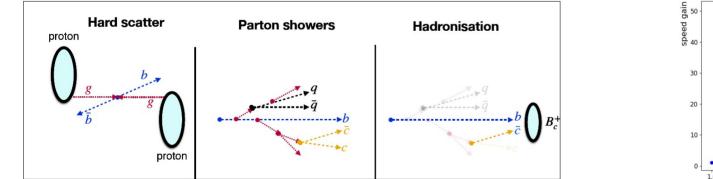


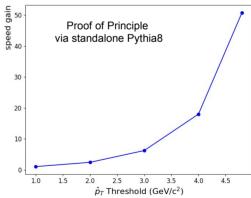
b Generator: Monash Group

Ulrik Egede, Tom Hadavizadeh, <u>Minni Singla</u>, Peter Skands Monash University 02 Feb 2022

Outline

- Speed up LHCb simulations (merge request in progress)
- Doubly-heavy hadrons in Pythia8 (paper writing in progress)
- B enhancements
- Future plans





Speed up LHCb simulations

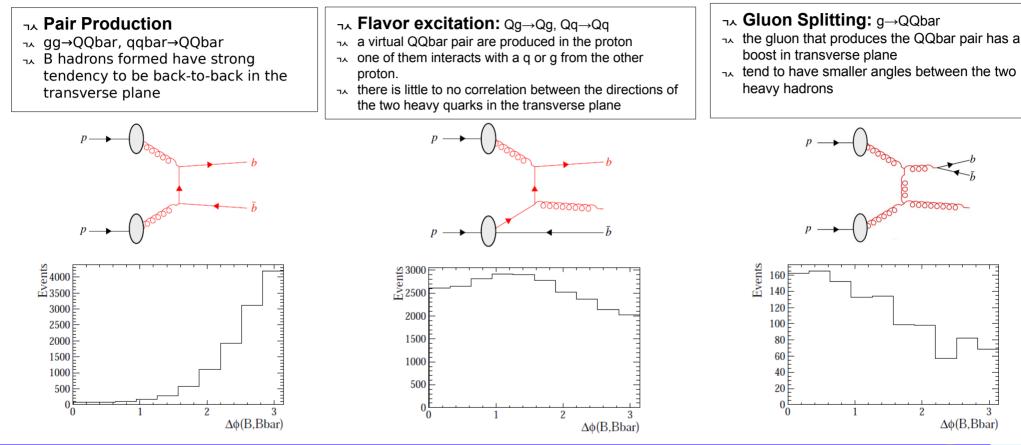
- → We can make <u>Generator phase</u> of b-hadron production faster in LHCb simulation framework.
 - by using unbiased UserHooks in our Pythia8Production tool which will veto the unwanted events at the early stages of evolution
- ➔ this is most important in special studies where generator time dominates over Geant4 time.
- → for example: in the production of multiple B's, B_c , Ξ_{cc} , Ω_{bb} etc.
- produced b-hadrons will still be unbiased

Request to add the userhook in LHCb simulation framework

Horizan Harrison Horizan Horizan		Search GitLab	Q D 11 × ⊠™ @ [●]		
Gauss	🚭 LHCb > 🧔 Gauss > Merge requests > 1770		Add a to do	»	
Project information	Open Created 2 months ago by Winni Singla Developer	Edit Mark as ready 🛩	0 Assignees	Edit	
Repository	[WIP] added a new userhook to Pythia8		None - assign yourself		
Issues 20 Jira 31	Overview 36 Commits 7 Pipelines 6 Changes 11	13 unresolved threads 🛛 🗘 🏓 🗸	Reviewer Philip James Ilten @philten	Edit	
CI/CD	We have added a new unbiased Userhook for Pythia8. This unbiased UserHook will veto the help in saving some CPU time for generation phase of simulation. This UserHook is created will then result in more b-hadrons for analysis. A configurable has been named "inclusivebHo ON/OFF this UserHook as per their requirement. Also created an options file "\$LBPYTHIA8R	d considering the fact that we are interested in b quarks which bok" has been created, with which the user will be able to turn	Milestone Gauss v55r4 or v55r0	Edit	On
 Deployments Monitor Infrastructure 	*\$LBPYTHIA8ROOT/options/Pythia8.py* when one wants to run simulations using our Userf- \$GAUSSOPTS/Gauss-2016.py \$GAUSSOPTS/GenStandAlone.py \$DECFILESROOT/options/1 /Pythia8_Inclusive8.py	Time tracking No estimate or time spent	0	this pro	
Packages & Registries	Edited 2 months ago by Minni Singla		Labels	Edit	
III Analytics	្រៀ Request to merge newUserHooks ក្រូ into master	Open in Web IDE Check out branch	Generators × Ihcb-gauss-generators × Pythia8 ×	n3-dev ×	
	Pipeline #3357709 passed for 4c636b07 on newUserHooks 3 weeks ago	Lock merge request	Edit		
	8✓ Approve Approval is optional ⊘	6 participants	0		
	View eligible approvers	Notifications			
Collapse sidebar					

