Kstar Kstar Project Overview MWAPP Group Meeting

Matthew D. Monk

University of Warwick & Monash University

Supervised by Matt Kenzie and Ulrik Egede

With many thanks to Tim Gershon and Tom Latham

February 2, 2022

Matthew D. Monk University of Warwick & Monash University February 2, 2022 1 / 25

 Ω

Outline

1 [NP in the Weak Phase](#page-2-0)

- $B^0_{(\mathfrak{s})}\to K^{*0}\overline K^{*0}$ • [Amplitudes](#page-4-0)
- 3 [Anomalies in](#page-6-0) $b \rightarrow s$ Transitions
	- The 'L[' Observable](#page-7-0)
	- [Possible NP Explanations for](#page-11-0) $L_{K^{*0}\overline{K}^{*0}}$
- 4 [What we want to do](#page-15-0)
- 5 [What's been done so far](#page-16-0)

[Summary](#page-17-0)

 Ω

化重新润滑脂

- • Interested in CPV in (charmless) $B \to VV$ decays
- Want to search for New Physics in weak phase ϕ_s
- Measured phase, $\phi_s^{\rm meas}$ looks like $\phi_{\mathbf{s}}^{\text{meas}} = -2\beta_{\mathbf{s}} + \delta\phi_{\mathbf{s}}^{\text{SM}} + \phi_{\mathbf{s}}^{\text{NP}}$ (1)
- θ β , very precisely predicted in the SM but sub-dominant loop-process contribution $\delta\phi_s^{\rm SM}$ is unknown so how can we disentangle $\phi_s^{\rm NP}$?

 \equiv \cap α

 $\mathit{B}^{0}_{(s)}\rightarrow K^{*0} \overline{K}^{*0}$

- This project specifically is looking at: $\mathit{B}^{0}_{(s)}\rightarrow K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$ decays 1 where the $\mathcal{K}^{*0}(\overline{\mathcal{K}}^{*0})$ is reconstructed as $\mathcal{K}^+\pi^-(\mathcal{K}^-\pi^+)$
- \bullet This is a mediated by penguin diagrams so loop-contributions from u , c and t

 1 M. Ciuchini, M. Pierini and L. Silvestrini, PRL 100, 031802 (2008)

 200

Amplitudes

Exploit unitarity of CKM matrix to re-write amplitudes of final states in terms of two amplitudes:

$$
A(B^0 \to K^{*0} \overline{K}^{*0}) = |\lambda_{ud}| e^{i\gamma} P_{uc} + |\lambda_{td}| e^{-i\beta} P_{tc}, \qquad (2)
$$

$$
A(B_s^0 \to K^{*0} \overline{K}^{*0}) = |\lambda_{us}| e^{i\gamma} P'_{uc} - |\lambda_{ts}| e^{-i\beta_s} P'_{tc}, \qquad (3)
$$

- where $\lambda_{\bm{q}\bm{q'}}=V_{\bm{q}\bm{b}}^*V_{\bm{q}\bm{q'}}$, β,γ are the usual CKM phases, $\beta_{\bm{s}}=\arg(-\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*})$ and $P_{qq'}=P_q-P_{q'}$ with P_q the contribution related to quark q .
- Eqn. 3: first term much smaller than second but need to know its impact in high precision analysis
- Eqn. 2: both terms approx. the same size so maximally sensitive to pollution of $P_{uc}^{(\prime)}$ which also affects Eqn. 3

K ロ K K D K K B K X B K X A K K A K K B K

U-Spin

- Assuming perfect U -spin symmetry i.e. exchange $s \Leftrightarrow d$, $P_{uc} = P'_{uc}$, $P_{tc} = P'_{tc}$
- \bullet This decay is (almost) unique: U-spin symmetry to change between B^0 and B^0_s leaves the final state invariant
- Use this U-spin symmetry in simultaneous analysis of the two modes²
- The polluting sub-leading first term in $A({\cal B}^0_s \to K^{*0} \overline K^{*0})$ can be disentangled, allowing an in principle unambiguous measurement of $\phi_{\bm{s}}^{\mathrm{NP}}$
- Requires a time-dependent CP-Asymmetry measurement
- A time-dependent amplitude analysis has been performed for the \mathcal{B}^0_s mode and a time-integrated for both modes with LHCb Run 1 data ³

