

Beam diagnostics for circular colliders Enrico Bravin - CERN

DITANET School 2011 – Stockholm

Why colliders ?

Initially accelerated beams where sent on fixed targets, but due to conservation laws...

As the beam energy increases the fraction of energy "available" for the interaction decreases dramatically

DITANET

Colliding particles of opposite momentum is much more favorable since 100% of the energy is "available" for creating debris

PEOPL

NATIO

7+7 TeV (LHC) equivalent to ~100'000 TeV fixed target experiment

100+100 GeV (LEP) equivalent to ~10 TeV fixed target experiment

Brief history

First co © First ha ⊘ p⁺+p⁺ @ SLC, 45 Tevatror @ RHIC, 2 @ LHC, 7 Many lo

PEOPL

DITANET

(Italy)

SLAC

RN

haven

Brief history

First co © First ha ⊘ p⁺+p⁺ @ SLC, 45 Tevatror @ RHIC, 2 @ LHC, 7 Many lo

PEOPL

DITANET

(Italy)

SLAC

RN

haven

Brief history

Brief history

Brief history

First collider, 1961, AdA in Frascati (Italy) Sirst hadron collider, 1971, ISR CERN \odot p⁺+p⁺, double ring, p= 26.5 GeV/c SLC, 45 GeV e⁻+e⁺ linear collider, SLAC Tevatron, 1 TeV, p⁺+p[−], FermiLab
 RHIC, 250 GeV p⁺+p⁺ or HI, Brookhaven
 \oslash LHC, 7 TeV p⁺+p⁺ or HI, CERN Many lower energy factories

Physics with colliders

Key parameters for the physics that can be done on a collider are

Type of particles

Energy of the interacting "partons"
Rate of interesting events

- The higher the energy of the partons the higher the rest mass of the debris produced
- High energy machines are needed for the discovery of new particles (and physics)
- In hadron collisions only part of the total energy of a particle will be available (collisions are between quarks or gluon)
- Lepton collisions use the whole energy of the particles, very nice for precise measurement

Lepton colliders

So far only e⁻+e⁺ colliders have been built

Electron and positron are light particles and the maximum energy of a circular collider is limited by the emission of synchrotron radiation (SR power~E⁴)

At LEP-II the energy lost per turn was almost 3% of the total (~100 GeV)

Muon colliders would allow far higher
 energies (Mμ[±]/Me[±]≈200)

Hadron colliders

Second Energy limited by the magnetic field

In LHC the B field at 7 TeV is of the order of 8 Tesla (SC magnets) (27 km circumference)

Difficult to develop SC magnets with field much higher that this ...

Need very large rings (VLHC, SSC, Eloisatron)

Rate – Luminosity

 $L = \frac{N_i}{\sigma}$

The rate of collisions is given by the luminosity
The luminosity is defined as

and can also be derived from the beam parameters

 $L = \frac{N_{b1}N_{b2}f_{rev}k_b}{2\pi\sqrt{(\sigma_{x1}^2 + \sigma_{x2}^2)(\sigma_{y1}^2 + \sigma_{y2}^2)}} \cdot \exp\left[-\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y1}^2 + \sigma_{y2}^2)}\right]$

 $L_{LHC} = 10^{34}$ $L_{TEVATRON} = 10^{32}$ $L_{LEP} = 10^{32}$ [Hz/cm²]

Rate – Luminosity

The rate of collisions is given by the luminosity
 The luminosity is defined as
 $L = \frac{\dot{N}_i}{\sigma}$

and can also be derived from the beam parameters

 $L = \frac{N_{b1}N_{b2}f_{rev}k_b}{2\pi\sqrt{(\sigma_{x1}^2 + \sigma_{x2}^2)(\sigma_{y1}^2 + \sigma_{y2}^2)}} \cdot \exp\left[-\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y1}^2 + \sigma_{y2}^2)}\right]$

L Beams current $ON=10^{32}$ LLEP= 10^{32} [Hz/cm²]

Rate – Luminosity

 $L = \frac{N_i}{\sigma_i}$

The rate of collisions is given by the luminosity
The luminosity is defined as

and can also be derived from the beam parameters

 L_{LHC} = Beams size ON=10³² L_{LEP} = 10³² [Hz/cm²]

