Low Energy Beam Diagnostics

Carsten P. Welsch

DITANET Topical Workshop

"Low energy, low intensity beam diagnostics" CERN Indico: 93294

Radioactive beams, slowed down beams, cryogenic rings and much more !

- What are the particular challenges ?
 - Example: Ultra-low energy storage ring (USR)
- Discussion of different instrumentation needs:
 - Beam current monitoring (basic),
 - Beam current monitoring (advanced),
 - Beam profile monitoring,
 - Focus: DITANET projects (posters !)
- Limitations, open questions.

What do we need ?

- Basic instrumentation for machine commissioning
 - Position, current, profile (long./transv.)
 - <u>Note</u>: No antiprotons would be used !
- Basic instrumentation for machine operation
 Same parameters, but with pbars
- Special diagnostics for machine operation
 Least-invasive profile measurement

Beam Intensity

- Classic Solution: Faraday Cup
- Idea:
 - Stop beam,
 - Capture all charges,
 - Measure total charge.

J. Harasimicz – poster today

Generic Layout of a Faraday Cup

- Stop main beam in capture electrode,
- Secondary electrons are generated,
- Repelling electrode pushes secondary electrons back onto the electrode,
- Very low intensities can be measured, USR: fA !
- Limitations:

NIVERSITY OF

- Beam energy ?
- Sensitivity/noise ?
- Antimatter ?

Source: U. Raich, CERN.

Faraday Cup: High Power Beams

- 1 GeV @ 50 μA
- Need to dissipate50 kW heat load !
- Error source ?

NIVERSITY OF

Entrance foil:
 Not all charges
 can be captured.

USR: Screen Studies

Realized in close collaboration with INFN-LNS

Beam Halo Monitoring

Definition: What is 'Halo' ?

ne Cockcroft Institute

- Very high intensity in core:
 - Saturates pixels
 - Signal overflow to neighbouring pixels
 - Tail regions are being modified, wrong measurement.
- Concentrate measurement on tail region ONLY as this is the interesting part !

• How ??

C.P. Welsch et al., Proc. SPIE (2007)

J. Egberts, et al., JINST **5** P04010 (2010)

Basis: Micro Mirror Array (TI)

The Cockcroft Institute of Accelerator Science and Technology

Measurements at UMER

- 10 keV e⁻ beam, Phosphor screen
- iCCD camera
- Verification of earlier lab measurements

- Reconstruction of beam profile with DR of 10⁵
- Effects from diffraction on DMA are minimal

R. Fiorito, et al., Proc. BIW C.P. Welsch et al. IPAC 2010

Cryogenic Current Comparator (CCC)

Absolute Current Measurement

- Highly desirable !
 - Callibration of other monitors,
 - Direct link to experimental output.
- Challenges:
 - Signal levels VERY low,
 - Signal/noise critical,
 - Isolation against vibrations, rf noise
 - …many more…

Cryogenic Current Comparator

- The CCC consists of:
- SC pickup coil,
- High efficient SC shield,
- High performance
 SQUID measurement system.

Harvey, Rev. Sci. Instrum. **43** (1972) Poster: Febin Kurian

he Cockcroft Institute

<u>Superconducting QUantum Interference Device</u>

Most sensitive magnetic flux detector,

The working principle makes use of:

- Superconductivity,
- Flux quantization in SC rings,
- Josephson effect.

A SQUID consists of a SC ring with one or two weak links (*Josephson tunnel junctions*).

Measurement Principle

- Couple to azimuthal magnetic field,
- Screening current induced in SC coil with ferromagnetic core,
- DC SQUID for sensitive detection of coil magnetic field,
- Strong shielding against magnetic noise is key !

(14 ring cavities give 200 db shielding factor)

M. Schwickert

Prototype @ GSI

• GSI prototype (A. Peters, 1997)

Resolution: 250 pA/ \sqrt{Hz} \rightarrow 8 nA (1 kHz readout)

 \rightarrow 2×10⁹ U²⁸⁺/s

More recently...

Poster: Febin Kurian

2D (least destructive) profile measurements

The idea: Gas Sheet Monitor

- Generate thin atom gas curtain,
- Ionize atoms with primary particle beam,
- Extract ions via electric field,
- Monitor on MCP, P screen.

Y. Hashimoto et al., Proc. Part. Acc. Conf., Chicago (2001)

Y. Hashimoto et al., Proc. Part. Acc. Conf., Chicago (2001)

Experimental Data

 IVERSITY OF
 OF

 IVERPOOL
 Carsten P. Welsch – DITANET School, Stockholm, Sweden, 7.-11.3.2011

Is this ready for low energies ?

- Designed for 10 MeV proton beams,
- Magnetic field B > 2 T,
- Pressure: 10⁻⁷ mbar

» No !!!

QUASAR

Curtain Jet w/o Magnetic Field

M. Putignano et al., Hyperfine Interact. (2009) M. Putignano et al., Proc. BIW and IPAC (2010)

Zoom: Main chamber

Phosphor coated window

NIVERSITY OF

Ionization Cross Sections

Single ionization of helium by antiproton impact

Y. Hashimoto et al., Proc. Asian Part. Acc. Conf., Beijing (2001)

Numerical Investigations with GDT

The Cockcroft Institute

System optimization and trends analysis

QUASAR

Benchmarking of Simulations

Movable skimmer, summer 2011.

- Low energy beam diagnostics pushes technology and techniques to the limits,
- Established instrumentation needs to be "re-developed" to provide required resolution,
- International effort, close collaboration is key.
- Full details: See Workshop Homepage CERN Indico: 93294

Thank you for your attention !!