 2^2 M. Ciuchini, M. Pierini and L. Silvestrini, PRL 100, 031802 (2008), S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012) ³R. Aaij et al. (LHCb Collaboration), JHEP 2019, 32 (2019), R. Aaij et al. (LHCb Collaboration), JHEP 2018, 140 (2018) QQ

Anomalies in $b \rightarrow s$ Transitions

- Recent LHCb measurements suggest a deviation from the SM in $b\to s\ell^+\ell^-$ transitions e.g. R_K in $B^+\to K^+\mu^-\mu^+$ vs $B^+ \to K^+ e^- e^+$ decays at 3.1σ tension with the <code>SM</code>
- What about $b \rightarrow s\overline{q}q$ vs. $b \rightarrow d\overline{q}q$ transitions?
- $B^0 \to K^{*0} \overline K^{*0}$ and $B^0_s \to K^{*0} \overline K^{*0}$ very similar to some of these $b\to s\ell^+\ell^-$ transitions i.e. loop diagrams but mediated by gluons instead of electroweak bosons
- But, hadronic uncertainties much harder to model than relatively 'clean' leptonic ones

The 'L' Observable

- Similar to e.g. R_K analysis, want to exploit a ratio of branching fractions to cancel some systematics
- \bullet In this case, use U-spin symmetry to construct a similar ratio observable denoted $L^{}_{K^{*0}\overline K^{*0}}$ 4

$$
L_{K^{*0}\overline{K}^{*0}} = G \frac{\mathcal{B}(B_s^0 \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})} \frac{f_L^{B_s^0 \to K^{*0}\overline{K}^{*0}}}{f_L^{B^0 \to K^{*0}\overline{K}^{*0}}}
$$
(4)

• Where G is a phase-space factor, $\mathcal{B}(X)$ is the branching fraction for decay X and f_{L}^X is the longitudinal polarisation fraction of decay X

⁴M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021) Ω

- Spin-0 pseudoscalar \rightarrow two spin-1 vectors
- Decay amplitude therefore sum of a longitudinal helicity amplitude A^0 and two transversely polarised amplitudes \mathcal{A}^+ and \mathcal{A}^-
- Naively, we expect $A^0>>A^+>>A^-$
- Significant hadronic uncertainties on the transverse components, so $L_{K^{*0}\overline{K}^{*0}}$ is constructed such that it only depends on the longitudinal polarisation which is less affected
- Theory predictions suggest a large longitudinal polarisation fraction for $B \to VV$ decays such as this

∢ 何 ▶ - (三) → 三) → 三) つ Q (Q

Longitudinal Polarisation Fractions

 \bullet f_1 has been measured for both decays at LHCb previously in a time-integrated amplitude analysis⁵

$$
f_L^{B^0 \to K^{*0} \overline{K}^{*0}} = 0.724 \pm 0.051 \text{ (stat.)} \pm 0.016 \text{ (syst.)}
$$
 (5)

$$
f_L^{B_s^0 \to K^{*0} \overline{K}^{*0}} = 0.240 \pm 0.031 \text{ (stat.)} \pm 0.025 \text{ (syst.)}
$$
 (6)

- Can see that $f_I^{B^0\rightarrow K^{*0}}\overline{K}^{*0}$ $L^{\text{E6''}\rightarrow \text{K}^{*\!\sim}\text{K}}$ agrees well with a strong longitudinal polarisation fraction whereas $f^{B^0_s\to K^{*0}}_f\overline{K}^{*0}$ $\iota_{\mathcal{L}}^{\mathcal{D}_{\widetilde{s}}\rightarrow\kappa}$ is not strongly polarised and suggests a tension with the SM QCDF prediction 6 of $f_L^{B^0_s\to K^{*0}\overline{K}^{*0}}=0.63^{+0.42}_{-0.29}$
- This tension in its own right is interesting and should be investigated further

