



# CELEBRATING 10 YEARS

# $B^0_{s,d} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ Angular Analysis

Alex Ward Michal Kreps Ulrik Egede Tom Blake

alex.ward@cern.ch - alex.ward@warwick.ac.uk - jake.ward@monash.edu







# Motivations

### Feynman Diagrams



- First angular analysis of decay modes, following branching fraction measurements
- Wilson coefficients measured through angular observables, sensitive to NP
- Tensions with SM found (eg  $P_5'$  measured with a  $3.5\sigma$  deviation from SM prediction)



ATLAS JHEP 10 (2018) 047CMS PLB 781 (2018) 517541Belle PRL118, 111801 (2017)LHCb JHEP 02 (2016) 104

Rare decays

-

- $b \rightarrow sll$  transitions (loop diagrams)
- Three angles ( $\theta_K \ or \ \theta_h, \ \theta_l, \ \phi$ ) and  $q^2$  describe the complete kinematics of the decay
- Angular observables (coefficients) are connected to Wilson coefficients, sensitivity to C7 C9, C10



- $+ S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\Phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \Phi$ 
  - $+ A_5 \sin 2\theta_K \sin \theta_\ell \cos \Phi + A_6 \sin^2 \theta_K \cos \theta_\ell$
  - $+ S_7 \sin 2\theta_K \sin \theta_\ell \sin \Phi + A_8 \sin 2\theta_K \sin 2\theta_\ell \sin \Phi$
  - $+ A_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\Phi \big]$

## Alex Ward

### MWAPP







- Stripping lines
- Pre-selection:
  - $J/\psi$  and  $\psi(2s)$  removal
  - Loose requirements on kinematic and
    - topological variables
  - PID requirements



Kinematic and topological variables after pre-selection, plots show discrimination between the MC simulated data and the background, upper sideband, of the LHCb data

### 5

### Alex Ward

#### **MWAPP**



Invariant mass distribution of 2018 MC simulated data for control mode,  $B^0(B^0_s) \to \pi\pi \ J/\psi,$ with pre-selection requirements applied 40 LHCb Unofficial 30 Events 20 10 0 5000 5250 5500 6000 6250 6500 6750 7000 5750

m(μμ)[MeV/c²]

02/02/2022

### Alex Ward

MWAPP

### - MVA (XGBoost):

- MC simulated data as signal
- LHCb data as background, selecting only upper sideband mass
- K-Folding:
  - The MVA is split into k folds to reduce biasing

### Future Steps

- Complete MVA training
- Reweigh MC to match data
- Calculate PID efficiency
- Optimise MVA and selection



MWAPP

Alex Ward

7

## 4D Likelihood Fit

- Three angles ( $\theta_h, \ \theta_l, \ \phi$ ) and invariant mass
- Fitting model pre-determined using toy pseudo-studies
- Perform fit in bins of  $q^2$

### Future Steps

- Investigate issues: bugs or is the model too complex?
- Apply to data post-selection



2D negative-log likelihood correlation between  ${\cal F}_l$  and  ${\cal A}_6$  , using simulated, 1000e event, pseudo-studies

- Pseudo-studies performed using data generated from 3D, P and S wave, angular distribution
- Included mass distribution
- Added backgrounds for each of the four dimensions
- Issues with results (poor performance with low number of events, ~50)

### Alex Ward

### MWAPP

A6

# Thanks for listening











# **3D Distribution**

## 1D Projections:

Integrate 3D over two angles

S-Wave

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\Phi} = \frac{9}{32\pi} \begin{bmatrix} S_1^s \sin^2\theta_K + S_1^c \cos^2\theta_K \\ + S_2^s \sin^2\theta_K \cos 2\theta_\ell + S_2^c \cos^2\theta_K \cos 2\theta_\ell \\ + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\Phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \Phi \\ + A_5 \sin 2\theta_K \sin \theta_\ell \cos \Phi + A_6 \sin^2\theta_K \cos \theta_\ell \\ + S_7 \sin 2\theta_K \sin \theta_\ell \sin \Phi + A_8 \sin 2\theta_K \sin 2\theta_\ell \sin \Phi \\ + A_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\Phi \end{bmatrix},$$
(1)