Once the merge request is finalised, this will be the default method for B production in LHCb simulations

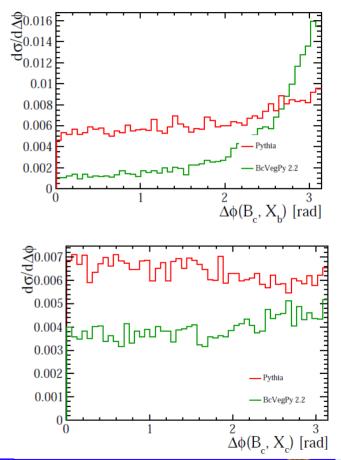
- The way to initiate the userhook is via using \$LBPYTHIA8ROOT/options/Pythia8_InclusiveB.py options file in addition to all the other <options.py>
 - For example: gaudirun.py \$GAUSSOPTS/Gauss-Job.py \$GAUSSOPTS/Gauss-2016.py \$GAUSSOPTS/GenStandAlone.py
 \$DECFILESROOT/options/11114014.py \$LBPYTHIA8ROOT/options/Pythia8.py
 \$LBPYTHIA8ROOT/options/Pythia8_InclusiveB.py



IASH

Iniversitv

Heavy quark production in pp collision Wildiversity



Double-heavy hadrons:: Pythia8 vs BcVegPy

- Currently Pythia8 isn't used to produce B_c or other double heavy hadrons at LHCb
- With the new samples we've created (using Userhooks) we are now able to compare of Pythia8 with the other dedicated generators like BcVegPy, GenXicc that have limitations in terms of the production processes.
- → We are comparing the geometrical distribution of B_c mesons and the associated heavy hadrons as this can differentiate the production topologies.
- ΔΦ is relative angles in the transverse plane between B_c and X_b / X_c hadron
- The sample produced by Pythia8 includes MPIs introducing the possibility of further production mechanisms for example double pair production, double flavor excitation
- As a result the distribution of events are more uniform in Pythia8.

Quarkonia production mechanisms

Aim is to study production mechanisms of quarkonia in Pythia8 to compare to distributions in data.

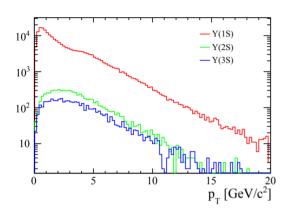
- Onia can be produced via following mechanisms:
 - Hard process
 - MPI
 - Hard & MPI
 - **Decay process** : for example a X_{bb or} X_{cc} produced via any of the following mechanisms that then decays to quarkonia
 - Hard process
 - MPI
 - Hard & MPI
 - Shower
 - **Hadronisation**: where b and bbar (or c and cbar) combine to give quarkonia. The b-bbar (or c-cbar) here can then further come from one of the following processes
 - Hard process
 - Pair production
 - Flavour excitation
 - MPI
 - Pair Production
 - Flavour excitation
 - Hard & MPI
 - Shower
- ✤ Examples of most of these processes are on next slide
- Currently, Onia production is not available via the shower in Pythia8. This is something that Pythia8 authors are working on.