 ${}^{5}R$. Aaij et al. (LHCb Collaboration), JHEP 2019, 32 (2019)

 6 M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B 774, 64 (2007)

 Ω

The 'L' Observable

Using the previous analyses, can start to construct $L_{K^{*0}\overline{K}^{*0}}$ and compare to theory predictions⁷:

- Value from experiment seems lower than theory predictions suggests a deficit of $b \rightarrow s$ w.r.t $b \rightarrow d$ similar to the deficit of $b\to s\mu^+\mu^-$ w.r.t $b\to s e^+e^-$
- Dominant sources of error for theory $L_{K^{*0}\overline{K}^{*0}}$ values are the form factors $A_0^{B_s^0\rightarrow K^{*0}\overline{K}^{*0}}$ $\frac{B_s^0 \rightarrow K^{*0} \overline{K}^{*0}}{0}$ and $A_0^{B^0 \rightarrow K^{*0} \overline{K}^{*0}}$ with (-28%, $+33\%$) and (-22%, $+32%$) respectively

⁷M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021) Ω

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- Using the weak-effective theory, can determine sensitivity of $L_{K^{*0}\overline{K}^{*0}}$ to different Wilson Coefficients⁸
- Find there are three dominant coefficients: ${\cal C}_{1q}^c$, ${\cal C}_{4q}$ and ${\cal C}_{8gq}^{\rm eff}$
- These coefficents correspond to the following operators $^9\colon$

 $\mathcal{O}^p_{1\rm s} \;\;\;\;\;\;\;\; \bar{\bm p}\gamma_\mu(1-\gamma_5)b\;\bar{{\sf s}}\gamma_\mu(1-\gamma_5)p \;\;\;\;\;\;\;\; {\sf SM~tree\text{-}level~W\text{-}boson~exchange}$ \mathcal{O}_{4s} 5; $\gamma_\mu (1-\gamma_5)$ bj $\sum_q \bar{q}_j \gamma_\mu (1-\gamma_5) q_i$ QCD Penguin $\mathcal{O}_{8g s} \qquad -\frac{g_s}{8\pi^2} m_b$ 5 $\sigma_{\mu\nu} (1+\gamma_5)$ G $^{\mu\nu} b$ Chromomagnetic dipole

• with i, j colour indices, and a summation over $q = u, d, s, c, b$ implied

⁸M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021)

 9 M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B $\rm 606$ 245 (2001) **KONKAPRA BRADE**

 QQ

Wilson Coefficients

- \bullet Can look at some SM diagrams that generate these operators¹⁰
- Use shorthand $\bar{q}_1\gamma_\mu(1\pm\gamma_5)q_2 = (\bar{q}_1q_2)_{V\pm A}$

 10 G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 1125 (1996) and arXiv:hep-ph/0512222 K ロト K 御 ト K 君 ト K 君 K ∴ ≊ QQ Matthew D. Monk University of Warwick & Monash University February 2, 2022 13 / 25

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- NP contribution needed from \mathcal{C}_{1q}^c is too large given bounds from other studies, leaving \mathcal{C}_{4q} and $\mathcal{C}^{\rm eff}_{8gq}$ as the dominant contenders
- \mathcal{C}_{4q} needs \approx 25% NP contribution to reduce tension of $L_{K^{*0}\overline{K}^{*0}}$ to 1σ
- $\mathcal{C}^{\text{eff}}_{8 g q}$ needs about 100% of SM large but not impossible
- Can see from plots below how large theory uncertainty is compared to experimental

M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021)

 200

何) (ミ) (ミ)

