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Abstract. Data-driven methods of background estimations are often used to obtain more reliable de-
scriptions of backgrounds. In hadron collider experiments, data-driven techniques are used to estimate
backgrounds due to multi-jet events, which are difficult to model accurately. In this article, we propose an
improvement on one of the most widely used data-driven methods in the hadron collision environment,
the “ABCD” method of extrapolation. We describe the mathematical background behind the data-driven
methods and extend the idea to propose improved general methods.
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1 Introduction

The Standard Model (SM) of particle physics is compat-
ible with almost all of the measurements from particle
experiments. In contrast to the successes on Earth, astro-
physical measurements seem to imply existence of energy
component that cannot be explained by SM, and pose a
serious challenge.

Despite theoretical and experimental efforts, there is
no direct evidence that any of the solutions proposed is
correct. Moreover, it is not clear what direction should be
taken in order to resolve the problem. Particles predicted
by viable extensions of the SM are already excluded be-
yond many TeV’s at the LHC [1]. It may turn out that
these new states are massive enough to be beyond the
reach of the LHC for direct production. However, it does
not exclude the possibility that interesting physics are
waiting to be found in rarer and more complicated final
states. For example, we may have to entertain the possibil-
ity of exotic final states [2,3], where new states appear as a
continuum rather than as a resonance, above backgrounds.
In either case, better accuracy of background estimation
is necessary.

For many processes of interest, automatic calculations
to next-to-leading order (NLO) in strong interactions are
accessible in modern Monte Carlo event generators [4].
However, even at the NLO, theoretical uncertainties are
larger than statistical uncertainty for many processes at
the LHC. And as the number of final-state hadronic jets
increase, even the accuracy of NLO calculations decreases
[5]. Parton showering, hadronization, and underlying events
have smaller effect on the theoretical uncertainty, but nev-
ertheless are not negligible.

To reduce the uncertainties related to background es-
timation, various data-driven estimation methods could
be employed. Data-driven methods make use of the data
in the “background” dominated control region (CR) to
estimate background contributions in the “signal” region
(SR), where interesting events may be found. The method
of interpolating using side-bands is a canonical method. In
analyses involving hadron collision data, we often employ
a method of extrapolation, called “ABCD,” a data-driven
background estimation method. It should be noted that
data-driven methods do not entirely exclude the use of
simulated data. In this article, we review the main idea
behind data-driven methods and then extend it to find an
improvement for the extrapolation method.

2 Data-driven methods of background
estimation

The concept of estimating backgrounds from the data it-
self is nothing new. Important discoveries in the history
of particle physics would not have been possible without
such estimations, given that the underlying theory of par-
ticle interactions were not very well known or had large
uncertainties [6]-[10].

While there are many ways that data-driven methods
can be divided, in this article, we will group them into
two categories. In the first category, there are data-driven
methods that use interpolations from the measurements
performed on the side-bands. These methods are used
when we look for a new particle state in a restricted range
of kinematic phase space (usually mass). In the second
category, there are methods we use when straight inter-
polations are difficult to employ. The methods that use
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extrapolations based on information in signal-depleted re-
gions, fall in this group. An extrapolation method, called
the “ABCD” method, is often used in hadron collider ex-
periments, where predictions of multijet production pro-
cesses have large uncertainties [11,12,13]. For more com-
plicated analyses, it could involve combinations of the two
categories.

2.1 Interpolation methods

We briefly review the interpolation methods, which will
give us ideas on how to extend and improve extrapola-
tion methods. In an interpolation method, measurements
are performed in the side-bands or CRs that surround the
SR and the information is combined to estimate the back-
grounds in the signal region. In the absence of other infor-
mation, the minimal assumption is that the background
would have a smooth distribution.

Let us take a one-dimensional example. We may as-
sume that the signal region is in x0 ∼ x0 + ∆, Without
loss of generality. The number of backgrounds in this re-
gion for a distribution of backgrounds described by f(x)

may be expressed as F (x0) ≡
∫ x0+∆

x0
f(x)dx. Let us take a

simple side-band of equal width to either side of the signal
region. The backgrounds on the left(right) side-band are
F (x0−∆) (F (x0+∆)), respectively. If we assume that the
series expansion is valid, we can then express the entries
in the side-bands as

F (x0 −∆) = F (x0)−∆F ′(x0) +∆2 1

2
F ′′(x0)

−∆3 1

3!
F ′′′(x0) +O(∆4) (1)

F (x0 +∆) = F (x0) +∆F ′(x0) +∆2 1

2
F ′′(x0)

+∆3 1

3!
F ′′′(x0) +O(∆4). (2)

From the two side-bands, the best estimate of F (x0) is
obtained by taking the average of the two:

F (x0) =
1

2
[F (x0 −∆) + F (x0 +∆)] +O(∆2), (3)

which is a well-known result.
For a background whose distribution is of the f(x) =

ax + b form, the answer is exact. However, for a shape
that has higher-order terms, this approximation may not
be enough. If we allow two side-bands on each side, the
terms proportional to ∆2 can be eliminated.

