

Active targets

Detection

Techniques for particle detection with active targets

Riccardo Raabe Instituut voor Kern- en Stralingsfysica K.U.Leuven

3rd DITANET School on Beam Diagnostics

Outline

• Exploring exotic nuclei

- Requirements
- Techniques

• The active target

- Principle
- Present devices
- Configurations: physics cases, dynamic ranges

Particle detection and identification

- Algorithms for track reconstruction
- Energy: charge and ranges
- Particle identification
- Calibrations

Charged-particle detection methods are central

DÉFANE

Requirements on detection methods

- Low-intensity beams \Rightarrow efficiency is key
- Identification of channel \Rightarrow particle ID
- Resolution

 Reconstruct kinematics from *E* and *θ* of emitted particles (two quantities are sufficient to identify the channel)

Detection

DITANET

Stockholm - 08/03/2011

Reactions: kinematics

3rd DITANET School on Beam Diagnostics

Configurations

Resolution in E*

- Light beam: better detect beam-like particle (limit on angular resolution)
- Heavier beam: better detect light recoil (limit on *E* resolution from straggling in the target)
- In general: much worse than direct kinematics

152

J.S. Winfield et al. | Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 147-164

Table 2

Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of contribution					
			$\Delta \theta$	Δp	$E_{\rm stragg}$	$\Theta_{1/2}$	dE/dx	
p(¹² Be, ¹¹ Be)d	30	1.07°	172	147	101	74	23	259
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169
p(77Kr, 76Kr)d	30	0.16°	1404	811	808	723	56	1952
p(77Kr, 76Kr)d	10	0.10°	334	143	502	570	268	883
d(76Kr, 77Kr)p	10	0.21°	1140	614	2177	1859	1321	3408

Table 3

Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Reaction	E _i /A (MeV)	$ heta_{ ext{lab}}$	Origin of contribution					
			$\Delta \theta$	ΔE_f	ΔE_i	$\Theta_{1/2}$	dE/dx	
p(12Be, d)11Be	30	19.0°	136	74	114	96	649	685
p(12Be, d)11Be	15	17.8°	66	72	55	89	984	995
p(77Kr, d)76Kr	30	15.0°	124	55	64	63	186	249
p(77Kr, d)76Kr	10	6.0°	26	24	23	19	775	777
d(⁷⁶ Kr, p) ⁷⁷ Kr	10	155.3°	52	93	37	60	1309	1316
							$ \rightarrow $	
							$\overline{\bigcirc}$	

Exotic nuclei

Active targets

Detection

Instruments

- Charged particle arrays: solid-state telescopes (Si, Si+Csl...) resolution vs. cost
- How to improve resolution
 γ-ray: very good resolution
 but low efficiency, no g.s.-to-g.s.

The active target

- Principle:
 Time-Projection Chamber (TPC)
 + the detection gas is the target
- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented "pad" plane
 ⇒ 2D-image of the track
- 3rd dimension from the drift time of the electrons
- Large target thickness and still good resolution
- Low detection threshold

Active targets _____

Detection

Present and future devices

Exotic nuclei

IKAR NPA 712 (2002) 247

KATHOLIEKE UNIVERSITEIT

- Hydrogen gas, 10 bar
- Multiple ionization chambers
- High energy beam
- Elastic scattering of halo nuclei

CENBG TPC NIMB 266 (2008) 4606

- Mixture 90% Ar + 10% CH₄, ≈1 bar
- Amplification: GEM
- Pad plane: micro-groove detector (orthogonal strips)
- 2p-emission decay studies

Stockholm - 08/03/2011

Active targets

Detection

DITANET

Present and future devices

Exotic nuclei

Maya NIMA 573 (2007) 145

KATHOLIEKE UNIVERSITEIT

- Various gases: C₄H₁₀, D₂, ⁴He+2%CF₄, from 30 mbar to 1 bar
- **IONIZING TRACK** Amplification: wires and induction ٩ **DRIFTING ELECTRONS** Pad plane: hexagons ٢ Additional detectors for particles **GROUND GRID** escaping the gas volume **FIELD/ANODE GRID** Pads Ζ charged particle Ancillary detectors Υ 28 cm rel detection area 20 cm Frisch Grid Beam Anode wires Segmented cathode 25 cm

Exotic nuclei

Active targets

Detection

Present and future devices

ACTAR AIP Conf. Proc. 1165 (2009) 339

- Cubic geometry (mainly)
- Amplification: Micromegas ٢
- *E* and *T* from pads (\approx 16000 channels) ٩
- Larger dynamic range (Electronics, pad independence)
- Multiple tracks

KATHOLIEKE UNIVERSITEIT

AT-TPC, TACTIC

- Cylindrical geometry
- Magnetic field to confine particles

3rd DITANET School on Beam Diagnostics

Stockholm – 08/03/2011

Detection

Exotic nuclei

Configurations (physics cases)

2p-emission decay

KATHOLIEKE UNIVERSITEI

- Pressure adjusted to optimize stopping of protons ($E \approx \text{few MeV}$)
- Beam degraded before the detector and stopped in the gas volume
- Measure E, angle between protons, Δt implantation-decay

Elastic and inelastic scattering

- High pressure for target thickness and stopping of light recoil particles
- Beam leaves the detection volume
- Measure *E* and angle of light recoils
- If projectile heavy dynamic range has to be large

Active targets

Stockholm – 08/03/2011

Active targets

Detection

Configurations (physics cases)

