Kstar Kstar Project Overview MWAPP Group Meeting

Matthew D. Monk

University of Warwick & Monash University

Supervised by Matt Kenzie and Ulrik Egede

With many thanks to Tim Gershon and Tom Latham

February 2, 2022

Matthew D. Monk

University of Warwick & Monash University

February 2, 2022 1 / 25

Outline

In the Weak Phase

- $\begin{array}{c} \textcircled{2} & B^0_{(s)} \to K^{*0} \overline{K}^{*0} \\ \bullet & \text{Amplitudes} \end{array}$
- 3 Anomalies in $b \rightarrow s$ Transitions
 - The 'L' Observable
 - Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$
- What we want to do
- 5 What's been done so far

Summary

- Interested in CPV in (charmless) $B \rightarrow VV$ decays
- Want to search for New Physics in weak phase ϕ_s
- Measured phase, ϕ_s^{meas} looks like $\phi_s^{\text{meas}} = -2\beta_s + \delta\phi_s^{\text{SM}} + \phi_s^{\text{NP}}$ (1)
- β_s very precisely predicted in the SM but sub-dominant loop-process contribution $\delta \phi_s^{\text{SM}}$ is unknown so how can we disentangle ϕ_s^{NP} ?

 $B^0_{(s)} o K^{*0} \overline{K}^{*0}$

- This project specifically is looking at: $B^0_{(s)} \to K^*(892)^0 \overline{K}^*(892)^0$ decays¹ where the $K^{*0}(\overline{K}^{*0})$ is reconstructed as $K^+\pi^-(K^-\pi^+)$
- This is a mediated by penguin diagrams so loop-contributions from *u*, *c* and *t*

¹M. Ciuchini, M. Pierini and L. Silvestrini, PRL **100**, 031802 (2008)

Matthew D. Monk

Amplitudes

• Exploit unitarity of CKM matrix to re-write amplitudes of final states in terms of two amplitudes:

$$\mathcal{A}(B^0 \to \mathcal{K}^{*0}\overline{\mathcal{K}}^{*0}) = |\lambda_{ud}|e^{i\gamma}P_{uc} + |\lambda_{td}|e^{-i\beta}P_{tc}, \qquad (2)$$

$$A(B_s^0 \to K^{*0}\overline{K}^{*0}) = |\lambda_{us}|e^{i\gamma}P_{uc}' - |\lambda_{ts}|e^{-i\beta_s}P_{tc}', \qquad (3)$$

- where $\lambda_{qq'} = V_{qb}^* V_{qq'}$, β, γ are the usual CKM phases, $\beta_s = \arg(-\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*})$ and $P_{qq'} = P_q - P_{q'}$ with P_q the contribution related to quark q.
- Eqn. 3: first term much smaller than second but need to know its impact in high precision analysis
- Eqn. 2: both terms approx. the same size so maximally sensitive to pollution of $P_{uc}^{(\prime)}$ which also affects Eqn. 3

・ロット 4 回 ト 4 日 ト - 日 - うのの

U-Spin

- Assuming perfect U-spin symmetry i.e. exchange $s \Leftrightarrow d$, $P_{uc} = P'_{uc}$, $P_{tc} = P'_{tc}$
- This decay is (almost) unique: U-spin symmetry to change between B^0 and B_s^0 leaves the final state invariant
- Use this U-spin symmetry in simultaneous analysis of the two modes²
- The polluting sub-leading first term in $A(B_s^0 \to K^{*0}\overline{K}^{*0})$ can be disentangled, allowing an in principle unambiguous measurement of $\phi_s^{\rm NP}$
- Requires a time-dependent *CP*-Asymmetry measurement
- A time-dependent amplitude analysis has been performed for the B_s^0 mode and a time-integrated for both modes with LHCb Run 1 data ³

²M. Ciuchini, M. Pierini and L. Silvestrini, PRL 100, 031802 (2008), S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012)
 ³R. Aaij *et al.* (LHCb Collaboration), JHEP 2019, 32 (2019), R. Aaij *et al.* (LHCb Collaboration), JHEP 2018, 140 (2018)