 $L = \frac{N - N - f(\sigma_{x_1}^2 + \sigma_{x_2}^2)}{(\sigma_{x_1}^2 + \sigma_{x_2}^2)(\sigma_{y_1}^2 + \sigma_{y_2}^2)} \exp \left[-\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x_1}^2 + \sigma_{x_2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y_1}^2 + \sigma_{y_2}^2)}\right]$

Rate – Luminosity

The rate of collisions is given by the luminosity

The luminosity is defined as $L = \frac{\dot{N}_i}{\sigma_i}$

and can also be derived from the beam parameters

 $L = \frac{N_{b1}N_{b2}f_{rev}k_b}{2\pi\sqrt{(\sigma_{x1}^2 + \sigma_{x2}^2)(\sigma_{y1}^2 + \sigma_{y2}^2)}} \cdot \exp\left[-\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y1}^2 + \sigma_{y2}^2)}\right]$

LLHC= 10³⁴ LTEVATRON=10³² L Beams overlap]

Rate – Luminosity

 $L = \frac{N_i}{\sigma}$

The rate of collisions is given by the luminosity
The luminosity is defined as

and can also be derived from the beam parameters

 $L = \frac{N_{b1}N_{b2}f_{rev}k_b}{2\pi\sqrt{(\sigma_{x1}^2 + \sigma_{x2}^2)(\sigma_{y1}^2 + \sigma_{y2}^2)}} \cdot \exp\left[-\frac{(\bar{x}_1 - \bar{x}_2)^2}{2(\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{(\bar{y}_1 - \bar{y}_2)^2}{2(\sigma_{y1}^2 + \sigma_{y2}^2)}\right]$

 $L_{LHC} = 10^{34}$ $L_{TEVATRON} = 10^{32}$ $L_{LEP} = 10^{32}$ [Hz/cm²]

Beam current

- Seam current should be as high as possible
- Luminosity proportional to the product of the two colliding bunches
 - \odot If bunches are equal $L \propto I_{bunch}^2$
- Luminosity proportional to the number of bunches

For a given maximum current better to keep the number of bunches as low as possible (LEP-II had only 4-on-4 bunches)

Beam size

Beam size should be as small as possible

Beam size given by transverse emittance and beta-function at the IP

Reduce and/or preserve emittance

Create small-beta insertion at the IP

Small size, high current and high energy ↓ potential for destruction

Beam overlap

- Any offset between the beams will reduce the luminosity
- Beams are usually very small at the IP (LEP-II few microns, LHC ~30μm)

No direct position measurement at the IP possible (inside experiment!)

Collider diagnostics

The use of diagnostics can be divided in three families

Initial phase of commissioning
Injection and acceleration of the beams
Optimization of the luminosity
Protection of the machine

Commissioning

Meed to provide "eyes" for the operators Beam imaging screens Beam position monitors Beam current monitors
 Beam loss monitors Tune meter

Threading

The very first phase consists of getting the beam around the ring, this operation is called threading

For this operators use BPMs in single passage acquisition (trajectory) and imaging screens (scintillators or OTR)

It is important to have self-triggering systems since the timing is not precise yet!

Few turns

After the beam has made the first turn operators try to get several turns

This stage is still mainly based on "feeling", but a multi-turn trajectory BPM system comes very handy

As soon as the beam makes a few hundred turns it is possible to use the tune-meter

Tune

The tune-meter computes the frequency spectrum of the turn-by-turn reading of a dedicated BPM (FFT)

PEOPL

DITANET

This gives the fractional part of the tune (0-0.5)

Current measurement

Another important measurement once the beam begins to circulate is the decay of the beam current

This is done with fast current transformers and wall current monitors

Beam loss monitors

- In case of an aperture restriction (due to a physical restriction of the beam pipe or due to a wrong cabling of focusing elements) particles get lost
- A fine grain beam loss system can be very useful in identifying the location of the restriction

DITANET

The beam loss system is also used to measure the aperture around the machine by creating ad-hoc bumps until limit reached