F (x0 − 2∆) = F (x0)− 2∆F ′(x0) + 2∆2F ′′(x0)

−∆3 8

3!
F ′′′(x0) +O(∆4) (4)

F (x0 + 2∆) = F (x0) + 2∆F ′(x0) + 2∆2F ′′(x0)

+∆3 8

3!
F ′′′(x0) +O(∆4). (5)

The best estimate from two equal width side-bands on
each side is

F (x0) =
4

6
[F (x0 −∆) + F (x0 +∆)]

−1

6
[F (x0 − 2∆) + F (x0 + 2∆)] +O(∆4), (6)

which is accurate for background distribution f(x) that
is locally a cubic function. One can easily understand
this, since with one side-band on each side, we can fit
a line through the two measurement points for interpola-
tion, and thus find the linear function exactly. And with
two side-bands on each side, we have four measurements,
therefore, we can fit a cubic function for interpolation.

A similar idea can be adapted to a case with more than
one dimension. Let us consider a rectangular signal region
in x, y space between x0 ∼ x0 + ∆x and y0 ∼ y0 + ∆y.
Altogether, we can use 8 side-bands, four on the sides of
the rectangle and four regions on the corners. Without
any prior knowledge of the background distributions, and
using similar arguments as before, the best estimate for
interpolation is

F (x0, y0) =
1

4
[ 2F (x0 −∆x, y0) + 2F (x0 +∆x, y0)

+2F (x0, y0 −∆y) + 2F (x0, y0 +∆y)

−F (x0 −∆x, y0 −∆y)

−F (x0 +∆x, y0 −∆y)

−F (x0 −∆x, y0 +∆y)

−F (x0 +∆x, y0 +∆y)] +O(∆4). (7)

2.2 “ABCD” extrapolation methods

In background estimation using interpolation methods,
the signal is completely surrounded by CRs that provide
strong constraints. They would be useful if the signal is
localized. However, in searches for new physics signatures
at large energies, the signal of interest is expected to pop-
ulate higher energy, mass, or jet multiplicity regions. In
these cases, measurements based on the signal-depleted
CRs must be extrapolated to the SR.

We introduce the notation to be used for the extrapo-
lation methods. We can use the extrapolation methods of
background estimation if the dependence of an observable
on x and y is mostly independent, as:

P (x, y) = Px(x)Py(y) [1 + ε(x, y)] , (8)

where the non-independent component is in ε. We assume
that the non-independent part is small |ε| << 1. Then the
integral in a rectangular region would be mostly factoriz-
able as well.

F (x0, x1, y0, y1)

=

∫ y1

y0

∫ x1

x0

Px(x)Py(y) [1 + ε(x, y)] dxdy

=

∫ x1

x0

Px(x)dx

∫ y1

y0

Py(y)dy
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×

[
1 +

∫ y1
y0

∫ x1

x0
Px(x)Py(y)ε(x, y)dxdy∫ x1

x0
Px(x)dx

∫ y1
y0
Py(y)dy

]
= Sx(x0, x1)Sy(y0, y1) [1 +Σ(x0, x1, y0, y1)] , (9)

where Σ is the average value of ε over this range and
depends on the amount of dependence between the two
variables, x and y. Sx(Sy) is the integral of Px(Py) in the
range x0 ∼ x1 (y0 ∼ y1), respectively. For a fixed-width
window, x1 = x0 +∆x and y1 = y0 +∆y, F is a function
of x0 and y0, so we can omit the arguments x1 and y1 as

F (x, y) = Sx(x)Sy(y) [1 +Σ(x, y)] . (10)

An estimate of F (x, y) is obtained by taking suitable
products of the F s in the neighboring regions as:

F (x−∆x, y)F (x, y −∆y)

F (x−∆x, y −∆y)

= Sx(x)Sy(y)

[
1 +Σ +

(
1

1 +Σ

∂Σ

∂x

∂Σ

∂y
− ∂2Σ

∂x∂y

)
∆x∆y

]
+O(∆3)

= F (x, y) +O(∆2), (11)

where the ∆’s stand for either ∆x or ∆y. The ∆x∆y term
would vanish if ε(x, y) → 0. Therefore, the error of the
estimation depends on the degree of non-independence of
x and y. In this derivation, we do not assume that Sx (Sy)
vary slowly as a function of x (y), respectively, but that
Σ varies slowly enough that the series expansion is valid.

