

Beam profile monitors for the high current electron beam at the Test Beam Line

M. Olvegård *, W. Andreazza, E. Bravin, N. Chritin, A. Dabrowski, M. Duraffourg, S. Döbert, T. Lefèvre (CERN, Geneva, Switzerland), E. Adli (University of Oslo)

TBL beam parameters:

Nº of PETS Mean energy Energy spread <**E**> σ /<E> 144.9 (MeV) 1.04% 129.7 (MeV) 1.4% 109.5 (MeV) 2.2% 68.8 (MeV) 5.8%

Injected beam: 150 MeV, 28 A, 140 ns, 12 GHz bunch frequency

The Test Beam Line (TBL):

Purpose: study the behavior of the drive beam in a small-scale CLIC decelerator

- 4 Power Extraction and Transfer Structures (PETS) installed
- Quadrupoles on precision movers for beam based alignment
- One BPM per quadrupole and PETS
- Two diagnostics sections, one before and one after the deceleration.

high energy transient due (Me) 100 to full beam loading in the PETS

(Placet simulation by E. Adli) large intra-bunch energy spread -1 PETS —16 PETS 140 ns nominal pulse duration

Energy of the decelerated beam

t (ns)

OTR screens for emittance measurements through quadscans:

- Replacement chamber
- 200 µm SiC screen for higher charge 200 µm SiC screen for lower charge

Quadrupoles

Calibration target

Diagnostics section Segmented dump Collimator ✓ OTR screens

Quadscan at OTR screen CC.MTV0970: $\beta_{Y}^{r} = 9.6 \text{ m}$

P_{mean}=113.46 MeV/c

Δ P/P (%)

 $P_{peak} = 113.46 \text{ MeV/c}, \Delta P_{FWHH} = 3.747\%$

 $\Delta P/P$ (%)

Preliminary results, Single-slit dump (1 PETS)

(MeV/c)

CB.SVBPM1030S (A)
SlitDump:1*I_{SD} (A)

5050 5100 5150 5200 5250

time (ns)

12 5050 5100 5150 5200

time (ns)

32 tungsten segments

• transverse width: 3 mm

Resolution ~100 μm

 transverse spacing: 1 mm longitudinal thickness: 20 mm

Single-slit dump

method

spectrometry:

radiation.

screen

Time resolved spectrometry

through a dipole scanning

OTR screens for high resolution

CCD camera behind shielding

50 µm carbon foil to stop synchrotron

100 µm parabolic or diffusive aluminum

Collimator with 32 slits

Dipole

- high tungsten content (Inermet)
- slit width: 400 μm
- longitudinal thickness: 100 mm

Segmented Beam Dump:

Single-shot time resolved energy and energy spread measurements

- Expected accuracy 5 % on energy spread.
- Energy resolution ~ 2 %.
- Water-cooled to absorb most of the shower and to minimize segment cross-talk.
- Beam lets passing through collimator are stopped in tungsten segments.
- The absorbed charge detected and sampled at 250 Mhz, each segment by an individual ADC.

Simulation of detector performance: a) old design: Distribution at segmented dump parallel slits PLACET ▲ FLUKA (a) (a.u.) FLUKA (b) b) new design: particle (concentric slits -10 x (cm)

Outlook

(Su) 5200 5150

≒ 5100

5050

- Commissioning of new segmented beam dump with 4 PETS in TBL.
- TBL commissioning with time-resolved spectrometry before and after beam deceleration.
- A performance study on OTR-based beam profile measurements on beams with an unusually large energy spread.
- Continue design of time resolved energy measurements to meet CLIC requirements: higher beam intensity, better time resolution.

Maja.Olvegaard@cern.ch

Supported by the EU under contract PITN-GA-2008-215080.