Matthew D. Monk

University of Warwick & Monash University

February 2, 2022 6 / 25

Anomalies in $b \rightarrow s$ Transitions

- Recent LHCb measurements suggest a deviation from the SM in $b \rightarrow s\ell^+\ell^-$ transitions e.g. R_K in $B^+ \rightarrow K^+\mu^-\mu^+$ vs $B^+ \rightarrow K^+e^-e^+$ decays at 3.1σ tension with the SM
- What about $b \rightarrow s\overline{q}q$ vs. $b \rightarrow d\overline{q}q$ transitions?
- $B^0 \to K^{*0}\overline{K}^{*0}$ and $B_s^0 \to K^{*0}\overline{K}^{*0}$ very similar to some of these $b \to s\ell^+\ell^-$ transitions i.e. loop diagrams but mediated by gluons instead of electroweak bosons
- But, hadronic uncertainties much harder to model than relatively 'clean' leptonic ones

The 'L' Observable

- Similar to e.g. R_K analysis, want to exploit a ratio of branching fractions to cancel some systematics
- In this case, use U-spin symmetry to construct a similar ratio observable denoted $L_{\kappa^{*0}\overline{\kappa}^{*0}}$ ⁴

$$L_{K^{*0}\overline{K}^{*0}} = G \frac{\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})} \frac{f_L^{B^0_s \to K^{*0}\overline{K}^{*0}}}{f_L^{B^0 \to K^{*0}\overline{K}^{*0}}}$$
(4)

 Where G is a phase-space factor, B(X) is the branching fraction for decay X and f_L^X is the longitudinal polarisation fraction of decay X

Matthew D. Monk

February 2, 2022 8 / 25

- Spin-0 pseudoscalar \rightarrow two spin-1 vectors
- Decay amplitude therefore sum of a longitudinal helicity amplitude A⁰ and two transversely polarised amplitudes A⁺ and A⁻
- Naively, we expect $A^0 >> A^+ >> A^-$
- Significant hadronic uncertainties on the transverse components, so $L_{K^{*0}\overline{K}^{*0}}$ is constructed such that it only depends on the longitudinal polarisation which is less affected
- Theory predictions suggest a large longitudinal polarisation fraction for $B \rightarrow VV$ decays such as this

<日本

<</p>

Longitudinal Polarisation Fractions

• f_L has been measured for both decays at LHCb previously in a time-integrated amplitude analysis⁵

$$f_L^{B^0 \to K^{*0} \overline{K}^{*0}} = 0.724 \pm 0.051 \text{ (stat.)} \pm 0.016 \text{ (syst.)}$$
 (5)

$$f_L^{B_s^0 \to K^{*0}\overline{K}^{*0}} = 0.240 \pm 0.031 \text{ (stat.)} \pm 0.025 \text{ (syst.)}$$
 (6)

- Can see that $f_L^{B^0 \to K^{*0}\overline{K}^{*0}}$ agrees well with a strong longitudinal polarisation fraction whereas $f_L^{B_s^0 \to K^{*0}\overline{K}^{*0}}$ is not strongly polarised and suggests a tension with the SM QCDF prediction⁶ of $f_L^{B_s^0 \to K^{*0}\overline{K}^{*0}} = 0.63^{+0.42}_{-0.29}$
- This tension in its own right is interesting and should be investigated further

⁵R. Aaij *et al.* (LHCb Collaboration), JHEP **2019**, 32 (2019)
 ⁶M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B **774**, 64 (2007)

Matthew D. Monk

The 'L' Observable

• Using the previous analyses, can start to construct $L_{K^{*0}\overline{K}^{*0}}$ and compare to theory predictions⁷:

Assumption	$L_{K^{*0}\overline{K}^{*0}}$	Tension
Experiment	$\textbf{4.43} \pm \textbf{0.92}$	-
Naive <i>SU</i> (3)	23^{+16}_{-12}	1.9σ
Factorised <i>SU</i> (3)	$19.2^{+9.3}_{-6.5}$	3.0σ
QCD Factorised	$19.5^{+9.3}_{-6.8}$	2.6σ

- Value from experiment seems lower than theory predictions suggests a deficit of $b \rightarrow s$ w.r.t $b \rightarrow d$ similar to the deficit of $b \rightarrow s\mu^+\mu^-$ w.r.t $b \rightarrow se^+e^-$
- Dominant sources of error for theory $L_{K^{*0}\overline{K}^{*0}}$ values are the form factors $A_0^{B_s^0 \to K^{*0}\overline{K}^{*0}}$ and $A_0^{B^0 \to K^{*0}\overline{K}^{*0}}$ with (-28%, +33%) and (-22%, +32%) respectively

Matthew D. Monk

February 2, 2022 11 / 25

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- Using the weak-effective theory, can determine sensitivity of $L_{K^{*0}\overline{K}^{*0}}$ to different Wilson Coefficients⁸
- Find there are three dominant coefficients: C_{1q}^c , C_{4q} and C_{8gq}^{eff}
- These coefficents correspond to the following operators⁹:

