

Techniques for particle detection with active targets

Riccardo Raabe Instituut voor Kern- en Stralingsfysica K.U.Leuven

Outline

Exploring exotic nuclei

- **•** Requirements
- **•** Techniques

The active target

- Principle
- **Present devices**
- Configurations: physics cases, dynamic ranges

Particle detection and identification

- **•** Algorithms for track reconstruction
- **Energy: charge and ranges**
- Particle identification
- **•** Calibrations

Charged-particle detection methods are central

DITAN

Requirements on detection methods

- Low-intensity beams ⇒ **efficiency** is key $\mathcal{L}_{\mathcal{A}}$
- Identification of channel \Rightarrow particle ID $\mathcal{F}_{\mathcal{G}}$
- Resolution $\mathcal{L}_{\mathcal{A}}$

Reconstruct kinematics from *E* and *θ* of emitted particles \bullet (two quantities are sufficient to identify the channnel)

DITANET

Reactions: kinematics

Configurations

Resolution in *E******

• Light beam: better detect beam-like particle (limit on angular resolution)

- Heavier beam: $\mathcal{M}_{\mathcal{A}}$ better detect light recoil (limit on *E* resolution from straggling in the target)
- In general: much worse than direct kinematics

Exotic nuclei Active targets Detection

152

J.S. Winfield et al. / Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 147-164

Table 2

Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Table 3

Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Instruments

- **•** Charged particle arrays: solid-state telescopes (Si, Si+CsI...) resolution vs. cost
- How to improve resolution γ-ray: very good resolution but low efficiency, no g.s.-to-g.s.

The active target

- **•** Principle: Time-Projection Chamber (TPC) + the detection gas is the target
- Electrons produced by ionization drift to an amplification zone
- **•** Signals collected on a segmented "pad" plane \Rightarrow 2D-image of the track
- 3rd dimension from the drift time of the electrons
- **•** Large target thickness and still good resolution
- **•** Low detection threshold

Present and future devices

IKAR NPA 712 (2002) 247

KATHOLIEKE UNIVERSITEIT

- Hydrogen gas, 10 bar
- Multiple ionization chambers
- High energy beam \mathcal{A}
- Elastic scattering of halo nuclei \bullet

CENBG TPC NIMB 266 (2008) 4606

- Mixture 90% Ar + 10% CH₄, \approx 1 bar
- Amplification: GEM $\mathcal{M}_{\mathcal{C}}$
- Pad plane: micro-groove detector $\mathcal{L}_{\mathcal{A}}$ (orthogonal strips)
- 2p-emission decay studies \blacksquare

DITANET

Present and future devices

Maya NIMA 573 (2007) 145

KATHOLIEKE UNIVERSITEIT

Various gases: C_4H_{10} , D₂, ⁴He+2%CF₄, from 30 mbar to 1 bar

IONIZING TRACK Amplification: wires and induction \bullet **DRIFTING ELECTRONS** Pad plane: hexagons \bullet • Additional detectors for particles **GROUND GRID** escaping the gas volume **FIELD/ANODE GRID** Pads Ζ charged particle Ancillary detectors P Y 28 cm X Ô Ind detectional with 20 cm **Beam** Frisch Grid Anode wires Segmented cathode 25 cm 5mr

Present and future devices

ACTAR AIP Conf. Proc. 1165 (2009) 339

- **•** Cubic geometry (mainly)
- Amplification: Micromegas \bullet
- *E* and *T* from pads (≈16000 channels)
- **o** Larger dynamic range (Electronics, pad independence)
- **•** Multiple tracks

KATHOLIEKE UNIVERSITEIT

AT-TPC, TACTIC

- **•** Cylindrical geometry
- Magnetic field to confine particles

Configurations (physics cases)

2p-emission decay

KATHOLIEKE UNIVERSITEIT

- **•** Pressure adjusted to optimize stopping of protons ($E \approx$ few MeV)
- Beam degraded before the detector \mathcal{L} and stopped in the gas volume
- **•** Measure *E*, angle between protons, Δ*t* implantation-decay

Elastic and inelastic scattering

- High pressure for target thickness and stopping of light recoil particles
- Beam leaves the detection volume
- Measure *E* and angle of light recoils
- **•** If projectile heavy dynamic range has to be large

Configurations (physics cases)

Resonant reactions

KATHOLIEKE UNIVERSITEIT

- **•** Exploration of resonances above particle threshold
- Energy of the beam to reach \mathcal{L} the resonance of interest
- **•** Pressure adjusted to stop the beam at the end of the gas volume
- Detection of light recoils $\mathcal{L}_{\mathcal{A}}$ scattered forward
- Measure: interaction point identification recoil *E*, angle recoil particle
- **If projectile heavy** dynamic range has to be large