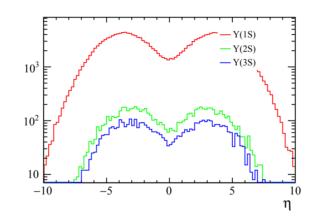
Upsilon (nS): preliminary results

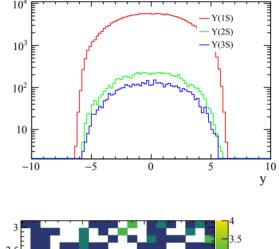
- sample size run ~25M events

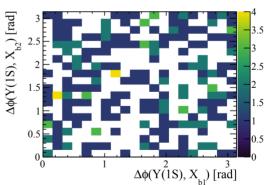
- production mechanism fraction in the table on right

- eta (>2 & <5) cut applied.

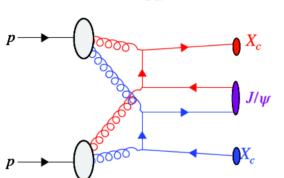

	Y(1S)	Y(2S)	Y(3S)
Fraction produced	0.24%	0.01%	0.01%
Direct hard process	8.04%	56.43%	66.30%
Direct MPI	4.11%	27.33%	30.12%
Hard & MPI	-	-	-
Decay process	84.86%	16.24%	3.58%
- Hard	48.13%	10.19%	1.48%
- MPI	36.72%	6.04%	2.10%
- Shower	-	-	-
- Hard & MPI	0.003%	-	-
Hadronisation	2.99%	-	-
- Hard (PP, FE)	1.03%	-	-
- MPI	1.50%	-	-
- Shower	0.26%	-	-
- Hard & MPI	0.20%	-	-



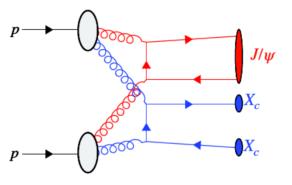



Upsilon(nS) kinematics

- The pT spectra, pseudo rapidity & rapidity distribution and relative angles in the transverse plane between Y(1S) and X_b hadron
- For ΔΦ the distribution of events in the 2D plane are more uniform as a result of the contributions from many different associated production mechanisms.


Charmonium studies (ncquark=4)

-

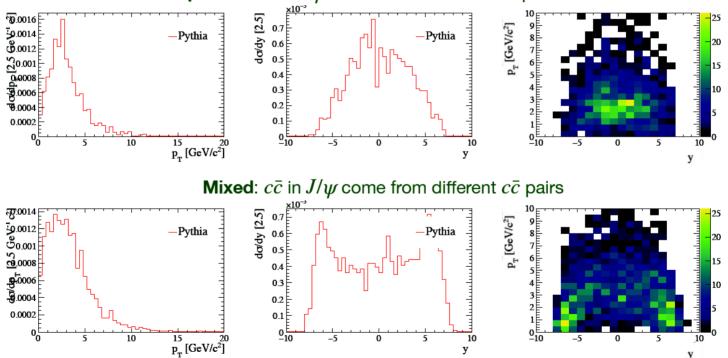


Quarkonia can be formed from combinations of different parton interactions ('mixed') or from a single Parton interaction ('separate')

Mixed

Separate

Quarkonia in hard process must always be separate Therefore using quarkonia hard production must miss any contributions from MPI combinations


- For doubly-heavy baryons (Ξ_{cc}^{++} etc.) the diagrams can only be mixed as both quarks are particles or antiparticles

Charmonium kinematics

- Created sample of J/ψ Xc Xc and split up according to origin of the quarks that make up the J/ψ

Separate: $c\bar{c}$ in J/ψ come from the same $c\bar{c}$ pair

Work in progress

- * writing a phenomenology paper on our studies for doubly heavy hadrons
- Proposing experimental measurements that could help differentiate the doublyheavy hadron production mechanisms.
 - For example: reconstructing B candidates and associated singly-heavy

hadrons at LHCb or elsewhere

Testing the role of multiparton interactions in doubly-heavy hadron production

Ulrik Egede, Tom Hadavizadeh, Minni Singla, Peter Skands

November 2021

Abstract

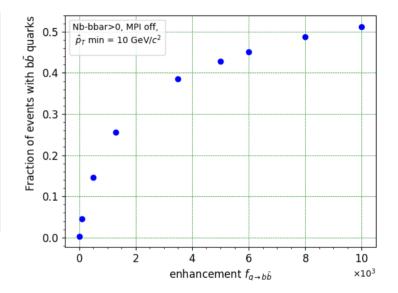
Abstract goes here.

