

# **Diagnostics for Light Sources**

Introduction

**Diagnostics Systems & Related Measurements** 

Electron Beam Position Monitors Photon Beam Position Monitors Current Monitors

**Synchrotron Light Monitors** 

V. Schlott (PSI)



### **Acknowledgements**

- ... to be able to present a state-of-the-art overview of light source diagnostics, I have been relying on the outstanding work of many colleagues from various synchrotron radiation facilities
- ... this presentation is far from being complete ! It tries to give an overview of light source diagnostics with a number of hopefully instructive examples and (latest) measurements
- ... for their support in discussing the topics, which are presented, and for the provision of information material and measurement results, I would like to explicitly thank the following colleagues...:
  - Andreas Streun (PSI) Michael Böge (PSI) Thomas Schilcher (PSI) Boris Keil (PSI) Andreas Lüdeke (PSI) Thomas Wehrli (PSI) Juraj Krempaski (PSI)

Gero Kube (DESY) Ake Andersson (MaxLab) Günther Rehm (DIAMOND) Jean-Claude Denard (SOLEIL) Peter Kuske (BESSY) Karsten Holldack (BESSY) Mario Ferianis (ELETTRA)

and many more...!!!



## **<u>3rd Generation Synchrotron Radiation User Facilities in Europe</u></u>**





## 3rd Generation Light Source User Facilities: SLS Beamlines (2010)





### **Typical Layout & Accelerator Parameters of a 3rd Generation Light Source**

**Front Ends** 

#### **Pre-Injector LINAC Parameters**

**Operation Modes:** Typ. Energy: Max. Charge:  $\Delta E/E$ : **Energy Stability: Timing Jitter:** Typ. Emittance: **Rep.-Rate:** 

**Electron Energies:** 

MTBF / Beam Loss: **Circumferences:** 

**Revolution Frequ.:** 

**Beam Currents:** Life Times:

single bunch / bunch train 100 – few MeV  $\leq 2 \text{ nC} / \leq 5 \text{ nC}$ < 0.5% (0.2%)

#### **Booster Synchrotron**

**Energy Ramp:** Ramp Times: **Design Current: Design Emittance:** Efficiency: Rep.-Rate:

#### **Storage Ring Parame**

| <pre>&lt; 0.1% (0.1%) &lt; 100 ps (10 ps) &lt; 50 mm mrad &lt; 10 Hz n Parameters few 100 MeV - few GeV ~ 100 ms &lt; 3 mA &lt; 250 nm mrad ~ 80% &lt; 10 Hz</pre> |                                       | Beamline             | Storage<br>Ring                                               | Synchrotron<br>Pre-Injector<br>LINAC |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| otors (European Light S                                                                                                                                            | ourcos)                               |                      | Optics Hutches                                                | courte                               | sy of DIAMOND Light Source                                        |
| <u>eters</u> (European Light Si                                                                                                                                    | ources)                               |                      |                                                               |                                      |                                                                   |
| 105 MeV - 6 GeV<br>100 pA - 500 mA<br>10 - 75 h                                                                                                                    | Horiz. Emi<br>Coupling:<br>Vert. Emit | ittances:<br>tances: | 1 - 100 nm rad<br>< 0.1 - 1 %<br>≥ 3 pm rad<br>few tens of um | Filling Pattern:<br>RF Frequencies:  | single & multiple bunches<br>camshaft to uniform<br>100 - 500 MHz |
|                                                                                                                                                                    | Vort Door                             | Sizes                | four um                                                       | Dunch Spacings.                      | 10 - 2115                                                         |
|                                                                                                                                                                    | vert. Beam Sizes:                     |                      | rew μm                                                        | Bunch Lengths:                       | few ps - 300 ps                                                   |
| 48 – 2300 m                                                                                                                                                        | Horiz. Divergence:                    |                      | tew tens of µrad                                              | Orbit Stability:                     | $< 1 \mu\text{m}$ (MTF to 200 Hz)                                 |
| 6.25 – 0.130 MHz                                                                                                                                                   | Vert. Divergence:                     |                      | tew µrad                                                      |                                      |                                                                   |