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_K} = \frac{3}{4}(1-F_{\mathrm{L}})(1-\cos^2\theta_K) + \frac{3}{2}F_{\mathrm{L}}\cos^2\theta_K$$
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell} = \frac{3}{8}(1-F_{\mathrm{L}})(1+\cos^2\theta_\ell) + \frac{3}{4}F_{\mathrm{L}}(1-\cos^2\theta_\ell) + \frac{3}{4}A_6\cos\theta_\ell$$
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\,\mathrm{d}\Phi} = \frac{1}{2\pi} + \frac{1}{2\pi}S_3\cos 2\Phi + \frac{1}{2\pi}A_9\sin 2\Phi_\ell$$

$$\begin{aligned} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{S+P}} &= (1-F_{\mathrm{S}}) \left. \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{P}} \right. \\ &+ \left. \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_l \right. \\ &+ \left. \frac{9}{32\pi} (S_{11} + S_{13} \cos 2\theta_l) \cos \theta_K \right. \\ &+ \left. \frac{9}{32\pi} (S_{14} \sin 2\theta_l + S_{15} \sin \theta_l) \sin \theta_K \cos \phi \right. \\ &+ \left. \frac{9}{32\pi} (S_{16} \sin \theta_l + S_{17} \sin 2\theta_l) \sin \theta_K \sin \phi \,, \end{aligned}$$

### Alex Ward

### **MWAPP**

### Obtained from LHCB-PAPER-2013-037, there may be differences in S's and A's naming.

Measuring  $P'_4$  $\mathbf{2.1}$ 

Applying the transformations:

$$\begin{array}{ll} \phi & \to & -\phi \ ({\rm for} \ \phi < 0) \\ \phi & \to & \pi - \phi \ ({\rm for} \ \theta_l > \pi/2) \\ \theta_l & \to & \pi - \theta_l \ ({\rm for} \ \theta_l > \pi/2) \end{array}$$

These angular transformations ('foldings') are chosen to simplify the pdfs as much as possible, reducing the free parameters in the fit without losing any experimental sensitivity.

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \right]$$

Measuring  $P'_{7}$  $\mathbf{2.3}$ 

Starting from Eq. 1 and applying the following set of transformations:

$$\begin{array}{rcl} \phi & \rightarrow & \pi - \phi(\phi > \pi/2) \\ \phi & \rightarrow & -\pi - \phi(\phi < -\pi/2) \\ \theta_l & \rightarrow & \pi - \theta_l(\theta_l > \pi/2) \end{array}$$

$$\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_2 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi_\ell \right]$$

**2.2** Measuring  $P'_5$ 

Applying the following set of transformations:

$$\begin{array}{ll} \phi & \rightarrow & -\phi \ (\text{for } \phi < 0) \\ \theta_l & \rightarrow & \pi - \theta_l \ (\text{for } \theta_l > \pi/2) \end{array}$$

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi} = \frac{9}{8\pi} \left[ \frac{3}{4} (1-F_{L})\sin^{2}\theta_{K} + F_{L}\cos^{2}\theta_{K} + \frac{1}{4} (1-F_{L})\sin^{2}\theta_{K}\cos2\theta_{\ell} - F_{L}\cos^{2}\theta_{K}\cos2\theta_{\ell} + S_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + S_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi \right]$$

#### **2.4** Measuring $P'_8$

Applying the following transformations:

$$\begin{split} \phi &\to \pi - \phi(\phi > \pi/2) \\ \phi &\to -\pi - \phi(\phi < -\pi/2) \\ \theta_l &\to \pi - \theta_l(\theta_l > \pi/2) \\ \theta_K &\to \pi - \theta_K(\theta_l > \pi/2) \end{split}$$
$$\frac{1}{\Gamma} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi \right]$$