1 Introduction

• Outline the what we're studying

- What are doubly-heavy hadrons
- Why do we want to study them
- How doubly heavy hadrons are currently simulated
 - Describe BcVegPy, GenXicc, Pythia (+others?)
 - Describe why the simulation can be slow, hence the need for dedicated generators
 - Outline assumptions made in stand-alone generators, i.e. single parton interaction
- Some sort of literature summary of B⁺_e production mechanisms [?].

Unprecedented samples of doubly-heavy hadrons have been collected at the Large Hadron Collider and, through a study of their production mechanisms, pose a unique laboratory to examine the role of multi-parton interactions (MPIs) in hadron formation. Unlike singly-heavy hadrons, in which the heavy quark can hadronise with a light quark at lower hadronisation energy scales, the quarks in doubly-heavy hadrons are too massive to be produced this way at a significant rate and the hadrons must instead form from the coalescence of two heavy quarks produced at higher energy scales.


Samples of doubly-heavy hadrons can be simulated using Monte Carlo event generators such as Pythia [cite]. However, as these particles require the chance coalescence of two heavy particles into a bound state, their generation can be slow. Currently doublyheavy mesons can be generated using dedicated generators, such as BcVegPy [cite] or GenXicc [cite], that perform fixed-order matrix-element calculations. These processes are then interfaced with event generators to simulate the rest of the event evolution and hadronisation.

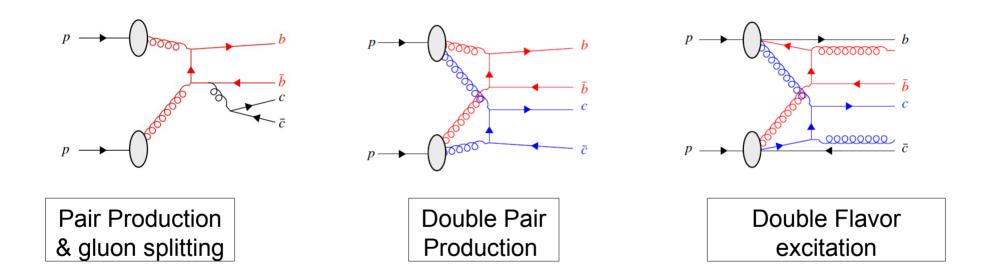
b enhancements

- → We are looking to enhance the g→b bbar and g→c cbar splittings in an unbiased way that can enhance production of the final state that we want
- We are considering changes to the core Pythia8 code for this as well.

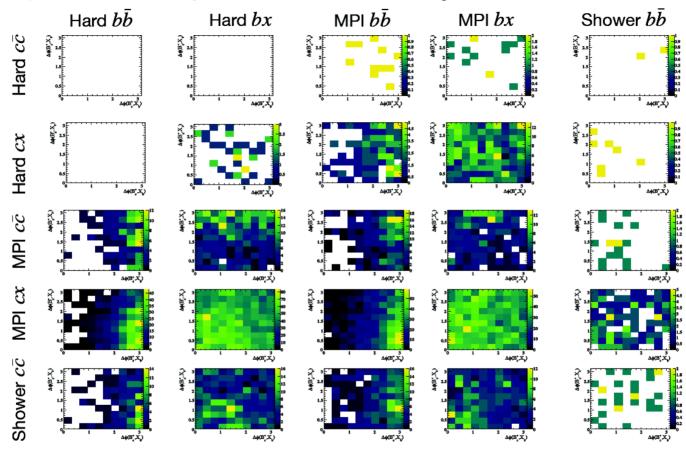
Future Plans

- We also intend to study "Unbiased forced hadronisation" as a more efficient way to replace the current SignalRepeatedHadronisation at LHCb.
- → for straight forward simulation of rarely produced b-baryons such as Ξ_{b} , Ω_{b}
- New Monash-Warwick PhD student, Eliot Walton, will work on similar studies in near future.