Control Room &

Offices

Booster



## **Diagnostics Requirements for 3rd Generation Light Sources**

the key parameter to be optimized in 3<sup>rd</sup> generation light sources is the spectral brilliance

$$B \propto \frac{N_{photons}}{\sigma_x \sigma_x \sigma_y \sigma_y} \propto \frac{I_{beam}}{\varepsilon_x \varepsilon_y} \left[ \frac{Number of Photons}{smm^2 mrad^2 0.1\% bandwidth} \right]$$

- → high beam current ideally "top-up" operation highly efficient, low loss injector chain
- → small beam emittances ideally low coupling (< 0.1%) measurement of small beam sizes with high resolution SR monitors
- $\rightarrow$  high beam stability ideally "top-up" operation with fast and slow orbit feedbacks high resolution electron and photon BPM systems



### **Overview of Diagnostics Devices for 3rd Generation Light Sources**

#### **Beam Position Monitors:**

Button BPMs:  $x_k, y_k, I_k$  (k = BPM index)

- $\rightarrow\,$  commissioning & injection studies
- $\rightarrow~$  orbit correction & FOFB
- $\rightarrow\,$  tunes and chromaticity
- $\rightarrow\,$  local and global coupling / resonances

#### **Bunch Charge & Current Monitors:**

- ICT / BCM in LINAC and TLs
- $\rightarrow\,$  transmission and injection efficiency
- **MPCT** in booster synchrotron
- $\rightarrow\,$  beam current and transmission on the ramp

#### DCCT / PCT in storage ring

- $\rightarrow\,$  injection efficiency and stored current
- $\rightarrow$  beam lifetime

### Transverse Profile Monitors:

- **OTR and scintillator screens**
- $\rightarrow$  beam profiles, emittance &  $\Delta E/E$  in LINAC & TLs
- $\rightarrow\,$  injection matching in booster & storage ring
- synchrotron radiation monitors
- $\rightarrow\,$  beam size, emittance & coupling

### Longitudinal Profile Monitors:

- Wall Current Monitors, FCTs
- $\rightarrow\,$  bunch pattern in LINAC & TLs
- $\rightarrow\,$  bunch purity in LINAC & TLs

#### **Streak Camera**

- $\rightarrow$  bunch length / lengthening in storage ring
- $\rightarrow\,$  longitudinal instabilities in storage ring
- Fast Diodes / PMs
- $\rightarrow\,$  bunch pattern / bunch pattern FB in storage ring
- $\rightarrow$  bunch purity (in photon counting mode)

#### Beam Loss Monitors & Scrapers:

- $\rightarrow$  local and global beam loss (low gap undulators)
- $\rightarrow$  lifetime
- $\rightarrow$  dynamic aperture studies
- $\rightarrow\,$  limitation of storage ring aperture

#### Photon Beam Monitors:

- $\rightarrow$  photon beam position (undulator gap compensation)
- $\rightarrow\,$  absolute orbit reference & long term stability
- $\rightarrow\,$  FOFB "out of loop monitors"
- $\rightarrow$  more potential...!



< 500 µm (rms)

~ 10 % / ≥ 50 pC

< 0.5 – 5 mA

### **Beam Position Monitors: Modes of Operation & Specifications**

#### injection & commissioning mode:

- $\rightarrow$  **x**<sub>k</sub>, **y**<sub>k</sub> and **I**<sub>k</sub> upon injection trigger (k = BPM index)
- $\rightarrow$  data processing & transfer in batches
- $\rightarrow$  position resolution:
- $\rightarrow$  absolute accuracy:
- $\rightarrow$  intensity / charge res.:
- $\rightarrow\,$  dynamic range:
- $\rightarrow$  current dependency:
- turn-by-turn mode:
  - $\rightarrow$  x<sub>k</sub>, y<sub>k</sub> for several thousand turns (k = BPM index)
  - $\rightarrow$  data processing & transfer in batches
  - $\rightarrow$  position resolution:
  - $\rightarrow$  absolute accuracy:
  - $\rightarrow$  measurement bandwidth:
  - $\rightarrow$  dynamic range:
  - $\rightarrow$  current dependency:
  - $\rightarrow$  drift (8h 1 month):
  - $\rightarrow\,$  reproducibility (bunch pattern):  $\,$  < 500  $\mu m$