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- NP considered here could come from $\mathcal{C}_\mathbf{4q},\,\mathcal{C}^\mathrm{eff}_\mathbf{8gq}$ or a mixture of both
- One suggestion for C_{4q} is a Kaluza-Klein gluon
	- But, requires significant fine-tuning with $B_s^0 \overline{B}_s^0$ mixing
	- If fine-tuning accepted, model can provide single explanation for $L_{K^{*0}\overline{K}^{*0}}$ and $b\to s\ell^+\ell^-$ transitions as KK gluon contribution has same sign as Z' w.r.t the SM
- Alternatively, can consider $\mathcal{C}^{\text{eff}}_{8gq}$ where the NP contribution could be explained by requiring two vector-like quarks and an additional neutral scalar
	- This also has a possible connection to $b \to s \ell^+ \ell^-$ transitions as this model could be extended with a vector-like lepton to cover $b\to s\ell^+\ell^$ anomalies
- **•** Perhaps some collaboration interest here? We are looking at the experimental side, would be great to collaborate on the phenomenological side

KEL KALA DI KEL KALA KELI

What we want to do

- Start with a time-integrated amplitude analysis using full Run $1 +$ Run 2 datasets
- Use simultaneous analysis of $B^0 \to K^{*0} \overline K^{*0}\ B^0_s \to K^{*0} \overline K^{*0}$ to make first direct measurement of $L_{K^{*0}\overline{K}^{*0}}$
- Then, begin work on time-dependent flavour-tagged analysis to make first simultaneous measurement of $\phi_\mathtt{s}$ in B^0 and $B^0_\mathtt{s}$ decays
- Collaborating with LHCb colleagues at Universidade de Santiago de Compostela on $\mathit{B}^{0}_{(s)}\rightarrow K^{*0}\overline{K}^{*0}$ analysis
- Matt Kenzie new ERC grant (Oct. 2022 for 5 years) to probe related modes $B^0_{(s)}\to \overset{(-)}{K}{}^{*0}\rho^0$ and $B^0_{(s)}\to \overset{(-)}{K}{}^{*0}\phi$ which will be complementary and will add to the phenomenological picture — will $L_{\mathsf{K}^{*0} \phi}$ and $L_{\mathsf{K}^{*0} \rho^0}$ show the same trend as $L_{K^{*0}\overline{K}^{*0}}$?

KID KA KID KID KID KOQO

What's been done so far

Work on HLT2 Upgrade to write and test some lines for

 $B^0_{(s)}\to K^{*0}\overline{K}^{*0}$ and related decays $B^0_{(s)}\to \overline{K}^{*0}\rho^0$ and $B^0_{(s)}\to \overline{K}^{*0}\phi$ ready for Run 3

- Producing tuples (using Analysis Productions) from LHCb collision and MC data:
	- Data 2011-2018
	- \bullet Signal MC 2017-2018 (bug in 2011-2016 MC samples, need to re-run)
	- Background MC 2011-2018
- Now beginning the pre-selection, particle identification calibration (PIDCorr) workflow

From Matt Kenzie's ERC research proposal — please do not redistribute

Summary

- $\beta^0_{(s)}\to K^{*0}\overline{K}^{*0}$ decays provide a unique way to measure the weak phase and look for unambiguous NP contributions
- Previous analyses suggests hints of tension to the SM in the ratio of the B^0 vs B^0_s modes to the common $\mathsf{K}^{*0} \overline{\mathsf{K}}^{*0}$ final state
	- Characterised by $L_{K^{*0}\overline{K}^{*0}}$, has large theory uncertainties dominated by the $A_0^{B_s^0}$, $A_0^{B^0}$
	- Some explanations of this discrepancy suggest a possible connection to the recent $b\to s\ell^+\ell^-$ anomalies
- We will use full Run 1 and Run 2 datasets to perform a time-integrated simultaneous amplitude analysis of $\mathit{B}^{0}_{(s)}\rightarrow\mathit{K}^{*0}\overline{\mathit{K}}^{*0}$ to make the first direct measurement of $L_{K^{*0}\overline{K}^{*0}}$
- Will then build on this to perform a time-dependent flavour-tagged analysis to make the first simultaneous measurement of $\phi_\mathbf{s}$ in B^0 and B_s^0 decays
- So far, some work on HLT2 Upgrade lines and getting the tuples ready to start the selection

 Ω

Backup Slides

Matthew D. Monk University of Warwick & Monash University February 2, 2022 19 / 25

化重新润滑脂

4 ロ ト 4 何 ト

 2990

G.