Thank you for your attention!



Back up



A few examples of Double-heavy hadrons production in pp collision

Double-heavy hadrons production in Pythia8 cont..

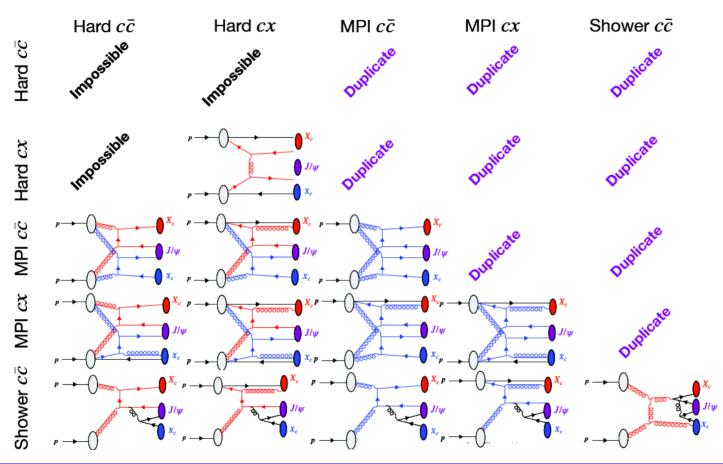
Upsilon Ancestors (a few examples)

no.	mom1	mom2	type	name	code	type	
227	65		recoil	(Upsilon(3S))	-62	beam i	emnant
65	5		recoil	(Upsilon(3S))	-44	ISR	
5	3	4	two mothers	(Upsilon(3S))	-23	hardest particles	
3	62		normal	(q)	-21	hardes	t particles
4	63		normal	(a)	-21		t particles
62	70		normal	(s) A	-41	ISR	
63	226		recoil	(s) (s) (s) (s) (p+)	-41	ISR	
70	225		recoil of	t (s)	-41	ISR	
226	2		normal Dires	0.55	-61	beam remnant	
225	1		normal , O	(s)	-61	beam i	emnant
2	Θ		system V	(p+)	- 12	beam p	oarticles
1	Θ		system	(p+)	-12	beam p	articles
no.	*** mom1	********* mom2	*Upsilon 15 Ancest type	ors************************************	c	code	type
			type	name			
144	mom1 89		type	name		91	decay process
144	moml		type	name			
144 89	mom1 89		type	name		91	decay process
144 89 5	mom1 89 5 3	mom2	type	name		-91 -62 -23	decay process beam remnant hardest particles
144 89 5 3	mom1 89 5	mom2	type	name		-91 -62	decay process beam remnant
144 89 5 3 4	mom1 89 5 3 87	mom2	type	name		-91 -62 -23 -21	decay process beam remnant hardest particles hardest particles
144 89 5 3 4 87	mom1 89 5 3 87 19	mom2	type	name		91 62 23 21 21	decay process beam remnant hardest particles hardest particles hardest particles
144 89 5 3 4 87 19 1	mom1 89 5 3 87 19 1 88 0	mom2	type normal recoil two mothers recoil normal recoil ecoil system	name (Upsilon) (Upsilon[35] (Upsilon[35] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon] (Upsilon] (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon) (Upsilon] (Upsilon) (Upsilo		91 62 23 21 21 61 41 12	decay process beam remnant hardest particles hardest particles hardest particles beam remnant ISR beam particles
no. 144 89 5 3 4 87 19 1 88	mom1 89 5 3 87 19 1 88	mom2	type	name (Upsilon) (Upsilon[35] (Upsilon[35] (Upsilon[35] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon[36] (Upsilon]		91 62 23 21 21 61 41	decay process beam remnant hardest particles hardest particles hardest particles beam remnant ISR