The method is often referred to as the “ABCD” method
(Eq. 11) or matrix method. In an ABCD method, two-
dimensional phase space is divided into four regions, one
of which is the SR and the neighboring three regions are
the CRs. The choice of the two control variables used for
this purpose depends on the physics case of interest, but
should be as independent as possible. In hadron collision
experiments, such extrapolation methods are used to esti-
mate the backgrounds in a variety of settings. Usually, the
signature of interest is expected at high energies or large
particle multiplicities, therefore, the interpolation meth-
ods cannot be used. It is in this regime where the need
for these methods arises because of large theoretical or ex-
perimental uncertainties in prediction using simulations or
calculations. The data-driven approach can bypass many
of these difficulties.

The information from the three A, B, and C CRs, is
used to estimate the backgrounds in the signal region, D
(Fig. 1). Generally, we can express the estimate of FD as

F̂D,

F̂D =
FC
FA
× FB

=
Sx(x0, x1)Sy(y1, y2)[1 +Σ(x0, x1, y1, y2)]

Sx(x0, x1)Sy(y0, y1)[1 +Σ(x0, x1, y0, y1)]

×Sx(x1, x2)Sy(y0, y1)[1 +Σ(x1, x2, y0, y1)]

= Sx(x1, x2)Sy(y1, y2) [1 +Σ(x1, x2, y1, y2)]

+O(∆2), (12)

Fig. 1. The various control regions and the signal region (D)
of the ABCD method.

where the ∆’s are either x1−x0, x2−x1, y1−y0, or y2−y1.
When x2 and/or y2 is taken to infinity, the expan-

sion, in general, is not valid unless Σ = 0 since ∆ → ∞.
However, even if Σ 6= 0, under certain conditions, the ex-
pansion could still be valid. For the case x2 → ∞, if the
distribution Px(x) falls sharply as x increases, then Eq.
12 could be still valid. Since Σ(x1, x2, y0, y1) ≈ Σ(x1, x1+
δx, y0, y1), remembering that Σ is the average value of ε in
the given region, thus x2 is not as relevant since the data
are distributed heavily towards lower values of x. Under
these conditions,

1 +Σ(x0, x1, y1, y2)

1 +Σ(x0, x1, y0, y1)
× [1 +Σ(x1, x2, y0, y1)]

= 1 +Σ(x1, x2, y0, y1) +∆y1Σ3(x0, x1, y1, y2)

+∆y2Σ4(x0, x1, y1, y2) +O(∆2
y)

≈ 1 +Σ(x1, x2, y0, y1) +∆y1Σ3(x0, x0 + δ, y1, y2)

+∆y2Σ4(x0, x0 + δ, y1, y2) +O(∆2
y)

≈ 1 +Σ(x1, x2, y0, y1) +∆y1Σ3(x1, x1 + δ, y1, y2)

+∆y2Σ4(x1, x1 + δ, y1, y2)−
∆x1∆y1Σ31(x1, x1 + δ, y1, y2)

−∆x1∆y2Σ41(x1, x1 + δ, y1, y2) +O(∆2
y)

≈ 1 +Σ(x1, x2, y1, y2) +O(∆2), (13)

where Σi (Σij) is the partial derivative with respect to the
ith argument (i and j arguments), respectively, and ∆s
are either ∆x1, ∆y1, or ∆y2. In summary, with the ABCD
method, measurements in three regions neighboring the
SR can be used to give the accurate description to O(∆2),
given that the correlation between the x and y is weak
and the distribution falls sharply in x and y.

3 Improving the data-driven extrapolation
method

As was the case with interpolation, it is possible to im-
prove the accuracy of extrapolation methods by including
more CRs. We derive several new analytic results and pro-
vide some case studies to demonstrate their efficacy.
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Fig. 2. Control regions used in the extended ABCD methods.
The upper right region is the signal region, while the rest are
the control regions. The hatched regions are the nominal re-
gions used in an ABCD method, while the other open regions
(in addition to the hatched regions) are incorporated in the
extended ABCD methods.