 $\begin{array}{ll} \mathcal{O}_{1s}^{p} & \bar{p}\gamma_{\mu}(1-\gamma_{5})b\;\bar{s}\gamma_{\mu}(1-\gamma_{5})p & \text{SM tree-level W-boson exchange} \\ \mathcal{O}_{4s} & \bar{s}_{i}\gamma_{\mu}(1-\gamma_{5})b_{j}\;\sum_{q}\bar{q}_{j}\gamma_{\mu}(1-\gamma_{5})q_{i} & \text{QCD Penguin} \\ \mathcal{O}_{8gs} & -\frac{g_{s}}{8\pi^{2}}m_{b}\bar{s}\sigma_{\mu\nu}(1+\gamma_{5})G^{\mu\nu}b & \text{Chromomagnetic dipole} \end{array}$

• with i, j colour indices, and a summation over q = u, d, s, c, b implied

⁸M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP **2021**, 66 (2021)

Wilson Coefficients

- Can look at some SM diagrams that generate these operators¹⁰
- Use shorthand $ar{q}_1\gamma_\mu(1\pm\gamma_5)q_2=(ar{q}_1q_2)_{V\pm A}$

¹⁰G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. **68** 1125 (1996) and arXiv:hep-ph/0512222 ← □ ► < ♂ ► < ≥ ► < ≥ ► ≥ <

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- NP contribution needed from C_{1q}^c is too large given bounds from other studies, leaving C_{4q} and C_{8gq}^{eff} as the dominant contenders
- C_{4q} needs $\approx 25\%$ NP contribution to reduce tension of $L_{K^{*0}\overline{K}^{*0}}$ to 1σ
- $\bullet \ \mathcal{C}^{\rm eff}_{8gg}$ needs about 100% of SM large but not impossible
- Can see from plots below how large theory uncertainty is compared to experimental

M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP **2021**, 66 (2021)

Possible NP Explanations for $L_{K^{*0}\overline{K}^{*0}}$

- NP considered here could come from C_{4q} , C_{8ga}^{eff} or a mixture of both
- One suggestion for \mathcal{C}_{4q} is a Kaluza-Klein gluon
 - But, requires significant fine-tuning with $B_s^0 \overline{B}_s^0$ mixing
 - If fine-tuning accepted, model can provide single explanation for $L_{K^{*0}\overline{K}^{*0}}$ and $b \to s\ell^+\ell^-$ transitions as KK gluon contribution has same sign as Z' w.r.t the SM
- Alternatively, can consider $\mathcal{C}^{\rm eff}_{8gq}$ where the NP contribution could be explained by requiring two vector-like quarks and an additional neutral scalar
 - This also has a possible connection to $b\to s\ell^+\ell^-$ transitions as this model could be extended with a vector-like lepton to cover $b\to s\ell^+\ell^-$ anomalies
- Perhaps some collaboration interest here? We are looking at the experimental side, would be great to collaborate on the phenomenological side

Matthew D. Monk

・ロト ・ 一下・ ・ 日 ・

What we want to do

- $\bullet\,$ Start with a time-integrated amplitude analysis using full Run 1 $+\,$ Run 2 datasets
- Use simultaneous analysis of $B^0 \to K^{*0}\overline{K}^{*0} \ B^0_s \to K^{*0}\overline{K}^{*0}$ to make first direct measurement of $L_{K^{*0}\overline{K}^{*0}}$
- Then, begin work on time-dependent flavour-tagged analysis to make first simultaneous measurement of ϕ_s in B^0 and B_s^0 decays
- Collaborating with LHCb colleagues at Universidade de Santiago de Compostela on $B^0_{(s)} \to K^{*0} \overline{K}^{*0}$ analysis
- Matt Kenzie new ERC grant (Oct. 2022 for 5 years) to probe related modes $B_{(s)}^0 \to \overset{(-)}{K^{*0}} \rho^0$ and $B_{(s)}^0 \to \overset{(-)}{K^{*0}} \phi$ which will be complementary and will add to the phenomenological picture will $L_{K^{*0}\phi}$ and $L_{K^{*0}\rho^0}$ show the same trend as $L_{K^{*0}\overline{K}^{*0}}$?