- ~ 1 µm (rms)
- < 200 µm (with respect to quad)

 $< 500 \,\mu\text{m}$  (with respect to guad)

< 500 µm (within 10dB range)

- < 1 MHz
- 5 100 mA
- not critical for BD studies not critical for BD studies

#### closed orbit correction mode:

- $\rightarrow$  **x**<sub>k</sub>, **y**<sub>k</sub> (k = BPM index)
- $\rightarrow$  measurement rate:
- $\rightarrow$  position resolution:
- $\rightarrow$  absolute accuracy (after BBA):
- $\rightarrow$  measurement bandwidth:
- $\rightarrow$  dynamic range:
- $\rightarrow$  current dependency:
- $\rightarrow$  drift (8h 1 month):
- → **reproducibility** (bunch pattern):

#### global fast orbit feedback mode:

| $\rightarrow$ | $\mathbf{X}_{\mathbf{k}}, \mathbf{y}_{\mathbf{k}}$ (k = BPM index) | 10 kComplex new second            |
|---------------|--------------------------------------------------------------------|-----------------------------------|
| $\rightarrow$ | measurement rate:                                                  | to koamples per second            |
| $\rightarrow$ | position resolution:                                               | < 0.2 μm (rms)                    |
| $\rightarrow$ | absolute accuracy (after BBA):                                     | $< 1 \mu m$ (with respect to quad |
| $\rightarrow$ | measurement bandwidth:                                             | few kHz                           |
| $\rightarrow$ | dynamic range:                                                     | 10 – 100 mA                       |
|               |                                                                    | 100 – 500 mA                      |
| $\rightarrow$ | current dependency:                                                | < 5 μm (10 dB range)              |
| $\rightarrow$ | drift (8h – 1 month):                                              | <1 µm / <5 µm                     |
| $\rightarrow$ | reproducibility (bunch pattern):                                   | <1 um                             |

few samples per second

 $< 1 \,\mu m$  (with respect to quad)

 $< 0.2 \,\mu m$  (rms)

10 – 100 mA

100 - 500 mA

 $< 1 \,\mu m$  (10 dB range)

 $< 1 \,\mu m / < 5 \,\mu m$ 

few kHz

<1 um



## Beam Position Monitors: Signal Considerations for Button Electrodes



AIP Conf. Proc. 249, vol. 1, 612 (1992) S. R. Smith, "Beam Position Monitor Engineering", SLAC-PUB-7244, July 1996 P. Forck et al., "Beam Position Monitors", CAS Beam Diagnostics 2008, 187, CERN-2009-005



### Beam Position Monitors: Storage Ring Chamber Geometries

#### **Examples of Storage Ring BPM Chambers:**



#### Note...:

- ... due to heat load from synchrotron radiation, button electrodes have been placed outside of the beam plane
- ... BPM chamber is typically a massive SS block, which is welded or flanged to the storage ring vacuum chamber
- ... storage ring vacuum chamber should typically be supported at the locations of the BPM chamber for minimum displacements

#### Inside View of DELTA BPM Chamber



#### ESRF Storage Ring BPM Chamber



10

SLS MBF BPM Chamber (with Hybrids)







Sensitivity parameters S<sub>x</sub>, S<sub>y</sub> depend on geometry of vacuum chamber, size and distance between electrodes

11

- $\rightarrow$  general optimization of geometry is obtained by numercal simulations
- $\rightarrow$  Sx, Sy are typically determined by polynomial fits and given in [% / mm]