3.1 Extended ABCD methods

We assume that the SR is x > x0 and y > y0 (Fig. 2) and
that the joint distribution in x and y is mostly factorizable.
Then we can express the number of entries in the SR as
F (x0, y0) = Sx(x0)Sy(y0)[1 + Σ(x0, y0)]. By using more
information in the CRs [x0−2∆x, x0−∆x] as well as [x0−
∆x, x0] and similarly in y, the accuracy can be improved
as

F (x0, y0)

=

[
F (x0 − 2∆x, y)F (x0, y0 − 2∆y)

F (x0 − 2∆x, y0 − 2∆y)

]− 1
3

·
[
F (x0 −∆x, y0)F (x0, y0 −∆y)

F (x0 −∆x, y0 −∆y)

] 4
3

+O(∆3), (14)

where ∆ stands for either ∆x or ∆y. With fixed-width
CRs, terms up to ∆2 can be exactly canceled. Therefore,
the effects of correlations among variables on the predic-
tion are mitigated as well. In the appendix, we give an
explicit expression for Eq. 14.

We can extend the idea further by using information
in eight CRs (Fig. 2), where it is possible to get accuracy
of the O(∆4) order:

F (x0, y0)

=
F (x0 − 2∆x, y0)F (x0, y0 − 2∆y)

F (x0 − 2∆x, y0 − 2∆y)

·
[
F (x0 −∆x, y0)F (x0, y0 −∆y)

F (x0 −∆x, y0 −∆y)

]4
·
[
F (x0 − 2∆x, y0)F (x0, y0 −∆y)

F (x0 − 2∆x, y0 −∆y)

]−2
·
[
F (x0 −∆x, y0)F (x0, y0 − 2∆y)

F (x0 −∆x, y0 − 2∆y)

]−2
+O(∆4).(15)

However, having more CRs does not always result in
reduced error. Since the method involves multiplication
or division operations, statistical uncertainties, due to the

0.0 0.1 0.2 0.3 0.4 0.5
α

0.94

0.96

0.98

1.00

1.02

1.04

1.06

Prediction
Truth

ABCD

Ext. ABCD

(Eq. 16)

Fig. 3. Plot of ratio of prediction to the truth of the different
extrapolation methods as a function of α together with error
bands for the example distribution in Eq. 17.

finite number of entries in each CR directly affect the un-
certainty of the prediction. From practical considerations,
it may be desirable to have fewer CRs, so we also derived
an optimal expression for the case of five control regions,
by allowing for two control region bins in either x or y,
but not in both. In the case of two control region bins in
x, but one in y, the optimal combination of the control
region measurements is

F (x0, y0)

=

[
F (x0 −∆x, y0)F (x0, y0 −∆y)

F (x0 −∆x, y0 −∆y)

]2
·
[

F (x0 − 2∆x, y0 −∆y)

F (x0 − 2∆x, y0)F (x0, y0 −∆y)

]
+O(∆2

x∆y). (16)

As before, the error depends on the assumptions of weak
correlations among the dependent variables x and y, as
described by ε(x, y). We also assume that ε(x, y) varies
slowly enough to allow for the series expansion.

While the results derived are for fixed width bins, they
can be applied to the variable widths cases. The variable-
widths bins could be modified into fixed-width bins by
locally stretching or squeezing the control variables phase
space. And as long as this operation does not invalidate
the assumption of the weak correlations, these methods
are applicable.

3.2 Case studies of extended ABCD methods

3.2.1 Toy example

As a simple test, we apply the ABCD method and the
extended ABCD method of Eq. 16 to a distribution

1

1 + 1
2x

2

1

1 + y2
[1 + α(x+ y)] , (17)

which is a smoothly decreasing distribution in x and y, but
otherwise arbitrary. The distribution would separable in x
and y in the absence of the x+y term, which provides some
correlation between x and y. For simplicity, the boundaries
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Fig. 4. Distribution of the number of jets (Nj) and the number
of b-tagged jets (Nbj) in tt̄+multijets sample.

for the ABCD method are set to x0 = 1, x1 = 2, x2 = 3,
y0 = 1, y1 = 1, y2 = 2. The true value of the area in D is
FD = 0.1210 for α = 0.5, while the ABCD method (Eq.
12) yields 0.1247. The extended ABCD method with the
left boundary at x−1 = 0 yields 0.1195. Extended ABCD
method reduces the error in prediction by a factor of 2.5
for this case.