- 4 回 ト 4 ヨ ト 4 ヨ ト

What's been done so far

• Work on HLT2 Upgrade to write and test some lines for

 $B^0_{(s)} \to K^{*0}\overline{K}^{*0}$ and related decays $B^0_{(s)} \to \overset{(-)}{K}{}^{*0}\rho^0$ and $B^0_{(s)} \to \overset{(-)}{K}{}^{*0}\phi$ ready for Run 3

- Producing tuples (using Analysis Productions) from LHCb collision and MC data:
 - Data 2011-2018
 - Signal MC 2017-2018 (bug in 2011-2016 MC samples, need to re-run)
 - Background MC 2011-2018
- Now beginning the pre-selection, particle identification calibration (PIDCorr) workflow

From Matt Kenzie's ERC research proposal - please do not redistribute

University of Warwick & Monash University

Summary

- $B^0_{(s)} \to K^{*0} \overline{K}^{*0}$ decays provide a unique way to measure the weak phase and look for unambiguous NP contributions
- Previous analyses suggests hints of tension to the SM in the ratio of the B^0 vs B_s^0 modes to the common $K^{*0}\overline{K}^{*0}$ final state
 - Characterised by $L_{K^{*0}\overline{K}^{*0}}$, has large theory uncertainties dominated by the $A_0^{B_s^0}$, $A_0^{B^0}$
 - Some explanations of this discrepancy suggest a possible connection to the recent $b\to s\ell^+\ell^-$ anomalies
- We will use full Run 1 and Run 2 datasets to perform a time-integrated simultaneous amplitude analysis of $B^0_{(s)} \to K^{*0}\overline{K}^{*0}$ to make the first direct measurement of $L_{K^{*0}\overline{K}^{*0}}$
- Will then build on this to perform a time-dependent flavour-tagged analysis to make the first simultaneous measurement of ϕ_s in B^0 and B_s^0 decays
- So far, some work on HLT2 Upgrade lines and getting the tuples ready to start the selection

Backup Slides

Matthew D. Monk

University of Warwick & Monash University

February 2, 2022 19

< □ > < 同 > < 回 > < 回 > < 回 >

19 / 25

э

References

- 1,2 M. Ciuchini, M. Pierini and L. Silvestrini, PRL 100, 031802 (2008) arXiv:hep-ph/0703137
- 2 S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012) arXiv:2011.07867
- 4,7,8 M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP 2021, 66 (2021) arXiv:2011.07867
- 3,5 R. Aaij et al. (LHCb Collaboration), JHEP 2019, 32 (2019) arXiv:1905.06662
- 3 R. Aaij et al. (LHCb Collaboration), JHEP 2018, 140 (2018) arXiv:1712.08683
- 6 M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B 774, 64 (2007) arXiv:hep-ph/0612290
- 9 M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B 606 245 (2001) arXiv:hep-ph/0104110
- 10 G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 1125 (1996) arXiv:hep-ph/9512380
- 10 arXiv:hep-ph/0512222

Matthew D. Monk

February 2, 2022 20 / 25

• Eqn. 2 $|\lambda_{ud}|$ and $|\lambda_{td}|$ order of $\mathcal{O}(\lambda^3)$ with $\lambda \approx 0.2$ CKM suppression factor

• Eqn. 3 $|\lambda_{us}| \sim \mathcal{O}(\lambda^4)$ and $|\lambda_{ts}| \sim \mathcal{O}(\lambda^2)$ $L_{K^{*0}\overline{K}^{*0}} = G \frac{\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0})} \frac{f_L^{B^0_s \to K^{*0}\overline{K}^{*0}}}{f_L^{B^0 \to K^{*0}\overline{K}^{*0}}} = \frac{|A^s_0|^2 + |\overline{A}^s_0|^2}{|A^d_0|^2 + |\overline{A}^d_0|^2}$ (7)

• with phase space factor G:

$$G = \frac{g_{b \to d}}{g_{b \to s}} \tag{8}$$

and

$$g_{b\to q} = \omega \sqrt{[M_{B_Q}^2 - \Sigma_{V_1 V_2}][M_{B_Q}^2 - \Delta_{V_1 V_2}]}$$
(9)

• with $\omega = \tau_{B_Q}/(16\pi M_{B_Q}^3)$, $\Sigma_{ab} = (m_a + m_b)^2$ and $\Delta_{ab} = (m_a - m_b)^2$ and all quantities CP-averaged

Matthew D. Monk

February 2, 2022 21 / 25

 Relative Error budget (cropped Table 2) from S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012)