## Storage Ring BPMs: Some Mechanical Considerations & Stability Issues





**DITANET Lecture on Light Source Diagnostics** 



DITANET School on Beam Diagnostics, Stockholm, March 7th - 11th 2011



## **Typical Performances of Light Source Beam Position Monitor Electronics**

**Digital BPM Systems provide:** ... selectable bandwidth of BPM data (turn-by-turn, ramp, FOFB...) ... high resolution, low current dependency, low drift and high reproducibility

... in future direct sampling of BPM pick-up signals should be possible

### Examples of Light Source BPM System Performances for Different Operation Modes





Some Remarks: ... due to "top-up" operation, SLS DBPM system is operated at constant gain levels ... position resolution follows the bandwidth restriction (~  $\sqrt{BW}$  relation) ... next generation DBPM system Libera (Brilliance) provides already improved position resolution



## **BPM Applications I: Measurement & Optimization of Storage Ring Injection**

### Pinciple of "4 Kicker Injection":

1 all 4 kickers "fired":

the stored beam performs a "closed bump",

the injected beam enters the storage ring through the septum

#### 2/3 all 4 kickers turned off:

the "closed bump" of the stored beam fades away,

the orbit of the injected beam oscillates around the stored beam

#### 4/5 all 4 kickers off:

betatron oscillation of injected beam damps down

 $\rightarrow\,$  beam is injected and stored on closed orbit





septum

#### Simulation of SLS Injection Kick

injected bear



#### 

Establishment of Closed Obit from all BPMs (I. X and Y)

Volker Schlott

X 200

4.445 8.354 8.354 8.354 8.354 10

position

50

Single BPM Turn-by-Turn Meas. of Injection Kick

X POSITION [mm]

· ...



## **BPM Applications II: Tune Measurement**

#### **Pinciple of Tune Measurement:**

- $\rightarrow$  excitation of betatron oscillation by kicker magnet (e.g.: septum, MBF kicker)
- → BPM measures turn-by-turn data (e.g.: 4096 horizonatl & vertical psitions)
- $\rightarrow$  FFT on position readings provides integer part of the tune





## **BPM Applications III: Chromaticity and Beta Function / Orbit Response**

Chromaticity is a momentum-induced tune shift

→ tune spread depends on momentum spread



#### **Pinciple of Chromaticity Measurement:**

- $\rightarrow$  measure tune  $Q_1$
- $\rightarrow$  change  $\,\Delta p/p\,$  (e.g. RF frequency) and measure tune  $Q_2$
- $\rightarrow$  determine tune shift  $\,\Delta Q$  =  $Q_2$   $Q_1$



### <u>β-Function / Orbit Response Measurement Methods</u>

 $\rightarrow$  determination of tune shift induced by quadrupole strength modulation

$$\Delta Q = \frac{1}{4\pi} \int_{s_0}^{s_0 + L} \Delta K \,\beta(s) \, ds \cong \frac{\Delta K \,\overline{\beta} L}{4\pi}$$

- $\rightarrow$  each BPM records position change induced by orbit kick from each corrector
- $\rightarrow$  orbit response matrix  $A_{ij}$  relates orbit positions & corrector deflections
- $\rightarrow$  fit of  $\beta$ -functions by "linear optics from closed orbit" (LOCO)

$$\vec{u} = A_{ij} \vec{\theta}$$
$$A_{ij} = \frac{\sqrt{\beta_i \beta_j} \cos(|\mu_i - \mu_j| - \pi Q)}{2\sin(\pi Q)}$$

Volker Schlott



## **BPM Applications IV: Orbit Correction & Establishment of Golden Orbit**

courtesy of Michael Boege, PSI

SLS "bare orbit" without corrections:

 $x_{rms}$  = 2.3 mm,  $y_{rms}$  = 1 mm  $\rightarrow$  upper limit of sextupole & quadrupole alignment errors of < 30  $\mu$ m



 $\rightarrow$  global orbit correction is achieved by "single value decomposition" (SVD) of response matrix  $A_{ii}$ 