References

- 1,2 M. Ciuchini, M. Pierini and L. Silvestrini, PRL 100, 031802 (2008) [arXiv:hep-ph/0703137](https://arxiv.org/abs/hep-ph/0703137)
- 2 S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012) [arXiv:2011.07867](https://arxiv.org/abs/2011.07867)
- 4,7,8 M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021) [arXiv:2011.07867](https://arxiv.org/abs/2011.07867)
- 3,5 R. Aaij et al. (LHCb Collaboration), JHEP 2019, 32 (2019) [arXiv:1905.06662](https://arxiv.org/abs/1905.06662)
- 3 R. Aaij et al. (LHCb Collaboration), JHEP 2018, 140 (2018) [arXiv:1712.08683](https://arxiv.org/abs/1712.08683)
- 6 M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B 774, 64 (2007) [arXiv:hep-ph/0612290](https://arxiv.org/abs/hep-ph/0612290)
- 9 M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B 606 245 (2001) [arXiv:hep-ph/0104110](https://arxiv.org/abs/hep-ph/0104110)
- 10 G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 1125 (1996) [arXiv:hep-ph/9512380](https://arxiv.org/abs/hep-ph/9512380)
- **0 10 [arXiv:hep-ph/0512222](https://arxiv.org/abs/hep-ph/0512222)**

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Eqn. 2 $|\lambda_{ud}|$ and $|\lambda_{td}|$ order of $\mathcal{O}(\lambda^3)$ with $\lambda \approx$ 0.2 CKM suppression factor

Eqn. 3 $|\lambda_{\mathsf{\scriptscriptstyle US}}|~\sim \mathcal{O}(\lambda^4)$ and $|\lambda_{\mathsf{\scriptscriptstyle LS}}|~\sim \mathcal{O}(\lambda^2)$ $L_{K^{*0}\overline{K}^{*0}} = G \frac{\mathcal{B}(B_s^0 \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B_0 \to K^{*0}\overline{K}^{*0})}$ ${\cal B}(B^0\to K^{*0}\overline{K}^{*0})$ $f_I^{B_s^0\to K^{*0} \overline K^{*0}}$ L $f_I^{B^0\to K^{*0} \overline K^{*0}}$ L $=\frac{|A_0^s|^2+|\bar{A}_0^s|^2}{|A_0^d|^2+|\bar{A}_0^s|^2}$ $|\overline{{\cal A}^d_0}|^2 + |\overline{{\cal A}^d_0}|^2$ (7)

• with phase space factor G:

$$
G = \frac{g_{b \to d}}{g_{b \to s}} \tag{8}
$$

• and

$$
g_{b\to q} = \omega \sqrt{[M_{B_Q}^2 - \Sigma_{V_1 V_2}][M_{B_Q}^2 - \Delta_{V_1 V_2}]}
$$
(9)

with $\omega=\tau_{B_Q}/(16\pi M_{B_Q}^3)$, $\Sigma_{ab}=(m_a+m_b)^2$ and $\Delta_{ab}=(m_a-m_b)^2$ and all quantities CP-averaged

KID KA KID KID KID KOQO

Relative Error budget (cropped Table 2) from S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012)

G. Ω

イロト イ押ト イヨト イヨト

- \bullet M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021:
- From global-fits to the $b \to s \ell^+ \ell^-$, only considered SM operators (\mathcal{O}_i) or chirally-flipped $(\widetilde{\mathcal{O}}_i)$ ones where $V - A$ and $V + A$ are swapped
- Means NP in longitudinal amplitudes would enter as $\mathcal{C}_i^{\text{NP}} \tilde{\mathcal{C}}_i$
- Only the values of Wilson Coefficients change, the structure of the hadronic matrix elements is assumed to stay the same
- Assume no other additional NP phases such that Wilson Coefficients are real-valued