Fig. 3 shows how the predictions of ABCD and ex-
tended ABCD change with α. The bands represent the
error terms of the respective methods in the appendix.
Since the distribution is known explicitly, the error terms
can be calculated. As α→ 0, both methods converge to 1,
as expected, since the distribution becomes independent
in x and y.

3.2.2 tt̄+multi-jets in hadronic channels

For the second case study, we apply various ABCD meth-
ods of background estimations to tt̄+jj simulated sample.
The tt̄+multi-jets processes are backgrounds to many of
the searches for physics beyond the standard model at the
LHC [14,15]. While calculation of tt̄ + jj is available at
the next-to-leading order (NLO), it has relatively larger
theoretical uncertainties than what is desired by the ex-
periments [5]. Furthermore, the quoted uncertainties in
the literature are on the overall inclusive cross sections,
but in some phase space, the uncertainties on the the dif-
ferential cross sections could be even larger. It is difficult
to envision improved calculations for these processes in
the foreseeable future. Therefore, having a more reliable
data-driven technique is important for these processes.

We generated one million events of pp → tt̄jj sam-
ple at

√
s = 14 TeV with MG5aMC@NLO v2.61 at LO

[4]. The extra partons are required to have pT > 20 GeV
and |η| < 5.0. The partons are hadronized with Pythia 8
[16]. Delphes 3 fast detector simulation and reconstruction
were subsequently applied. The reconstructed jets are re-
quired to be pT > 30 GeV and |η| < 2.4. We required zero
isolated lepton that satisfies pT > 20 GeV and |η| < 2.4
in an event.

The distribution of the number of hadronic jets (Nj)
and the number of b-tagged jets (Nbj) is shown in Fig. 4,

Nbj Nj

7 8 ≥ 9
2 63216 49685 55756
3 15046 14378 20068
≥ 4 1961 2388 4874

Table 1. Number of events in various Nbj and Nj regions
in tt̄ + multijets samples. The SR considered in this study
requires Nj ≥ 9 and Nb ≥ 4.

Extrapolation method Prediction (F̂D) F̂D/FD

ABCD (Eq. 12) 3333± 77 0.684± 0.015
Ext. ABCD (Eq. 14) 4149± 132 0.851± 0.027
Ext. ABCD (Eq. 15) 4352± 271 0.893± 0.056
Ext. ABCD (Eq. 16) 4247± 217 0.871± 0.045

Table 2. Predictions of the number of events for Nj ≥ 9 and
Nbj ≥ 4 in tt̄+multijets samples using various extrapolation
methods and ratios with respect to the true value (4874). The
statistical uncertainties on the predictions are calculated from
Poisson fluctuations of the control regions.

and the number of entries in each bin is listed in Table 1.
The correlation coefficient of the two variables is 0.139,
hence, they are weakly correlated. We apply the methods
in Eqs. 14-16, taking Nj and Nbj as control variables. The
SR is Nj ≥ 9 and Nbj ≥ 4. It could be applicable in a
scenario where signature of interest consists of multijets
and multiple b-tagged jets.

The results of applying various extrapolation methods
are shown in Table 2. The uncertainties in the predictions
are statistical uncertainties due to the number of entries in
the control region. They are evaluated by an ensemble test
where the number of entries in each control region fluctu-
ates according to a Poisson distribution. The extended
ABCD methods allow for better prediction in terms of re-
duced deviation from the truth, at the cost of increased
statistical uncertainties.

Next, we consider cases where the control variables
are continuous. We take the hadronic scalar sum of jet
transverse momenta (HT ) and the sixth leading jet trans-
verse momentum (pT6) as the control variables. The two
variables are obviously correlated (correlation coefficient:
0.660), as shown in Fig. 5. We deliberately chose these
variables to better exemplify the advantages of the ex-
tended ABCD methods.