### <u>SLS "golden orbit" after CO correction:</u> $x_{rms} = 1 \ \mu m, y_{rms} = 1 \ \mu m$

 $\rightarrow$  each beamline receives its individual position and angle settings









## BPM Applications VI: Global Fast Orbit Feedback & Short Term Stability

- → ground motions below few hundred Hz typically define the short term stability at light sources
- ightarrow amplification by girder response and beam optics cause disturbing beam motions for the users



global fast orbit feedback system (FOFB) stabilizes electron beam to the "golden orbit"

#### Ingredients of Global Fast Orbit Feedbacks

- $\rightarrow$  BPM data acquisition rate of a few (typically 10) kHz with only a few hundred nm integrated noise
- $\rightarrow$  low noise corrector magnet power supplies with a few kHz bandwidth
- $\rightarrow$  a centralized or distributed fast data distribution network for BPMs and corrector magnets
- $\rightarrow$  calculation of orbit corrections through SVD or matrix inversion
- → feedback loop is closed by (digitally implemented) PID controller



## BPM Applications VII: Global Fast Orbit Feedback & Short Term Stability

### **SLS Global Orbit Distortions without Fast Orbit Feedback**





• measured at tune BPM outside of feedback loop ( $\beta_x$  = 11 m,  $\beta_y$  = 18 m)

• no ID-gap changes

## BPM Applications VII: Global Fast Orbit Feedback & Short Term Stability

### Performance of SLS Global Fast Orbit Feedback





• measured at tune BPM outside of feedback loop ( $\beta_x$  = 11 m,  $\beta_y$  = 18 m)

• no ID-gap changes

#### FOFB – Accumulated Power Densities (1 – 150 Hz)

|            | horiz                                     | zontal                                    | vertical                                               |                                           |  |
|------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------|-------------------------------------------|--|
| FOFB       | off                                       | on                                        | off                                                    | on                                        |  |
| 1- 100 Hz  | <b>0.83</b> μ <b>m</b> · $\sqrt{\beta_x}$ | <b>0.38</b> μ <b>m</b> · $\sqrt{\beta_x}$ | <b>0.40</b> μ <b>m</b> · √ <mark>β</mark> <sub>y</sub> | <b>0.27</b> μ <b>m</b> · $\sqrt{\beta_y}$ |  |
| 100-150 Hz | $0.08 \ \mu m \cdot \sqrt{\beta_x}$       | $0.17 \ \mu m \cdot \sqrt{\beta_x}$       | $0.06 \ \mu m \cdot \sqrt{\beta_y}$                    | $0.11 \ \mu m \cdot \sqrt{\beta_y}$       |  |
| 1-150 Hz   | $0.83 \ \mu m \cdot \sqrt{\beta_x}$       | $0.41 \ \mu m \cdot \sqrt{\beta_x}$       | $0.41 \ \mu m \cdot \sqrt{\beta_y}$                    | $0.29 \ \mu m \cdot \sqrt{\beta_y}$       |  |

Examples (1 – 150 Hz):

• tune BPM (
$$\beta_y$$
 = 18 m):  $\sigma_y$  = 1.2 µm  
• ID 6S ( $\beta_y$  = 0.9 m):  $\sigma_y$  = 0.28 µm



## Photon BPMs: FOFB "Watchdog" Function and Slow ID Feedbacks



- systematic electron BPM effects are suppressed by slow, high level feedbacks on photon BPM readings
- resulting photon beam stability at the location of first optical elements of beamlines < 1 μm !</li>

#### Photon BPM Stability vs. E-BPM Systematic Effects



#### Photon BPM FB and Undulator Gap Variations





## Photon BPMs: Front End Layout & BESS – FMB Blade Monitor Design

Photon BPM Layout with SPMs and XBPMs in Beamline Front Ends



### BESSY – FMB-Berlin Photon BPM Design



- photon BPMs provide better position resolution than electron BPMs due to larger lever arm
- absolute position reference to photon BPM alignment accuracy
- photon BPM FB compensates electron beam motions due undulator gap variations
- "out-of-loop" reference for global FOFB