Configurations (physics cases)

Transfer reactions

KATHOLIEKE UNIVERSITEIT

- \bullet (p,d), (d,p), (⁴He,t), (³He,d), (p,t)...
- Beam leaves the detection volume $\mathcal{L}_{\mathcal{A}}$
- Light recoil at all angles and energies! \bullet
- Pressure adjusted for the products of interest
- Identification light recoil $\mathcal{L}_{\mathcal{A}}$
- Measure *E*, angle of light recoil $\mathcal{L}_{\mathcal{A}}$
	- \bullet (d,p): low energy protons at backward angles
	- Population of unstable systems: \bullet multiple tracks

Detector parameters

- Gas and pressure *mostly* dictated by physics
- **•** Electric field: optimize for
	- **Amplification**
	- **Drift velocity** of electrons
- **•** Drift velocity: spatial resolution is

 $δx = v_{drift} δt$

 $v_{\text{drift}} \approx 5$ to 100 μ m/ns \Rightarrow δt ≈ 200 to 10 ns

NIM 159 (1979) 213

DITAN

Dynamic range

- **•** External detectors are expensive \Rightarrow contain particles in gas volume
- **•** Higher pressure \Rightarrow stronger signal from light ions

but

- **•** Limit imposed by *E*loss of beam particle
- 3 orders of magnitude difference! \blacksquare

Possibilities

- Electronics (better preamps) $\mathcal{L}_{\mathcal{A}}$
- Software (different gains on pads)
- Hardware: mask the beam

Dynamic range

Possibilities

- **•** Electronics (better preamps)
- Software (different gains on pads) $\mathcal{L}_{\mathcal{A}}$
- **•** Hardware: mask the beam

3rd DITANET School on Beam Diagnostics Stockholm – 08/03/2011

TACTIC

DITANET

Measured quantities

Energy

- **o** Collected charge
- **•** Path length (range)

Angle

- External detectors $\mathcal{L}_{\mathcal{A}}$
- Track reconstruction \mathcal{L}

• Simulation of the charge collection to test reconstruction algorithms

Hyperbolic Secant Squared

- 1. search for maxima along axes
- 2. find centroids
- 3. fit straght line through centroids

$$
\sigma(x,y) = \frac{-Q}{2\pi} \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)L}{[(2n+1)^2 L^2 + x^2 + y^2]^{3/2}}
$$

$$
\Delta_R = \frac{w}{2} \frac{ln(\frac{1+a_1}{1-a_1})}{ln(a_2 + \sqrt{a_2^2 - 1})}
$$

$$
a_1 = \frac{\sqrt{\frac{Q_0}{Q_+}} - \sqrt{\frac{Q_0}{Q_-}}}{2\sinh a_2} \;\; \mathrm{and} \;\; a_2 = \frac{1}{2}(\sqrt{\frac{Q_0}{Q_+}} + \sqrt{\frac{Q_0}{Q_-}})
$$

Accuracy: 0 to 1 degrees depending on orientation

DISPANE:

 $\overline{0}$

 Ω

 \Box

20

3rd DITANET School on Beam Diagnostics Stockholm – 08/03/2011

60

80

DITANET

40

 θ_{SIM} (deg)

Energy from collected charge T. Roger, PhD Thesis

IKAR

DITANET

Particle identification

Energy vs. range

- Curves and tables (ex. SRIM) $\mathcal{L}_{\mathcal{A}}$
- Need accurate range and a good calibration of pads to extract the d*E*/d*x* information

DITANET

Calibrations

Energy

- Induction: charge in wires with pulser $\mathcal{L}_{\mathcal{A}}$ Alignment of pad gains
- Calibrated (alpha) source \bullet

Time

- Calibrate electronics, or \bullet
- "Physics" calibration \bullet using a known reaction

- Active targets are very promising instruments for research with exotic beams
	- **•** Large target thickness with no loss in resolution
	- **Q** Low thresholds
	- Versatile, different configurations possible
- Many parameters to consider gas, pressure, electric field, drift velocity, dynamic range
- **•** Measurements
	- **•** Track reconstruction: check algorithms against simulation
	- **•** Energy: from collected charge or from range $(\rightarrow$ track reconstruction, energy loss tables)
	- Particle ID from E_{loss} : limited by spatial resolution and d*E*/dx on pads