Circulating beam

Now most of the instrumentation can be used

Need to synchronize the RF with the incoming beam

RF capture

BPM – Orbit mode

PEOPL

Each BPM averaged over a certain time (e.g. 1s) Important to have many BPMs! ($\Delta \phi \leq 90^{\circ}$)

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Integer part of tune

From analysis of the orbit the integer part of the tune is calculated

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

1

PEOPLE

Response matrix

The orbit system (BPM) is needed

Long process (many correctors), better if automatic

BPM orbit mode must be very sensitive (very faint beam used for safety reasons)

Beam modes

- A collider requires many beam modes, in particular
 - Injection, usually many injection cycles that can take many minutes
 - Acceleration, parameters change rapidly and by large amounts
 - Squeeze, beta functions are reduced dramatically at the IP distorting the orbit and the optics
 - Stable beams, coasting for many hours of physics

Impact of beam modes

Instruments must be able to cope with a large range of beam currents and filling patterns

DITANET

- Parameters can change very rapidly requiring automatic procedures to change the settings in the diagnostics
- Real time data and continuous acquisition are needed for the feedback systems and for optimizing the dynamic phases (ramp, squeeze etc.)

Beam optimization

After the beam is circulating it is time to start with "precision" measurements
Optics (beta-beat)
Orbit
Tune and chromaticity
Lifetime

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Beta beat

Need to measure the "real" optics of the machine w.r.t. the model (K errors)

- Sick the beam (better with an AC dipole)
- Measure the phase advance of oscillations using turn-by-turn BPM mode

Fit the real beta function using the measured phase advance values

DITANET

 $\Delta \phi \propto \int_{x_0}^{x_1} rac{1}{eta}$

Errors in the magnetic field and in the alignment of the components leads to distortion of the closed orbit

This effect reduces the aperture of the machine (maximum beam envelope) and amplifies non linear effects as the higher order field components increase off-axis

Non linear effects lead to emittance growth and reduce the dynamic aperture

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Orbit example

Orbit example

Directive strip lines

Bunch spacing too small to distinguish the two beams around the interaction region (few ns)

 Use directive strip lines

BPM embedded in collimators (LHC)

BPM embedded in collimators (LHC)

35

Tune and chromaticity

- Tune, chromaticity and coupling are key parameters for the lifetime of the beam
- Tune must be precisely set in order to avoid resonances
 coupling must minimized
- Chromaticity must be minimized to reduce the tune footprint (slightly pos. for stability)
- A continuous tune monitoring helps a lot!
- For hadron machines this is not easy

 In hadron storage rings need to avoid up to 12th order !
 Very little space left
 Need tight control of tune

"beam-beam"

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Coupling

- Solenoids or skew quads can couple the oscillations is $the \kappa(s) \cdot y$ two transverse planet $\kappa(s) \cdot y = \kappa(s) \cdot x$
- What the tune monitor measures are Q₁ and Q₂ !

DITANET

Orbit and tune need to be precisely controlled all the time

DITANET

- Difficult for operators to correct the parameters in real time, especially during ramp, squeeze and other dynamic situations
- Need an automated system that controls these parameters

Feedback loops

Emittance and life-time

The rate of collisions depend on the emittance and beam current

 These parameters evolve during a physics fill (in LHC ~10 hours long)

Emittance growth

DITANET

Current decay (beam lifetime)
 Both affect the "luminosity life-time"

Emittance

The beam emittance is inferred from profile measurements and/or from the Schottky spectrum

Wire scanners

Synchrotron light imaging
Ionization profile monitors
Diffraction radiation (never done)

Wire scanner

Usually the reference instrument because it has better controllable systematic errors
Only provides a measurement on demand
Perturbs the beam
May not be usable in all conditions
Not suited to follow the emittance evolution