## Photon BPMs: Principle of SPM & XBPM Blade Monitors

"Staggered Pair" Blade Monitors for Wiggler & Bending Magnet Beamlines

3

undulator small K
undulator medium K

wiggler mode downstream dipole



2

4

### X-Ray BPM Blade Monitors for Undulator Beamlines

Position Determination (like e-BPMs)

$$X_{pos} = K_{x} \cdot \frac{(I_{1} + I_{3}) - (I_{2} + I_{4})}{I_{1} + I_{2} + I_{3} + I_{4}}$$
$$Y_{pos} = K_{y} \cdot \frac{(I_{1} + I_{2}) - (I_{3} + I_{4})}{I_{1} + I_{2} + I_{3} + I_{4}}$$

<u>calibration required:</u> SR contaminations from bends optical mode / gap changes

Photo-induced currents (typ.  $nA - \mu A$ ) are read out by low noise current amplifier & digitized for position processing

Volker Schlott



## Gas Monitors – Example of Alternative Photon BPM for Light Sources

#### PSI Development of MYTHEN-based Gas Photon Monitor \*





\* courtesy of Thomas Wehrli, PSI



### Preliminary Results from SLS \*

- position resolution:  $\Delta x$ , y<sub>ph</sub> = 2.9  $\mu$ m (rms)
- profile resolution:  $\sigma_{ph}$  = 4.4  $\mu$ m
- resolutions are close to statistical limit
- photo-ions promise improvement of profile resolution by  $\sqrt{\text{mass}}$
- integrating EIGER detector for SwissFEL

 $^{\rm o}$  photo-electrons @ 17 kV, 3.3 10  $^{\rm o}$  mbar  $\rm N_2$ , 100 ms integration time

#### Volker Schlott



### Beam Current Measurement: DC Parametric Current Transformer

Principle of the DC Parameteric Current Transformer (introduced by K. Unser, CERN 1966):

- a modulator sends a current (few 100 Hz) through two coils, which are excited in opposite directions
- the pick-up coils are connected in series so that the resulting voltage (sum signal)  $V_s$  is zero
- a beam current I<sub>beam</sub> induces a bias in the cores, so that V<sub>s</sub> becomes non-zero and a 2<sup>nd</sup> harmonic of the modulator frequency will appear, which is converted to DC by the demodulator
- a compensating current I<sub>c</sub>, which cancels the beam current I<sub>beam</sub> is sent through the windings
- the measurement of I<sub>c</sub> which corresponds to the beam current I<sub>beam</sub> is done with a precision resistor



Commercially available NPCT from Bergoz Instrumentation



• resolution of 1  $\mu$ A  $\rightarrow$  10<sup>-5</sup> of stored beam currents • careful magnetic shielding and temperature control necessary



## Beam Current Measurement: Injection Rate & Beam Lifetime









# Synchrotron Radiation Monitors: Transverse Profiles and Emittance

beam emittance: projected area of transverse phase space volume



in case of a "flat lattice" (low coupling) with  $\eta_y \approx 0$   $\rightarrow$  horiz. beam size  $\sigma_x = \sqrt{\beta_x \varepsilon_x + (\sigma_\delta \eta_x)^2}$ use location with  $\eta_x = 0$  for  $\varepsilon_x$  measurement  $\rightarrow$  vertical beam size  $\sigma_y = \sqrt{\beta_y \varepsilon_y}$  $\rightarrow$  beam divergence  $\sigma' = \sqrt{\gamma \varepsilon}$ 