Since the distribution drops rapidly as HT or pT6,
we consider two different use cases. In the first case, the
widths of the CRs and SR (∆x) are wider than the widths
of the distribution, and in the second case, the widths
are similar or smaller than the width of the distribution
of each control variable (Fig. 5). Table 3 shows how the
different regions are defined and the number of entries in
the respective regions for the two cases. In the first case,
the region of interest (D) has a lower limit on HT . This
could be a typical use case in hadron colliders where we
are interested in phenomena at high energies. In the sec-
ond case, D is much narrower, and although this is not
the most general use case, it is nonetheless interesting for
illustration purposes. The bins are chosen such that the
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Fig. 5. Distributions of pT6 versus HT in tt̄jj events for the
two cases of applications of extended ABCD methods. Note the
different scales on the axes. Various control and signal regions
are delineated.

Case 1
pT6 HT (GeV)

(GeV) 700− 850 850− 1000 > 1000
60− 70 6319 (A′) 4479 (A) 4343 (B)
70− 100 3364 (C′) 4953 (C) 9288 (D)

Case 2
pT6 HT (GeV)

(GeV) 700− 740 740− 800 800− 900
50− 55 1901 (A′) 2332 (A) 2574 (B)
55− 60 2482 (C′) 3521 (C) 4688 (D)

Table 3. Number of entries in various HT and pT6 regions in
tt̄ + multi− jets samples for the two cases considered in Fig.
5. The label beside each entry indicates the region each entry
corresponds to.

ABCD Ext. ABCD Truth
Case 1 4802± 122 9976± 488 9288
Case 2 3886± 128 4493± 291 4688

Table 4. Predictions of entries in region D for the two cases
in Table 3. The errors quoted are the expected statistical un-
certainties from pseudo-experiments.

number of entries do not vary greatly among the different
regions.

In the first case, the ABCD method yields 4802 ±
122 while the extended ABCD method of Eq. 16 yields
9976± 488. The ABCD method is inadequate because of
the correlation between pT6 and HT . In the second case,
the ABCD method yields 3886 ± 128 while the extended
ABCD method yields 4493± 291. In both cases, the pres-
ence of A′ and C ′ control regions provides an additional
lever arm and allows us to take into consideration the de-
pendence on HT better.

One of the important reasons to use the data-driven
method is to reduce some of the systematic uncertainties.
Through several case studies, we demonstrate that the ex-
tended ABCD methods provide estimates that are closer
to the truth. For cases where independent variables are
not easy to find, the extended ABCD method could still
take into account some of the correlations. In many anal-
yses, the normalization of the background is treated as a
nuisance parameter to be constrained further by fitting to

data. The extended ABCD methods can provide smaller
uncertainty on the prior of the normalization and thus
move towards reducing systematic uncertainties.

4 Conclusions

We propose extensions to the ABCD method of extrap-
olated background estimation by exploiting information
from additional control regions. The extended ABCD meth-
ods could be useful when the control variables are not
exactly independent, since they can mitigate the effects
of correlations among the variables. Through several case
studies, we demonstrate that they provide more accurate
predictions at the cost of increased statistical uncertain-
ties.

This work was supported in part by the Korean National Re-
search Foundation (NRF) grants NRF-2018R1A2B6005043 and
NRF-2020R1A2B5B02001726.

A Expressions for the extended ABCD
methods

We give an explicit expression for Eq. 14 up to ∆3:

Sx(x)Sy(y)×
{

1 +Σ

+
2∆x∆

2
y

3(1 +Σ)2

[
−2(Σ(0,1))2Σ(1,0)

+2(1 +Σ)Σ(0,1)Σ(1,1)

+(1 +Σ)
(
Σ(0,2)Σ(1,0) − (1 +Σ)Σ(1,2)

)]
+

2∆y∆
2
x

3(1 +Σ)2

[
−2(Σ(1,0))2Σ(0,1)

+2(1 +Σ)Σ(1,0)Σ(1,1)

+(1 +Σ)
(
Σ(2,0)Σ(0,1) − (1 +Σ)Σ(2,1)

)]}
+O(∆4) (18)

To reduce clutter, we omit the arguments (x, y) to Σ func-
tion. The superscripts (m,n) stand for partial derivatives,
as Σ(m,n) = ( ∂

∂x )m( ∂∂y )nΣ(x, y).

And the expression for Eq. 16 up to ∆3 order is

Sx(x)Sy(y)×
{

1 +Σ

+
∆2
x∆y

(1 +Σ)2

[
Σ(0,1)

(
(Σ + 1)Σ(2,0) − 2(Σ(1,0))2

)
+(1 +Σ)

(
2Σ(1,0)Σ(1,1) − (1 +Σ)Σ(2,1)

)]}
+O(∆4). (19)
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