All include 'nuisance' parameters Fl, S3

1



# P Transformations

$$P_{1} = \frac{S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{S_{6}}{1 - F_{L}}$$

$$P_{3} = \frac{S_{9}}{1 - F_{L}}$$

$$P_{4}' = \frac{S_{4}}{\sqrt{F_{L}(1 - F_{L})}}$$

$$P_{5}' = \frac{S_{5}}{\sqrt{F_{L}(1 - F_{L})}}$$

$$P_{6}' = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}}$$

$$P_{8}' = \frac{S_{8}}{\sqrt{F_{L}(1 - F_{L})}}$$

$$P_{8}' = \frac{S_{8}}{\sqrt{F_{1}(1 - F_{L})}}$$

$$P_{8}' = \frac{S_{8}}{\sqrt{F_{1}(1$$

$$\frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos^2 \phi_\ell \sin^2 \theta_\ell \cos^2 \phi_\ell \sin^2 \theta_\ell \cos^2 \phi_\ell \sin^2 \theta_\ell \sin^2 \theta_\ell \sin^2 \theta_\ell \cos^2 \phi_\ell \sin^2 \theta_\ell \sin^$$

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \,\mathrm{d} \cos \theta_K \,\mathrm{d} \phi} = \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_4' \sin 2\theta_K \sin 2\theta_\ell \cos \phi \right].$$

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \phi} = & \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi \right]. \end{split}$$

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \,\mathrm{d} \cos \theta_K \,\mathrm{d} \phi} = \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_6' \sin 2\theta_K \sin \theta_\ell \sin \phi \right].$$

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \phi} &= \frac{9}{8\pi} \left[ \frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_8' \sin 2\theta_K \sin 2\theta_\ell \sin \phi \right]. \end{split}$$

### Alex Ward

## MWAPP

# 3D Angular Distribution - Mass

$$\begin{aligned} \mathcal{P}_{\text{tot}} &= f_{\text{sig}} \mathcal{P}_{\text{sig}}(\vec{\Omega}, m) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(\vec{\Omega}, m). \\ \mathcal{P}_{\text{sig}}(\vec{\Omega}, m) &= \mathcal{P}_{\text{sig}}(\vec{\Omega}) \times \mathcal{P}_{\text{sig}}(m) \\ \mathcal{P}_{\text{bkg}}(\vec{\Omega}, m) &= \mathcal{P}_{\text{bkg}}(\vec{\Omega}) \times \mathcal{P}_{\text{bkg}}(m). \end{aligned}$$
$$\begin{aligned} \mathcal{P}_{\text{bkg}}(\cos \theta_l, \cos \theta_K, \phi) &= \left[\sum_{i=0}^2 c_i T_i(\cos \theta_l)\right] \times \left[\sum_{j=0}^2 c_j T_j(\cos \theta_K)\right] \times \left[\sum_{k=0}^2 c_k T_k(\phi)\right] \end{aligned}$$