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Wire scanner

Wire Scanner Application							
🛃 🚸 🔯 🔻 RBA: Ihcop 👜 🖬 🗣 🎾 🕘 📕 😵 🎞 🕐 💽 💽 🚺 💋 🖉 🧭 🖉 🖉							
Device 🛞 🙀 Profiles & Fits Key Param Line Graphs Key Param Histograms Measurement Results Time Plots Expert Options							
LHC.BWS.5L4.B2H2							
Selected: LHC.BWS.5L4.B2H2	Selected: LHC.BWS.5L4.B2H2 #1:1 AXI n 00:42:30 [29/11/10 00:42: 5 5 LHC.BWS.5L4.B2H2 #1:1 AXI n 00:42:30 [29/11/10 00:42: 5 5						
Status is OK, HOME 🛞 Wire Status HOME	Profile Data for LHC.BWS.5L4.B2H Profile Data for LHC.BWS.5L4.B2H						
Status Property	Emit (phys, 1 \sightarrow = 0.006 Emit (norm, 1 \sightarrow = 2.923						
OK Acquisition Property	0.6						
ОК	0.5						
Gains (2) Gain: 4444 Gain: V	0.4						
Acq Delay: 3000 VVVV ms In/Out Diy: 1000 VVVV ms	0.3						
Filter: T_DEFAULT 💌							
High Voltage is ON							
Beam Conditions 🛞	-10 -5 0 5 10 -10 -5 0 5 10						
Live Data	mm mm						
Beam Conditions: Now							
Flags: 🕖 🥔 🕖 🥥 🖉	5 param Gauss Fit						
B1 Intensity: 92.0E10 🕜							
00:42:33 - Subscription update 2 of LHC.BWS.5L4.B2H2/Logging, Mon Nov 29 00:42:33 CET 2010							

HANE

Wire scanner

Wire scanner

44

MARIE CURII

BSRT - Beam 1							
<u>F</u> ile <u>D</u> evices View <u>H</u> elp							
Traces				BSRTM.B1			
Horizontal FEC Hor Vertical FEC Ver		🗹 Camera	Set window	0.13 1 🗘 👄 👄			
		🗆 Lamp	Reset window	MIRROR.1H.B1			
Cross cuts	A	Auto	Accumulate	161.43			
+500		Gain [mV]	4600 🖨	MIRROR.1V.B1			
3000 ··· 🔨 🐧				84.69 1			
		l	DC 🔷	TS150.LASER.B1			
1500		Display	1	146.40 1 46.40			
0 : : : :		Average		TS600.B1			
		Center cross	Clear selection	67.09			
		Results of last		TS150.TROM.B1			
Position history	Traces Profile FEC prof	· ·	e Center Sigma				
+000000.00	Fit FEC fit	Local Hor 68797	20.01 1.27	SLIT.1.B1			
7000000.00	Horizontal profile (25.72, 340000)	FEC Hor 18668	3 19.82 1.10	7.05			
0.00	400000	Local Ver 62318	3 14.35 1.90	SUT.2.B1			
7000000.00 : : : : :	350000 🔥	FEC Ver 21615	5 14.92 2.28	7.16 1 3 0 0			
11:53 18:50 01:46 08:43 15:4022:36	\$50000	Gate		GEN.ATT.B1			
▽ Sigma	300000	Switch	ON \$				
Sigma history	and the second s	Period	55 🖨	COLOR.FILTER.B1			
	250000 <u>: : : : :</u> 14.0 16.0 18.0 20.0 22.0 24.0 26.0	Delay	715 🗘	$0 = \text{Empty} \qquad 1 \begin{array}{c} 1 \\ 3 \\ 4 \end{array} \\ \bigcirc \\$			
0000000.00	Madiant and the	Length	2	CAM.ATT.B1			
0000000.00 ~	Vertical profile	Position feedb		0=100%			
	320000	Target Hor	0	BSRA.FILTER.B1			
0.00	280000	-					
11:53 18:50 01:46 08:43 15:4022:36		Target Ver	0				
Amplitude	240000 - 🖌 🔪	Horizontal	Set				
▷ Motors		Vertical	Set				
Settings	200000 <u>: : : : :</u> 6.0 9.0 12.0 15.0 18.0 21.0 24.0	Source	Local 🖨				
Deam							
🗞 Update 🕨 Live 😸 Clear							
New BSRT Image @ 17:49:12							

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Provides continuous measurement of beam profiles (1 plane per instrument)

Suffers from space charge effects
Calibration has to be studied in detail

IPM

Beam current monitors

Primary devices are transformers

DITANET

Fast current transformer for b-by-b measurement (and t-by-t)

DC current transformer for total intensity

The FCT does not see de-bunched beam!

