

Instrumentation for High Intensity Proton Machines

Uli Raich CERN BE/BI

- Ion source
- Radio Frequency Quadrupole
- Chopper
- Different linear accelerator structures
- Transfer line to circular accelerators

Comparison of Machines

Uli Raich CERN BE/BI

Comparison of Beam Parameters

	CERN Linac-4	Oakridge SNS	ESS Scandinavia
Particle Type	H-	H-	Р
Energy	160 MeV	1 GeV	2.5 GeV
Average Beam Power	2.8 kW	1.4 MW	5 MW
Pulse Frequency	0.8 Hz	30 Hz	20 Hz
Beam Loss	< 1W/m	<1W/m	<1W/m
Ion Source current	80 mA	48 mA	50 mA
Pulse Length	400 µs – 1 ms	1ms	2ms
RF Frequencies	350 MHz	402.5 MHz	352.2 & 704.4 MHz

Linac-4 in the CERN complex

Beam Parameters to be measured

- Beam intensity
- Beam position
- Beam profile
- Beam phase & energy
- Energy spread
- Transverse Emittance
- Longitudinal bunch shape
- Effectiveness of chopper

Measurement Bench

Measurement Bench

Position measurement using BPMs Intensity measurement using Transformers Energy spread measurement, Spectrometer Emittance meter Bunch shape monitor Halo monitor

Uli Raich CERN BE/BI

Emittance measurements

A beam is made of many many particles, each one of these particles is moving with a given velocity. Most of the velocity vector of a single particle is parallel to the direction of the beam as a whole (s). There is however a smaller component of the particles velocity which is perpendicular to it (x or y).

$$\vec{v}_{particle} = v_s \hat{u}_s + v_x \hat{u}_x + v_y \hat{u}_y$$

Emittance measurements

- If for each beam particle we plot its position and its transverse angle we get a particle distribution who's boundary is an usually ellipse.
- The projection onto the x axis is the beam size

- If we place a slit into the beam we cut out a small vertical slice of phase space
- Converting the angles into position through a drift space allows to reconstruct the angular distribution at the position defined by the slit

slit

Х

Transforming angular distribution to profile

х'

- When moving through a drift space the angles don't change (horizontal move in phase space)
- When moving through a • quadrupole the position does not change but the angle does (vertical move in phase space)

Influence of a drift space X Χ slit slit Influence of a quadrupole

slit

The Slit Method

Transverse Emittance

Uli Raich CERN BE/BI

10 CM

SEMGrid

Need different materials for the wire:

- Tungsten at higher energies
- Carbon at lower energies

Signal generation:

- secondary emission
- charge collection depends on
- target material
- particle energy

SEMGrids

- Simulations of energy deposition
- Simulation of signal levels to be expected
- time resolved electronics (200 kHz
- Fabrication of grids with carbon wires

40 mA, 400 μ s, σ_x =1mm, σ_y =2mm

Slit at 12 MeV

At higher particle energy the thermal energy deposition becomes critical:

- shorten pulse length4
- cooled slit design

Bunch shape measurements

Stockholm 7-11. March 2011

Measuring the Bunch Shape

A very crude estimation:

- RF at 352 MHz -> RF-cycle: ~ 2.7 ns
- Bunch width ~ 20%: 540 ps
- want at least 20 points: resolution in the order of some ten ps

Principle of the BSM

Put a target wire into the beam (100 µm Tungsten wire). Secondary electrons are created and accelerated due to HV on the target wire The electrons pass through a slit followed by an RF deflector

synchronous to the accelerator RF

An electron detector detects particles with a defined phase The deflector RF is shifted with a phase shifter

Photo of Linac-4 BSM

Uli Raich CERN BE/BI

BSM results from SNS

Bad beam loading compensation

Adjusting RF phase

DITANET Multiple transverse Profile Measurements

Measure beam size at several (min 3) locations Using linear beasm optics Transform all beam sizes to a single location

Longitudial emittance

Bunch shape measured at 3 locations RF amplitude was modified with corresponding phase correction

