge induced on pad rows)

Transverse diffusion in magnetic field

In some gases transverse diffusion strongly reduced by B field ⇒ improves the precision of the projected coordinate measurement in

 \Rightarrow improves the precision of the projected coordinate measurement in Time Projection Chambers

Ditanet Stockhölm 08/03/10, Gaseous Dete

- Ditanet Stockhölm 08/03/10, Gaseous Detectors
- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification by avalanche
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

Adapt geometry to increase the field locally: use of thin wires

Stockhölm 08/03/10, Gaseous Det

Ditanet

Or use of thin gaps like in MPGD: micromegas, GEMs, MSGC

A and B gas dependent

Diethorn...

Stockhölm 08/03/10, Gaseous Detecto

Usually it is M which is measured (typical max. value around 10^4)

A (Ar-DME 95/5) = 3.3 ± 0.3 B (Ar-DMF 95/5) = 5.3 ± 0.3

Energy resolution

Several statistical processes:

Ionization chamber : no b...

- Energy loss: landau distribution
- and Ionization: $R = 2.35 \sqrt{\frac{F.w_i}{\Delta E}}$

F: Fano factor (00.5 to 0.4)

 \bullet Gain fluctuation: for high gain variance of a polya dist. given by factor b (0.5)

• Electronical noise

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{\sigma_N}{N}\right)^2 + \left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_{el}}{M}\right)^2$$
 volume $(\sigma_Q/Q)^2 = W(F+b)/E$

TOTAL AVALANCHE NOISE IONIZATION GAIN

Ditanet Stockhölm 08/03/10, Gaseous Detectors

- Generalities: *what for and how?*Ionization
 Electrons and ions mouvement
 Amplification
 Ageing and breakdown
 - Generation of the signal
 - Simulation tools
 - Examples of detectors: MWPC, MPGD...

- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

Generation of the signal

Shockley-Ramo theorem and weighting field concept: Instantaneous current given by

q charge (electrons or ions) $i = q \vec{v} \cdot \overset{\rightarrow}{E_0} \Leftrightarrow Q = q \varDelta \varphi_0$ v velocity E_0 weighting field (1V on the electrode of interest) Q Induced charge φ₀ weighting potentiel

Cylindrical detector

Cathod

$$E = \frac{1}{r} \frac{V_0}{\ln(b/a)} \qquad \varphi(r) = -\frac{CV_0}{2\pi\varepsilon} \ln\left(\frac{r}{a}\right) \qquad C = \frac{2\pi\varepsilon}{\ln(b/a)}$$

Considering an avalanche starting at a small distance λ from the anode wire

$$Q^{-} = \frac{q}{V_0} \int_a^{a+\lambda} \frac{dV}{dr} dr = -\frac{QC}{2\pi\varepsilon_0} \ln \frac{a+\lambda}{a}$$
$$Q^{+} = \frac{q}{V_0} \int_{a+\lambda}^b \frac{dV}{dr} dr = -\frac{QC}{2\pi\varepsilon_0} \ln \frac{b}{a+\lambda}$$

 $Q^{-}+Q^{+}=q$

 $Q^{-}/Q^{+} < 10\%$ for typical geometries: Ion signal mainly

Generation of the signal

 $T^+ = \frac{\pi \varepsilon_0 (b^2 - a^2)}{\mu^+ C V_0}$

Total ions drift time:

About 10 µs Limiting the counting rate up to pile-up

FAST SIGNAL DIFFERENTIATION:

Adapt the electronics to the information wanted:

• Fast amplifier (voltage or current) for timing

· Charge amplifier for energy and position

- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

Simulation tools

• Field map calculation using 3D FEM (Maxwell 3D, COMSOL or GARFIELD (neBEM))

- Ionization models in gas with Heed program
- Electron transport properties in gas with Monte Carlo simulation (magboltz) based on electron cross sections (velocity, diffusion, attachment, townsend...),
- GARFIELD contains all this modules permits full simulations of gaseous detectors from ionization and field mapping to final signals

- Generalities: what for and how?
- Ionization
- Electrons and ions mouvement
- Amplification
- Ageing and breakdown
- Generation of the signal
- Simulation tools
- Examples of detectors: MWPC, MPGD...

The center of gravity of the induced charge distribution on cathode strips provides the X and Y projections of the avalanche position:

area 70x70 m:

Cathode (28 evan

$$X = \sum \frac{X_i A_i(X)}{A(X)} \qquad Y = \sum \frac{Y_i A_i(Y)}{A(Y)}$$

Still widely used nowdays...

Gas profilers for accelerator

CATs detectors (> 10MeV/n)

- In beam trajectory reconstruction
- Low pressure isobutane
- 1 mm spatial resolution
- 400 ps time resolution
- 10⁵ pps/cm²

Det

1141

Time Projection Chamber (David Nygren, 1975)

- ◆ Uniform electric field over a large volume
- ◆ Electrons of tracks drift to an end-cap position-sensitive detector (MWPC, ...)
- ♦ A magnetic field B//E deflects the tracks to measure their momentum
- ◆ The drift time of each track segment is measured on the anode wires, giving the vertical coordinate Z

 \bullet The position in the XY projection is obtained by recording the induced charge profiles on cathode pad rows. The recorded charge provides dE/dx for particle identification.