Exotic nuclei

Resonant reactions

KATHOLIEKE UNIVERSITEIT

- Exploration of resonances above particle threshold
- Energy of the beam to reach the resonance of interest
- Pressure adjusted to stop the beam at the end of the gas volume
- Detection of light recoils scattered forward
- Measure: interaction point identification recoil
 E, angle recoil particle
- If projectile heavy dynamic range has to be large

Detection

Exotic nuclei

Configurations (physics cases)

Transfer reactions

KATHOLIEKE UNIVERSITEIT

- (p,d), (d,p), (⁴He,t), (³He,d), (p,t)...
- Beam leaves the detection volume
- Light recoil at all angles and energies!
- Pressure adjusted for the products of interest
- Identification light recoil
- Measure E, angle of light recoil
 - (d,p): low energy protons at backward angles
 - Population of unstable systems: multiple tracks

Active targets

Detector parameters

- Gas and pressure mostly dictated by physics
- Electric field: optimize for
 - Amplification
 - Drift velocity of electrons
- Drift velocity: spatial resolution is

 $\delta x = v_{\text{drift}} \, \delta t$

 $v_{\rm drift}$ ≈ 5 to 100 µm/ns $\Rightarrow \delta t$ ≈ 200 to 10 ns

NIM 159 (1979) 213

DITANE

Dynamic range

- External detectors are expensive
 ⇒ contain particles in gas volume
- Higher pressure
 ⇒ stronger signal from light ions

but

- Limit imposed
 by E_{loss} of beam particle
- 3 orders of magnitude difference!

Possibilities

- Electronics (better preamps)
- Software (different gains on pads)
- Hardware: mask the beam

Stockholm - 08/03/2011

3rd DITANET School on Beam Diagnostics

Dynamic range

Possibilities

- Electronics (better preamps)
- Software (different gains on pads)
- Hardware: mask the beam

3rd DITANET School on Beam Diagnostics

TACTIC

DITANET

Stockholm - 08/03/2011

Measured quantities

Energy

- Collected charge
- Path length (range)

Angle

- External detectors
- Track reconstruction

Stockholm - 08/03/2011

3rd DITANET School on Beam Diagnostics

Track reconstruction

 Simulation of the charge collection to test reconstruction algorithms

Hyperbolic Secant Squared

- 1. search for maxima along axes
- 2. find centroids
- 3. fit straght line through centroids

T. Roger, PhD Thesis

$$\Delta_R = \frac{w}{2} \frac{ln(\frac{1+a_1}{1-a_1})}{ln(a_2 + \sqrt{a_2^2 - 1})}$$

$$a_1 = \frac{\sqrt{\frac{Q_0}{Q_+}} - \sqrt{\frac{Q_0}{Q_-}}}{2 \sinh a_2}$$
 and $a_2 = \frac{1}{2}(\sqrt{\frac{Q_0}{Q_+}} + \sqrt{\frac{Q_0}{Q_-}})$

Accuracy: 0 to 1 degrees depending on orientation

DITANET

Stockholm - 08/03/2011

X_{MAYA} (mm)

20

40

 $\theta_{\text{SIM}} \, (\text{deg})$

4

2

0

0

 θ_{SIM} - θ_{FIT} (deg)

 $\chi^2 = \sum Q_n$

(i)

 $n \equiv 0$

Qi

60

simple fit

iterative fit

not ok for $\theta < 10 \text{ deg}$

80

 $X_{MAYA} (mm)$

Energy from collected charge

T. Roger, PhD Thesis

3rd DITANET School on Beam Diagnostics

- Large uncertainties for short tracks and small angles
- Use charge profile instead

DITANET

Particle identification

Energy vs. range

- Curves and tables (ex. SRIM)
- Need accurate range and a good calibration of pads to extract the dE/dx information

Ion	dE/dx	dE/dx	Projected	Longitudinal	Lateral
Energy	Elec.	Nuclear	Range	Straggling	Straggling
10.00 keV	4.260E-01	8.152E-03	200.63 um	61.18 um	63.50 um
11.00 keV	4.801E-01	7.584E-03	208.34 um	61.64 um	64.34 um
12.00 keV	5.308E-01	7.097E-03	215.34 um	62.01 um	65.04 um
13.00 keV	5.768E-01	6.675E-03	221.79 um	62.31 um	65.62 um
14.00 keV	6.173E-01	6.304E-03	227.83 um	62.55 um	66.11 um
15.00 keV	6.518E-01	5.976E-03	233.55 um	62.77 um	66.55 um
16.00 keV	6.803E-01	5.684E-03	239.03 um	62.95 um	66.93 um
17.00 keV	7.034E-01	5.421E-03	244.33 um	63.11 um	67.28 um
18.00 keV	7.221E-01	5.184E-03	249.50 um	63.26 um	67.59 um
20.00 keV	7.500E-01	4.771E-03	259.56 um	63.52 um	68.15 um

DITANET

3rd DITANET School on Beam Diagnostics

Calibrations

Energy

- Induction: charge in wires with pulser Alignment of pad gains
- Calibrated (alpha) source

Time

- Calibrate electronics, or
- "Physics" calibration using a known reaction

Summary

- Active targets are very promising instruments for research with exotic beams
 - Large target thickness with no loss in resolution
 - Low thresholds
 - Versatile, different configurations possible
- Many parameters to consider gas, pressure, electric field, drift velocity, dynamic range
- Measurements
 - Track reconstruction: check algorithms against simulation
 - Energy: from collected charge or from range
 (→ track reconstruction, energy loss tables)
 - Particle ID from E_{loss} : limited by spatial resolution and dE/dx on pads