Uli Raich CERN BE/BI

The chopper line

352.2 MHz

- "Longitudinal matching" from the LINAC (352 MHZ) to the booster frequency (1 MHZ) to avoid capture losses.
- Eliminate 133/352 linac micro-bunches at the lowest possible energy (3MeV)
- Combination of fast rise-time and high voltage is difficult and therefore the chopper is a LONG object compared to the characteristic FODO length at 3 MeV and 352 MHZ (~ 7 cm)
- Design which includes quadrupoles to amplify the chopper kick and it's as close as possible to FODO to minimze emitance growth

Transfer of beam into the Booster

Halo Monitor

Generating very short gates

Gated off:

- 0.8 kV on foil, -0.3kV on GB Accelerate but don't penetrate the phosphor
- -0.2 kV on foil (100 ns pulse) Flourescence on:
- 3.5 kV pulse 200 ps rise time
 reflection doubles the pulse to
 ~ 6 kV

Flourescence off:

-500V pulse again doubled to

Wire Scanner

Problems:

- Interceptive, causes losses
- Cannot stand full pulse length

On H⁻ beams: photo detachment

- A thin laser beam traverses the beam
- The supplementary electron is detached leaving H⁰
- Detection of detached electrons allows to measure profile
- May act like a slit
- Usings a bending magnet a slit / grid emittance measurement may be possible

Laser Wire System at SNS

Laser beam pick-offs

The beam is diverted from the main line by a pneumatically driven stage.

Layout of SNS Laser Station

Advantages of Laser Wire:

- No intercepting material especially important for supra conducting cavities
- Not disturbing the beam 10 ns laser pulse out of ~1 ms

SNS Laser Station

Uli Raich CERN BE/BI

Precision of Laser Wire

Precise synchronization between micro bunches and laser pulse

Determination of laser position

Emittance Measurement with Laser Wire

- During the acceleration along the linac and the travel between the end of the linac and the PS booster, the second electron can be stripped from black body radiation, magnetic field and residual gas.
- A part of this neutral beam can reach the H0 detector and perturb the measurement.
- Simulations has been done to estimate the background

Background issues

 With a laser system similar to SNS and laser beam size of 100 μm and assuming a full stripping the number of stripped particles is around 10⁷

Drift length [m]	Nunber of particles	
14	6.87E+08	
0.5	5.80E+07	
0.3	459E+07	
0.2	3.94F+07	

Number of background particles reaching the detector

If the signal is integrated over the linac pulse, the number of the background particles is in the order of magnitude of the signal in the better case.

Particles reaching a detector positioned 2 m downstream the dipole.

Background issues

- If we assume that the probability of stripping by residual gas interaction or magnetic field stripping is independent of time, the background particles are generated over a pulse, i.e 400 µs. For the signal, the particles are generated over a laser pulse, i.e. 10 ns.
- By gating the signal with a short time window, the background effect can be reduced. Assuming a window of 20 ns, the number of background particles can be reduce by a factor 20000

Drift length [m]	Nunber of particles	
14	3.44E+04	
0.5	2.90E+03	
0.3	2.30E+03	
0.2	1.97E+03	

Beam Losses

- Beam losses must be kept lower than 1W/m
- Loss of not more than a single beam pulse is allowed
- Use (hardware) comparison of transformer readings

Beam Loss Monitor Types

- Design criteria: Signal speed and robustness
- Dynamic range (> 10⁹) limited by leakage current through insulator ceramics (lower) and saturation due to space charge (upper limit).

Secondary Emission Monitor (SEM):

- Length 10 cm
- $P < 10^{-7} bar$
- ~ 30000 times smaller gain

UnistRainchen OEERNon® 5,∕8ckholm 7-11. March 2011

Ionization chamber:

- N₂ gas filling at 100 mbar overpressure
- Length 50 cm
- Sensitive volume 1.5 l
- Ion collection time 85 μs
- Both monitors:
 - Parallel electrodes (Al, SEM: Ti) separated by 0.5 cm
 - Low pass filter at the HV input
 - Voltage 1.5 kV

Acknowledgements

Transparencies from
 M. Hori & K. Hanke (Halo Monitor)
 Laser Wire SNS team
 Emittance user Laser Wire: B. Cheymol
 BSM: A Feshenko + INR team
 Linac-4 team