Ditanet Stockhölm 08/03/10, Gaseous Detectors

Use of ion gate possible

Space charge effect: gain reduction

At high rates, positive ions accumulate in the gaps and create a positive space charge with a density that depends on rates, gain and geometry.

 \Rightarrow Field and hence gain reduction

No improvement in 30 years...

DRIFT CHAMBERS (1980):

eous Detecto

Stockhölm 08/03/10, Gas

Ditanet

Solutions:

• Reduce the collection time of Ions

• Reduce the gaps

• Use of micropattern detectors with sub mm gaps (MPGD):

MSGC, GEMs, Micromegas...

Q: total charge in single avalanche N: particle rate / wire length -V

0

MSGCs drawbacks

suffer from discharge problems due to:

- Imperfections (spikes, metal bridges, ...)
- Field emission from the cathode strips edges
- Heavily ionizing event (neutrons conversions, nuclear fragments, ...)

Neutron $\rightarrow \sim$ MeV protons \rightarrow few 10⁴ electrons Gain of 10⁴ (needed to detect M.I.P.) \rightarrow exceed the Raether limit

Irreversible damages

Other MPGDs have been considered (Microgap or micropiwel ch., Micro Pin array...) but only **GEMs and Micromegas** have really shown great adavantages

GEM: Gas Electron Multiplier

Thin, metal-coated polymer foil with high density of holes. On application of a voltage difference, each hole acts as an individual proportional counter, multiplying the electrons entering from the drift region. The amplified electrons leave the hole; most of the ions are collected by the upper electrode:

Typical geometry: 5 μm Cu on 50 μm Kapton 70 μm holes at 140 μm pitch

5-10,000 INDEPENDENT PROPORTIONAL COUNTERS per cm²

F. Sauli, Nucl. Instrum. Methods A386(1997)531

GEM size and shape

Active Area 30.7 x 30.7 cm² 2-Dimensional Read-out with remotely controlled Beam Killer 5 cm Ø Total Thickness: 15 mm Honeycomb support plates Low mass: $0.7\% X_0$

FORWARD TRACKER IN CMS 10-CHAMBERS TOTEM SETUP:

POSITION ACCURACY

Micromegas: MICRO MEsh GAseous Structure

THIN GAP PARALLEL PLATE AVALANCHE CHAMBER

Use of a thin gap allows to reach large gains, overcoming the discharge problems of classic parallel plate avalanche chambers: Thin cathode mesh 10-50 μ m pitch, 3-10 μ m thickness Thin gap (50-100 μ m) Insulating gap-restoring wires or pillars

Micromegas@compass

- 3 stations of 4 planes XYUV
- Active area 40×40 cm²
- Strips: pitch 360 μm /420 μm
- total 30 MHz; 450 kHz/strip
- 0.2% X₀ rad. length/plane
- Spatial resolution of 65 µm

tanet Stockhölm 08/03/10, Gaseous Detectors

Ditan

Integration of detector and electronics

built directly over the silicon pixel readout chip. The high gain-small pixel size allows single electron detection. A high-resistivity silicon oxide layer over the chip

Using silicon foundry technology, the MPGD is

protects against discharges.

ELECTRON TRACKS IN MAGNETIC FIELD:

H. Van der Graaf, IEEE Nucl. Sci. Symp. Conf. Rec. (Dresden, October 2008

Ditanet Stockhölm 08/03/10, Gaseous Detecto

ous De

Stockhölm 08/03/10.

Ditanet

Active targets like MAYA

TPC with MWPC

To conclude...

- Gaseous detectors are widely used in particle and nuclear physics
- Great versatility: choice of gases, geometry, pressure (mbar to bars)
- Wide subject, no universal detector, need for simulations, advices from specialists and technicians
- Physics with its own R&D (international collaboration RD51 in the framework of SLHC)
- New detectors under investigation like: Th-GEM, microbulk or ingrid...

Bibliography

F. Sauli: Principles of Operation of Multiwire Proportional and Drift Chambers (CERN 77-09, 1977) Scientific, 1988) 2008)az

W.R. Leo: Techniques for Nuclear and Particle Physics Experiments (Springer, 1987) C. Fabjan and J. Pilcher, ed.: Instrumentation in Elementary Particle Physics (World R. Gilmore: Single Particle Detection and Measurement (Taylor and Francis, 1992) F. Sauli, ed.: Instrumentation in High Energy Physics (World Scientific, 1992) K. Kleinknecht: Detectors for Particle Radiation (Cambridge Univ. Press 1998) G.F. Knoll: Radiation Detection and Measurements, 3d Ed. (Wiley, 2000)

W. Blum, W. Riegler and L. Rolandi: Particle Detection with Drift Chambers, 2d Ed. (Springe

www.garfield.cern.ch (Rob Veenhof)

adapted from presentation of F. Sauli - Gas Detectors - KEK March, 2009