Alex Ward

MWAPP



| i  | $I_i$                                                                                                                                                                               | $f_i$                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1s | $rac{3}{4}\left[ \mathcal{A}^{\mathrm{L}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{L}}_{\perp} ^2+ \mathcal{A}^{\mathrm{R}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{R}}_{\perp} ^2 ight]$ | $\sin^2 	heta_K$                           |
| 1c | $ \mathcal{A}_0^{	ext{L}} ^2+ \mathcal{A}_0^{	ext{R}} ^2$                                                                                                                           | $\cos^2 	heta_K$                           |
| 2s | $rac{1}{4}\left[ \mathcal{A}^{\mathrm{L}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{L}}_{\perp} ^2+ \mathcal{A}^{\mathrm{R}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{R}}_{\perp} ^2 ight]$ | $\sin^2\theta_K\cos 2\theta_l$             |
| 2c | $- \mathcal{A}_0^{	ext{L}} ^2- \mathcal{A}_0^{	ext{R}} ^2$                                                                                                                          | $\cos^2 \theta_K \cos 2\theta_l$           |
| 3  | $rac{1}{2}\left[ \mathcal{A}^{\mathrm{L}}_{\perp} ^2- \mathcal{A}^{\mathrm{L}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{R}}_{\perp} ^2- \mathcal{A}^{\mathrm{R}}_{\parallel} ^2 ight]$ | $\sin^2\theta_K \sin^2\theta_l \cos 2\phi$ |
| 4  | $\sqrt{rac{1}{2}} \mathrm{Re}(\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_{\parallel}^{\mathrm{L}*} + \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_{\parallel}^{\mathrm{R}*})$                | $\sin 2\theta_K \sin 2\theta_l \cos \phi$  |
| 5  | $\sqrt{2}\mathrm{Re}(\mathcal{A}_{0}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}-\mathcal{A}_{0}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                                  | $\sin 2\theta_K \sin \theta_l \cos \phi$   |
| 6s | $2\mathrm{Re}(\mathcal{A}_{\parallel}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}-\mathcal{A}_{\parallel}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                         | $\sin^2	heta_K\cos	heta_l$                 |
| 7  | $\sqrt{2} \mathrm{Im}(\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_{\parallel}^{\mathrm{L}*} - \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_{\parallel}^{\mathrm{R}*})$                         | $\sin 2\theta_K \sin \theta_l \sin \phi$   |
| 8  | $\sqrt{rac{1}{2}} \mathrm{Im}(\mathcal{A}_0^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*} + \mathcal{A}_0^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                          | $\sin 2\theta_K \sin 2\theta_l \sin \phi$  |
| 9  | $\mathrm{Im}(\mathcal{A}^{\mathrm{L}*}_{\parallel}\mathcal{A}^{\mathrm{L}}_{\perp}+\mathcal{A}^{\mathrm{R}*}_{\parallel}\mathcal{A}^{\mathrm{R}}_{\perp})$                          | $\sin^2\theta_K \sin^2\theta_l \sin 2\phi$ |

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and } \right.$$
$$A_{i} = \left(I_{i} - \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

$$\begin{array}{ll}
10 & \frac{1}{3} \left[ |\mathcal{A}_{\rm S}^{\rm L}|^2 + |\mathcal{A}_{\rm S}^{\rm R}|^2 \right] & 1 \\
11 & \sqrt{\frac{4}{3}} \operatorname{Re}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{0}^{\rm L*} + \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{0}^{\rm R*}) & \cos \theta_{K} \\
12 & -\frac{1}{3} \left[ |\mathcal{A}_{\rm S}^{\rm L}|^2 + |\mathcal{A}_{\rm S}^{\rm R}|^2 \right] & \cos 2\theta_{l} \\
13 & -\sqrt{\frac{4}{3}} \operatorname{Re}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{0}^{\rm L*} + \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{0}^{\rm R*}) & \cos \theta_{K} \cos 2\theta_{l} \\
14 & \sqrt{\frac{2}{3}} \operatorname{Re}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{\parallel}^{\rm L*} + \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{\parallel}^{\rm R*}) & \sin \theta_{K} \sin 2\theta_{l} \cos \phi \\
15 & \sqrt{\frac{8}{3}} \operatorname{Re}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{\perp}^{\rm L*} - \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{\perp}^{\rm R*}) & \sin \theta_{K} \sin \theta_{l} \cos \phi \\
16 & \sqrt{\frac{8}{3}} \operatorname{Im}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{\parallel}^{\rm L*} - \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{\perp}^{\rm R*}) & \sin \theta_{K} \sin \theta_{l} \sin \phi \\
17 & \sqrt{\frac{2}{3}} \operatorname{Im}(\mathcal{A}_{\rm S}^{\rm L} \mathcal{A}_{\perp}^{\rm L*} + \mathcal{A}_{\rm S}^{\rm R} \mathcal{A}_{\perp}^{\rm R*}) & \sin \theta_{K} \sin 2\theta_{l} \sin \phi \\
\end{array}$$