(p+)

-12

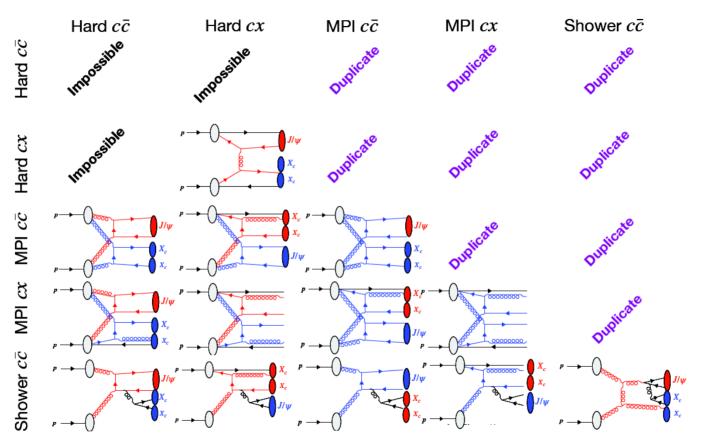
beam particles


system

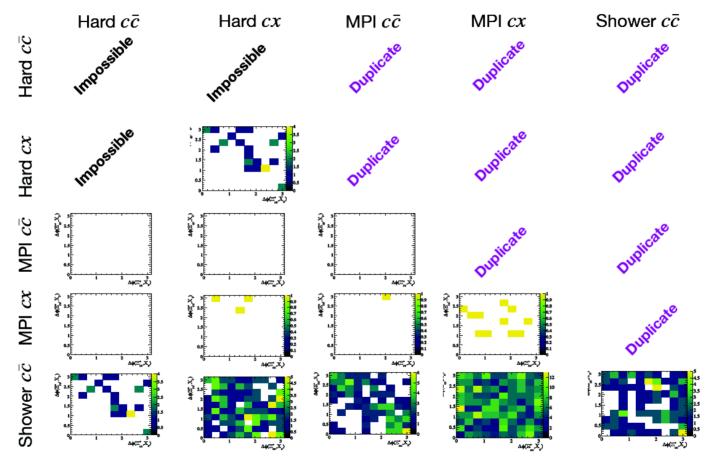
3			opsetoni	5 AIICESCOLS		
)) no.	mom1	mom2	type	name	code	type
2 80	78	79	two mothers	(Upsilon)	-81	hadronisation hadron
1 78	74		recoil	(b)	-71	hadronisation partons
5 79 5	51		recoil	(bbar)	-71	hadronisation partons
7 74	33		recoil	(b)	-62	beam remnant
3 51)	42		recoil	(bbar)	-62	beam remnant
33	30	31	two mothers	(b)	- 33	subprocess
L 42	29		normal	(bbar)	-43	ISR
3 30	71		recoil	(g)	c 531	subprocess
1 31	72		recoil	(b)	Ce5-31	subprocess
5 29 5	10		normal	(bbar) p1 pr	-43	ISR
7 71	1		normal	(g); N1	-61	beam remnant
3 72	2		normal	at (OI'	-61	beam remnant
) 10)	7	8	two mothers	(g) (b) (bbar) (bbar) (bbar) (bbar) (bbar) (p+) (p+) (g)	- 33	subprocess
11	Θ		system 1200.	(p+)	-12	beam particles
2 2	Θ		system	(p+)	-12	beam particles
37	48		recoil	(g)	-31	subprocess
18 5	27		normal	(bbar)	-31	subprocess
5 48	1		normal	(g)	-61	beam remnant
7 27	40		normal	(bbar)	-41	ISR
) 1	Θ		system	(p+)	-12	beam particles
0 40 L	49		recoil	(bbar)	-41	ISR
2 49	2		normal	(bbar)	-61	beam remnant
12	0		system	(p+)	- 12	beam particles

9

Quarkonia (mixed)


2

Quarkonia (mixed)


Quarkonia (separate)

2

Quarkonia (separate)