Input	$L_{K^*\bar{K}^*}$	
f_{K^*}	(-0.1%, +0.1%)	
$A_0^{B_d}$	(-22%, +32%)	
$A_0^{B_s}$	(-28%, +33%)	
λ_{B_d}	(-0.6%, +0.2%)	
$lpha_2^{K^*}$	(-0.1%, +0.1%)	
X_H	(-0.2%, +0.2%)	
X_A	(-4.3%, +4.4%)	
κ	(-1.4%, +2.2%)	
Others	(-1.3%, +1.1%)	

University of Warwick & Monash University

February 2, 2022 22 / 25

イロト 不得 トイヨト イヨト 二日

- M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP **2021**:
- From global-fits to the $b \to s\ell^+\ell^-$, only considered SM operators (\mathcal{O}_i) or chirally-flipped $(\widetilde{\mathcal{O}}_i)$ ones where V A and V + A are swapped
- Means NP in longitudinal amplitudes would enter as $C_i^{\mathrm{NP}} \widetilde{C}_i$
- Only the values of Wilson Coefficients change, the structure of the hadronic matrix elements is assumed to stay the same
- Assume no other additional NP phases such that Wilson Coefficients are real-valued

- M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias and M. Novoa-Brune, JHEP **2021**:
- C_{1s}^c would need NP contribution of \sim 60% of SM to get $L_{K^{*0}\overline{K}^{*0}}$ discrepancy down to 1σ
- Global constraints 11 suggest only room for $\mathcal{O}(10\%)$ of SM contribution to \mathcal{C}_{1s}^c (and possibly tighter than that)
- C^{4s} not greatly constrained and incidentally the $\sim 25\%$ needed is about the same as is needed to C_9 for $b \to s\ell^+\ell^-$
- $\bullet\,\sim\,100\%$ needed for $\mathcal{C}_{8gs}^{\rm eff}$ (surprisingly) okay
 - Allowed within current bounds
 - Difficult to get precise bound for C_{8gs}^{eff} as constraints from $b \to s\gamma$ and $b \to d\gamma$ actually constrain combination of C_{8gs}^{eff} and $C_{7\gamma s}^{\text{eff}} = C_{7\gamma} \frac{1}{3}C_5 C_6$ and so effects in C_{8gs}^{eff} and $C_{7\gamma s}^{\text{eff}}$ can cancel each other

¹¹A. Lenz and G. Tetlalmatzi-Xolocotzi, JHEP **07** 177 (2020) arXiv:1912.07621

- List of operators where $\mathcal{O}_{1,2}^p$ are current-current (W boson), $\mathcal{O}_{3,...,6}$ are QCD penguin operators, $\mathcal{O}_{7,...,10}$ are electroweak penguin operators, $\mathcal{O}_{7\gamma}$ is electromagnetic dipole operator and \mathcal{O}_{8g} is chromomagnetic dipole operator
- From S. Descotes-Genon, J. Matias and J. Virto Phys. Rev. D 85 034010 (2012) and M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Nucl. Phys. B 606 245 (2001)

•
$$\mathcal{O}_{1s}^p = (\bar{p}b)_{V-A}(\bar{s}p)_{V-A}$$

•
$$\mathcal{O}_{2s}^{p} = (\bar{p}_{i}b_{j})_{V-A}(\bar{s}_{j}p_{i})_{V-A}$$

•
$$\mathcal{O}_{3s} = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V-A}$$

•
$$\mathcal{O}_{4s} = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V-A}$$

•
$$\mathcal{O}_{5s} = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V+A}$$

•
$$\mathcal{O}_{6s} = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V+A}$$

• with eq electric charge of the quarks

• Define
$$\mathcal{C}_{8g}^{\mathrm{eff}} = \mathcal{C}_{8g} + \mathcal{C}_{5}$$

• $\mathcal{O}_{7s} = (\bar{s}b)_{V-A} \sum_{q} \frac{3}{2} e_q (\bar{q}q)_{V+A}$

•
$$\mathcal{O}_{8s} = (\bar{s}_i b_j)_{V-A} \sum_q \frac{3}{2} e_q (\bar{q}_j q_i)_{V+A}$$

•
$$\mathcal{O}_{9s} = (\bar{s}b)_{V-A} \sum_q \frac{3}{2} e_q(\bar{q}q)_{V-A}$$

•
$$\mathcal{O}_{10s} = (\bar{s}_i b_j)_{V-A} \sum_q \frac{3}{2} e_q (\bar{q}_j q_i)_{V-A}$$

•
$$\mathcal{O}_{7\gamma s} = -\frac{e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b$$

•
$$\mathcal{O}_{8gs} = -\frac{g_s}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b$$