- $\beta$ -functions and dispersion are well known in light sources  $\rightarrow \epsilon$  can be determined from beam size  $\sigma$
- synchrotron radiation from bending magnets (undulators and wigglers) are non-invasive sources
- small opening angle  $\Theta \sim 1/\gamma$  (typ. << 1 mrad) of synchrotron radiation limits spatial resolution due to diffraction

$$\rightarrow$$
 spatial resolution limit:  $\Delta \sigma \approx \lambda / 2 \Delta \Theta \approx 250 \,\mu m$  for  $\lambda$  = 500 nm and  $\Delta \Theta$  = 1 mrad

| measurement of small beam sizes: | → X-ray pinhole camera                                            |  |
|----------------------------------|-------------------------------------------------------------------|--|
|                                  | $\rightarrow$ interferometeric techniques (UV, visible radiation) |  |
|                                  | $\rightarrow$ X-ray (VUV) imaging                                 |  |
|                                  |                                                                   |  |



## Synchrotron Radiation Monitors: X-Ray Pinhole Camera





## Synchrotron Radiation Monitors: X-Ray Pinhole Array

#### **BESSY II X-Ray Pinhole Array**





### Synchrotron Radiation Monitors: Principle of Interference Monitors

a <u>two-beam (double-slit)</u> Michelson-type <u>interferometer</u> adapted from stellar interferometry by T. Mitsuhashi → beam size is estimated from the visibility of interferogram, indicating the degree of complex coherence

#### van Citert-Zernike's theorem

relates a transverse distribution f(y) of an object with the degree of spatial coherence  $\gamma(y)$  via Fourier Transform:

$$\gamma(\mathbf{v}) = \int f(y) \exp(-i2\pi \mathbf{v} y) dy \qquad \text{with spatial frequency} \quad \mathbf{v} = \frac{D}{\lambda R_0}$$
  
intensity of interference pattern is given by: 
$$I(y_0) = I_0 \left[ \sin c \left( \frac{2\pi a}{\lambda R} y_0 \right) \right] \cdot \left[ 1 + |\gamma| \cos \left( \frac{2\pi D}{\lambda R} y_0 + \phi \right) \right]$$

and the fringe visibility  $\gamma$  is realted to the rms width of the interference pattern  $\sigma_{\rm D}$  by:  $\gamma = e$ 



 $\rightarrow$  <u>beam size</u> of an object is given by:





### Synchrotron Radiation Monitors: Principle of Interference Monitors

a <u>two-beam (double-slit)</u> Michelson-type <u>interferometer</u> adapted from stellar interferometry by T. Mitsuhashi → beam size is estimated from the visibility of interferogram, indicating the degree of complex coherence

#### van Citert-Zernike's theorem

relates a transverse distribution f(y) of an object with the degree of spatial coherence  $\gamma(y)$  via Fourier Transform:

$$\gamma(\mathbf{v}) = \int f(y) \exp(-i2\pi \mathbf{v} y) dy \qquad \text{with spatial frequency} \quad \mathbf{v} = \frac{D}{\lambda R_0}$$
  
intensity of interference pattern is given by: 
$$I(y_0) = I_0 \left[ \sin c \left( \frac{2\pi a}{\lambda R} y_0 \right) \right] \cdot \left[ 1 + |\gamma| \cos \left( \frac{2\pi D}{\lambda R} y_0 + \phi \right) \right]$$

and the fringe visibility  $\gamma$  is realted to the rms width of the interference pattern  $\sigma_D$  by:  $\gamma$ 

 $\gamma = \exp\left(-\frac{D^2}{2\sigma_D^2}\right)$ 

 $\rightarrow$  <u>beam size</u> of an object is given by:





### Synchrotron Radiation Monitors: ATF Interference Monitor (with Mirror Optics)

T. Naito and T. Mitsuhashi, Phys. Rev. ST Accel. Beams 9 (2006) 122802





## SR Monitors: Imaging of Vertically Polarized Optical Radiation

courtesy of Åke Andersson, MAX-lab

for an ideally "flat beam" ( $\sigma_v = 0$ )

 $\rightarrow$  only horizontal polarization in the midplane

 $\rightarrow$  vertical polarization only above and below the midplane

for a "real beam" ( $\sigma_v > 0$ )