- 30

 Ω

- M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021:
- $\mathcal{C}_{\mathsf{S}}^{\mathsf{c}}$ would need NP contribution of \sim 60% of SM to get $L_{\mathsf{K}^{*\!0} \overline{\mathsf{K}}^{*\!0}}$ discrepancy down to 1σ
- Global constraints ¹¹ suggest only room for $\mathcal{O}(10\%)$ of SM contribution to \mathcal{C}_{1s}^{c} (and possibly tighter than that)
- \mathcal{C}^{4s} not greatly constrained and incidentally the \sim 25% needed is about the same as is needed to \mathcal{C}_9 for $b\to s\ell^+\ell^-$
- $\sim 100\%$ needed for $\mathcal{C}^{\rm eff}_{8\texttt{gs}}$ (surprisingly) okay
	- Allowed within current bounds
	- Difficult to get precise bound for $\mathcal{C}^{\text{eff}}_{8\text{gs}}$ as constraints from $b\to s\gamma$ and $b\to d\gamma$ actually constrain combination of $\mathcal{C}^{\text{eff}}_{\text{8gs}}$ and $\mathcal{C}^{\text{eff}}_{7\gamma s}=\mathcal{C}_{7\gamma}-\frac{1}{3}\mathcal{C}_5-\mathcal{C}_6$ and so effects in $\mathcal{C}^{\text{eff}}_{8\text{gs}}$ and $\mathcal{C}^{\text{eff}}_{7\gamma s}$ can cancel each other

 11 A. Lenz and G. Tetlalmatzi-Xolocotzi, JHEP 07 177 (2020) [arXiv:1912.07621](https://arxiv.org/abs/1912.07621)

 $AB + AB + AB + AB$

- List of operators where $\mathcal{O}^p_{1,2}$ are current-current (W boson), $\mathcal{O}_{3,...,6}$ are QCD penguin operators, $\mathcal{O}_{7,...,10}$ are electroweak penguin operators, $\mathcal{O}_{7\gamma}$ is electromagnetic dipole operator and \mathcal{O}_{8g} is chromomagnetic dipole operator
- From S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012) and M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B 606 245 (2001)

$$
\bullet\ \mathcal{O}_{1s}^p=(\bar{p}b)_{V-A}(\bar{s}p)_{V-A}
$$

- $\mathcal{O}^p_{2s} = (\bar{p}_i b_j)_{V-A} (\bar{s}_j p_i)_{V-A}$
- $\mathcal{O}_{3s}=(\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V-A}$
- $\mathcal{O}_{4s} = (\bar{\bm{{s}}}_{i} b_{j})_{V-A} \sum_{q} (\bar{\bm{{q}}}_{j} \bm{{q}}_{i})_{V-A}$
- $\mathcal{O}_{5s}=(\bar{s}b)_{V-A}\sum_{q}(\bar{q}q)_{V+A}$
- $\mathcal{O}_{6s}=(\bar{\mathsf{s}}_i b_j)_{V-A} \sum_{q} (\bar{q}_j q_i)_{V+A}$
- \bullet with e_q electric charge of the quarks
- Define $\mathcal{C}_{8g}^{\text{eff}}=\mathcal{C}_{8g}+\mathcal{C}_{5}$

 $\mathcal{O}_{7s}=(\bar{s}b)_{V-A}\sum_{q}\frac{3}{2}e_{q}(\bar{q}q)_{V+A}$

$$
\bullet \ \mathcal{O}_{8s} = (\bar{s}_i b_j)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}_j q_i)_{V+A}
$$

$$
\bullet \ \mathcal{O}_{9s} = (\bar{s}b)_{V-A} \sum_{q} \frac{3}{2} e_q(\bar{q}q)_{V-A}
$$

 ${\cal O}_{10s}=(\bar{s}_i b_j)_{V-A}\sum_{q}\frac{3}{2}e_q(\bar{q}_j q_i)_{V-A}$

$$
\bullet \ \mathcal{O}_{7\gamma s} = -\frac{e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b
$$

$$
\bullet \ \mathcal{O}_{8gs} = -\tfrac{g_s}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b
$$

 Ω

イ何 トイミト イヨト ニヨ