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= |A_{0,\mathrm{L}}|^2 + |A_{\parallel,\mathrm{L}}|^2 + |A_{\perp,\mathrm{L}}|^2 + |A_{0,\mathrm{R}}|^2 + |A_{\parallel,\mathrm{R}}|^2 + |A_{\perp,\mathrm{R}}|^2 \\ F_{\mathrm{S}} &= \frac{|\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}|^2 + |\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}|^2}{|\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}|^2 + |\mathcal{A}_{0}^{\mathrm{R}}|^2 + |\mathcal{A}_{0}^{\mathrm{R}}|^2 + |\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}|^2} \end{aligned}$$

Alex Ward

### MWAPP

# 3D Angular Distribution - Amplitudes

$$A_{\perp}^{L} = ae^{i\delta_{strong}}e^{i\delta_{weak}}$$
$$\bar{A}_{\perp}^{L} = ae^{i\delta_{strong}}e^{-i\delta_{weak}}$$

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and} \right.$$
$$A_{i} = \left(I_{i} - \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

28/07/2021

**MWAPP** 



Correlations of the variables used to train the MVA. (a) LHCb data used as the background sample, (b) MC simulated data used as signal

Alex Ward

**MWAPP** 



| Decay                             | Physics /<br>Phase-Space | Event Type | Sim Year (Version - Num Evt) |            |            |             |            |            |
|-----------------------------------|--------------------------|------------|------------------------------|------------|------------|-------------|------------|------------|
|                                   |                          |            | 2011                         | 2012       | 2015       | 2016        | 2017       | 2018       |
| B0 →<br>₀0u+u–                    | Physics                  | 11114022   | 09b - 2M                     | 09b - 2M   | 09c - 0.5M | 09c - 0.5M  | 09e - 2M   | 09h - 0.5M |
| Bs0 →<br>f0(980)u+u–              | Phys                     | 13114011   | 09b - 2M                     | 09b - 2M   | 09c - 0.5M | 09c - 0.5M  | 09e - 2M   | 09h - 0.6M |
| B0 →<br>K∗0u+u–                   | Phys                     | 11114001   | 08e - 1M                     | 08b - 0.5M | 09c - 1M   | 09b - 1.4M  |            |            |
| B0 →<br>K∗0u+u–                   | Phys                     | 11114002   | 09i - 2M                     | 09i - 4M   | 09i - 2M   | 09i - 4M    | 09i - 4M   | 09i - 4M   |
| ${\rm B0} \to {\rm J}/\psi\rho 0$ | Phys                     | 11144008   | 08e - 1M                     | 08a - 0.5M | 09c - 0.5M | 09d - 2.1M  | 09h - 0.5M | 09h - 0.6M |
| Bs0 → J/ψ<br>f0(980)              | Phys                     | 13144014   | 09c - 0.5M                   | 08a - 0.5M | 09c - 0.5M | 09c - 0.5M  | 09h - 0.5M | 09h - 0.5M |
| $B0 \rightarrow J/\psi K_*0$      | Phys                     | 11144001   | 08f - 6M                     | 08f - 8M   | 09c - 2M   | 09c - 15.5M | 09i - 5M   | 09i - 5M   |
| B 0 → J/ψ K<br>π                  | Phase Space              | 11144050   | 08c - 1.4M                   | 08c - 3M   |            | 09h - 1M    | 09h - 1M   |            |
| $B s0 \rightarrow J/\psi$<br>n'   | Phys                     | 13144201   |                              | 08a - 1M   | 09h - 1M   | 09h - 1M    | 09h - 5M   | 09h - 5.4M |
| $B s0 \rightarrow J/\psi$         | Phys                     | 13244410   | 08i - 1.3M                   | 08i - 1.5M |            | 09d - 2M    | 09h - 4M   | 09h - 4M   |
| B0 →<br>₀0u+u–                    | Phase Space              | 11114025   | 09k - 2M                     | 09k - 2M   | 09k - 2M   | 09k - 2M    | 09k - 2M   | 09k - 2M   |
| Bs0 →<br>f0(980)u+u–              | Phase Space              | 13114012   | 09k - 2M                     | 09k - 2M   | 09k - 2M   | 09k - 2M    | 09k - 2M   | 09k - 2M   |

Alex Ward

MWAPP