 $\rightarrow\,$  some vertical polarization can also be observed in the midplane

### imaging vertically polarized SR in the visible

- $\rightarrow$  two peaked distribution
- $\rightarrow\,$  fringe visibility depends on vertical beam size  $\sigma_{\!v}$







## SR Monitors: Imaging with X-Ray (Focusing) Optics

### **Reflective Optics:**

- $\rightarrow$  Kirkpatrick-Baez mirror scheme of grazing incidence ( $\theta < 0.5^{\circ}$ ) with pair of ellipsoidal / cylindrical curved mirrors
  - **Example:** Advanced Light Source Diagnostics Beamline

T.R. Renner, H.A. Padmore, R. Keller, Rev.Sci.Instrum. 67 (1996) 3368

### **Diffractive Optics:**

 → Fresnel Zone Plates: spacing of rings (e.g. Si, Au) result in constructive interference of light waves in focal point <u>Examples:</u> X-Ray Beam Imager at Spring-8
 S. Takano, M. Masaki, H. Ohkuma, Proc. DIPAC05, Lyon, France (2005) 241 and NIM A556 (2006) 357
 Fresnel Zone Plate Monitor at ATF (KEK)
 K. Ida et al., NIM A506 (2003) 49 and H. Sakai et al., Phys. Rev. ST Accel. Beams 10 (2007) 042801

### **Refractive Optics:**

→ many (30 – 100) Compound Refractive Lenses made from AI or Be for focusing hard X-ray radiation (20 keV)

**Example:** PETRA III Diagnostics Beamline for Emittance Measurements

G. Kube et al., Proc. IPAC'10, Kyoto, Japan (2010), MOPD089, 909

Volker Schlott



**DITANET Lecture on Light Source Diagnostics** 

## Bunch Length Measurement with Visible SR: Streak Camera



- visible light pulses from synchrotron radiation (bending magnet) are converted on the SC photo-cathode into a number of photo-electrons, which are proportional to the incident light distribution
- the photo-electrons are accelerated along the streak tube, transverse (vertically) swept by deflecting plates to convert the incident time distribution in a spatial distribution on the MCP
- the photo-electrons are amplified by the MCP and converted back to visible light on the phosphor screen
- an initial spatial offset of the light pulses at the entrance slit is preserved on the phosphor screen
- at synchrotron light sources "dual-sweep" synchroscan streak cameras are typically used to observe electron bunch lengths along the storage ring filling pattern and / or during several turns around the storage ring

Volker Schlott



### Examples of Synchroscan Streak Camera Measurements (by M. Ferianis, ELETTRA)



#### Multi-Bunch Mode – Stable Beam



Four Bunch Mode – Unstable Beam



#### Multi-Bunch Mode – Unstable Beam





## Light Source Diagnostics – Summary (personal opinion...)

various diagnostics devices and measurement examples have been presented...

| Electron BPMs:    | ightarrow key diagnostic for synchrotron light source                                               |
|-------------------|-----------------------------------------------------------------------------------------------------|
|                   | ightarrow turn-by-turn and high resolution (FOFB) measurement modes provide                         |
|                   | tunes, chromaticity, $\beta$ -functions (orbit response) and beam stability                         |
| Photon BPMs:      | ightarrow provide higher resolution than electron BPMs but many systematic effects                  |
|                   | → "watch-dog" functionality for electron BPMs                                                       |
|                   | ightarrow slow feedbacks to compensate undulator gap variations and systematic e-BPM effects        |
| Current Monitors: | $ ightarrow $ high resolution DCCT allows current measurement at 10 <sup>-5</sup> level (1 $\mu$ A) |
|                   | → determination of beam lifetime and injection efficiency (important for top-up operation)          |
| SR Monitors:      | ightarrow determine transverse emittances through measurement of (vertical) beam sizes              |
|                   | ightarrow bunch lengths, filling pattern and longitudinal stability with diodes or streak camera    |
|                   | ightarrow application of pinhole camera, interference monitors and X-ray imaging                    |
|                   | ightarrow use of visible light for bunch length and filling pattern                                 |
|                   |                                                                                                     |