Experience running
coffea-dask
for ttbar analysis

Warnings:

115 may indicate a memory leak of be released to the 05; see
nformation,

Worker memory limit

WARNING - Unmanaged memory use

html#memtrim for

distributed.worker
Unmanaged memory

ributed.dask.org/en/latest/worker

[# 1 | 3% Completed | 1min 22.1sTask exception was never retrieved
future: <Task finished name='Task-174' coro=<_wrap_awaitable() done, defined at /opt/conda/lib/python3.8/asyncio/tasks.py:688>

exception=AssertionError()>

Traceback (most recent call last):
File "/opt/conda/lib/python3.8/asyncio/tasks.py", line 695, in _wrap_awaitable

return (yield from awaitable.__await_ ())
File "/opt/conda/lib/python3.8/site-packages/distributed/deploy/spec.py", line 60, in

assert self.status == Status.running

AssertionError

warnings.warn(
DCSchedd: :spoolJobFiles:7002:File transfer failed for target job 35705899.0: TOOL at 131.225.189.90 failed to send file(s) to
<131.225.188.57:9618>; SCHEDD at 131.225.188.57 failed to receive file /storage/local/datal/condor/spool/5899/0

/cluster35705899.proc@.subproc@.tmp/JEC/Summer19UL18_V5_MC/Summerl9UL18_V5_MC_UncertaintySources_AK8PFchs. txt

Error: Fatal, Recurring but disappearing

/opt/conda/1lib/python3.8/concurrent/futures/_base.py in (self, timeout)
435 raise CancelledError()
436 elif self._state == FINISHED:
——> 437 return self.__get_result()
438
439 self._condition.wait(timeout)
/opt/conda/1lib/python3.8/concurrent/futures/_base.py in (self)
387 if self._exception:
388 try:
--> 389 raise self._exception
390 finally:
391 # Break a reference cycle with the exception in self._exception

BrokenProcessPool: A process in the process pool was terminated abruptly while the future was running or pending.

Investigating using ‘python memory profile’

Fatal Error: (also happens with simple_exampe.py)

Traceback (most recent call last):

File "TTbarDileptonicAnalysis.py", line 53, in <module>
hists, metrics = processor.run uproot job(

File "/opt/conda/lib/python3.8/site-packages/coffea/processor/ init .py", line 104, in run x job
return run (

File "/opt/conda/lib/python3.8/site-packages/coffea/processor/executor.py", line 1337, in _ call _
wrapped out = executor (chunks, closure, None)

File "/opt/conda/lib/python3.8/site-packages/coffea/processor/executor.py"”", line 725, in call
else decompress (work.result())

File "/opt/conda/lib/python3.8/site-packages/distributed/client.py", line 238, in result
raise exc.with traceback(tb)

distributed.scheduler.KilledWorker: ('TTbarDileptonProcessor-79d46cb336bafded7fd9fcbeabalc3d5', <WorkerState
'tcp://131.225.188.14:10000', name: LPCCondorCluster-0, status: closed, memory: 0, processing: 38>)
>>>

Last-ditch attempt to close HTCondor job 35705911 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705910 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705908 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705907 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705906 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705905 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705903 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705902 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705900 in finalizer! You should confirm the job exits!
Last-ditch attempt to close HTCondor job 35705898 in finalizer! You should confirm the job exits!
Task exception was never retrieved
future: <Task finished name='Task-3826"' coro=<LPCCondorJob.close() done, defined at
/srv/.env/1lib/python3.8/site-packages/lpcjobqueue/cluster.py:134> exception=RuntimeError ('cannot schedule new futures after
shutdown') >
Traceback (most recent call last):

File "/srv/.env/lib/python3.8/site-packages/lpcjobqueue/cluster.py", line 158, in close

if await asyncio.get event loop().run in executor (None, check gone):
File "/opt/conda/lib/python3.8/asyncio/base events.py", line 783, in run in executor .
executor.submit (func, *args), loop=self) Suggestlon, but doeS IlOt WOI'I(.
File "/opt/conda/lib/python3.8/concurrent/futures/thread.py", line 179, in submit del client
raise RuntimeError ('cannot schedule new futures after shutdown')
RuntimeError: cannot schedule new futures after shutdown Cluster.close ()

Questions:

- I'have noticed sometimes that process end up running on dask (or locally on
futures) in the background even after closing the jupyter notebook, how do
we monitor these processes? And check if they are running.

- Certain datasets take ~8 hours or more with (10 -> 4) workers to finish with
the current processor. Is there a way to speed this up?

- "skipbadfiles" parameter for reading Data files. What are the options to
resubmit failed jobs?

/opt/conda/lib/python3.8/site—packages/coffea/processor/executor.py:965: UserWarning: file not found ([ERROR] Serve
r responded with an error: [3011] No servers are available to read the file.
)

'‘root://cmsxrootd-site.fnal.gov//store/mc/RunIISummer20UL18NanoAODv9/DYJetsTolLL_M-10to50_TuneCP5_13TeV—-madgraph
MLM-pythia8/NANOAODSIM/106X_upgrade2018_realistic_v16_L1v1-v1/280000/9B4572B9—-1ED@—-C14C-9991-8C63ED3BOD7D.root"

Files may be specified as:

* str/bytes: relative or absolute filesystem path or URL, without any colons
other than Windows drive letter or URL schema.
Examples: "rel/file.root", "C:\abs\file.root", "http://where/what.root"

* str/bytes: same with an object-within—-ROOT path, separated by a colon.
Example: "rel/file.root:tdirectory/ttree"

* pathlib.Path: always interpreted as a filesystem path or URL only (no
object-within—-ROOT path), regardless of whether there are any colons.
Examples: Path("rel:/file.root"), Path("/abs/path:stuff.root")

Functions that accept many files (uproot.iterate, etc.) also allow:
* glob syntax in str/bytes and pathlib.Path.
Examples: Path("rel/x.root"), '"/abs/*.root:tdirectory/ttree"
* dict: keys are filesystem paths, values are objects—within—ROOT paths.
Example: {'"/data_vl/*.root": "ttree_v1", "/data_v2/*.root": "ttree_v2"}
* already—-open TTree objects.
* iterables of the above.

warnings.warn(str(e))