Other possible monitors are wall current monitor (AC) and synchrotron light based long. monitor (DC+AC)

Transformers are used to monitor the total current in the machine and the bunch-by-bunch charge

The evolution over time of the beam current is very important

Beam lifetime

IUNIC

BCTS

BCTs

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Bunch length

The bunch length is an important parameter for the longitudinal stability of the beam
It is monitored usually with
Wall current monitor
Strip line pick-ups
Synchrotron radiation (streak camera)

Wall current monitor

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Wall current monitor

SL (LDM)

DITANET

Single SL photons counting with precise time of arrival detection

SL (LDM)

DITANET

Single SL photons counting with precise time of arrival detection

SL (LDM)

DITANET

Single SL photons counting with precise time of arrival detection

Single SL photons counting with precise time of arrival detection

Beam loss monitors

Sed mainly to

DITANET

Protect the elements of the machine from damage (if using SC magnets also to prevent quenches)

Reduce background to experiments

 Avoid irradiating machine elements (interventions)

Collimation setup

PEOPL

LANET

"Beam diagnostics for circular colliders" – DITANET School March 2011 – E. Bravin – CERN

Luminosity monitors

- The luminosity is one of the most important parameters (our deliverable)
 - Prepare and keep the "best possible" beams
 - Keep them colliding

 Ø No monitor available to measure directly the beams overlap at the IP → measure the luminosity as function of beam position

Luminosity monitors

- The experiments are the best possible luminosity monitor!
- Some time they do not deliver online information and a back-up solution is needed

Machine luminosity monitors (just small particle detectors that count the rate of debris from the collisions)

Can be a simple scintillator pad

PEOPL

HANKE

Scan one beam across the other one at the IP and monitor the variations in luminosity

Schottky (transverse)

Beam 1 H

Tune H: .282

Chromaticity H: 3.934

Momentum Spread ... 4.562E-04

Emittance H: 2.03

ChiSquared H: 2.948E00

Beam 1 H Fit Valid

Last Update Beam 1H:

Wed Nov 10 18:26:26 CET 201...

Beam 1 V-

Tune V: .311

Chromaticity V: 3.379

Momentum Spread ... 4.339E-04

Emittance V: 1.88

ChiSquared V: 5.322E00

Beam 1 V Fit Valid

Last Update Beam 1V:

Wed Nov 10 18:26:26 CET 201...

Tune H: .280

Chromaticity H: 5.301

Momentum Spread ... 4.255E-04

Emittance H: .56

ChiSquared H: 3.664E-01

Beam 2 H Fit Valid

Last Update Beam 2H:

Wed Nov 10 18:26:26 CET 201...

Beam 2 V-

Beam 2 H

Tune V: .306

Chromaticity V: 19.281

Momentum Spread ... 4.810E-04

Emittance V: 3.95

ChiSquared V: 4.726E01

Beam 2 V Fit Valid

Last Update Beam 2V:

Wed Nov 10 18:26:26 CET 201...

Beam energy

For hadron machines this is less important since the initial status of the partons is anyway unknown

In LEP the error on the beam energy was 1 MeV at 45 GeV and 10 MeV at 100 GeV

DITANET

$P \propto \oint Bdl$

- Direct magnetic measurement of dipole field around the ring (Hall probes, NMR probes, coils etc.)
- Indirect Bdl measurement with resonant depolarization
- Spectrometer magnet

DITANET

62

Beam dump

Collider have huge amount of energy stored in the beams

At some point you have to get rid of them

- Osually some sort of dilution is needed
- Need a reliable monitoring of the successful beam dump (also for national authorities!)

Beam dump monitor at the LHC

It is over !!!

It is over !!!

... Unless you have questions ?

It is over !!!

... Unless you have questions ?

EVERYTHING in this presentation is the intellectual property of someone else THANKS to EVERYBODY who "provided" the material