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1 Introduction

The ABCD method of background estimation is used by many physics analyses at the LHC that
search for new physics or even measure rare Standard Model processes. This document is intended
to serve as a guide to this method, and attempt to steer the reader towards use of a likelihood-based
approach to the method.

A model building toolkit called TRooFit (pronounced: ”true-fit”) is introduced in this guide, and
the examples of its use in this document are intended to encourage the reader to construct likelihood
models applicable to their particular analysis. Due to the wide variety of scenarios that the ABCD
method can be applied to, it is not feasible to provide a one-size-fits-all tool that can be fed with
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information and spit out a background prediction. Instead, the TRooFit toolkit is supposed to
allow each individual analysis to apply the techniques described in this guide to their specific case.

In this sense, the first part of this guide (chapter 2) is a review of the usual concept of the ABCD
method, and the second part (chapter 3) is a tutorial in statistical model building and fitting, in
the context of background estimation.

1.1 A canonical example for the ABCD method

The ABCD method requires that there are two selections that form part of the definition of the
signal region, region A, which can be inverted in order to define three further regions, region B,
C, and D. These control regions should ideally be rich in the events produced from background
processes that we are trying to estimate with the method.

The selections that are inverted can be one that is applied to a continuous observable (e.g. inverting
a requirement on a certain magnitude of missing transverse momentum of the event), or it could be a
discrete binary requirement (e.g. a veto on additional leptons in the event). Since a requirement on
a continuous observable can be viewed in a discrete pass/fail manner, using selections on continuous
observables can be thought of as a more general example and are therefore adopted in this canonical
example.

In this example, we suppose there are two continuous observables, v1 and v2 that are used to define
the signal region and three control regions:

• Region A (signal region): v1 > 60 and v2 > 50,

• Region B: v1 < 60 and v2 > 50,

• Region C: v1 > 60 and v2 < 50,

• Region D: v1 < 60 and v2 < 50,

The cuts were chosen in some manner to preferentially select signal events in the signal region,
and have minimal contamination of the other regions with signal events.

We suppose the analysis has blinded the signal region and recorded the data present in the control
regions, which is shown in black in figure 1. The figure also shows, in red, a hypothesised shape
of the signal that is being targeted by this analysis. The normalization (i.e. the strength) of the
signal is often unknown in searches for new physics, so in the traditional arthimetic approaches
described in chapter 2 this signal strength is often assumed to be sufficiently small to
render negligible the signal contribution to regions B, C, and D. We will see in chapter 3
that this assumption is not often necessary for the likelihood based approach.

It could be argued that for the example illustrated here, a more sophisticated selection that cuts
along a diagonal in this v1 − v2 plane would be more appropriate than the horizontal and vertical
cuts indicated. However, this guide does not concern itself with issues surrounding cut optimiza-
tion, which is a whole other area of experimental methods. We will accept the cuts as a given and
will address the problem at hand - estimating the background (i.e. non-signal) contribution to the
signal region.

The fully binary case (inverting discrete selections) is visualised as the version of this example
where only two bins are used per axis (one for pass and one for fail of each selection). Of course, it
is possible for one axis to correspond to a continuous observable, and the other to correspond to a
binary one. Some of the techniques described in this guide will only be applicable when there is at
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Figure 1: Illustration of a canonical example where the ABCD backgrond estimation method is to
be used. The black distribution is the collected data, and the red distribution is the hypothesized
shape of the signal that the analysis is targetting.

least one continuous observable available, so in this respect the use of continuous observables
for defining the ABCD regions is preferred.

The goal of the ABCD method is to produce a prediction for the number of non-signal events in
the signal region. Chapter 2 will walk through a traditional arithmetic approach to answering this
question, before we attempt in chapter 3 to cast the problem in terms of a statistical likelihood
model which we will simply fit to the data in order to estimate the background.

2 Traditional arithmetic approach

In this chapter we go through the traditional process of applying the ABCD method to the canon-
ical problem laid out in section 1.1. This will include applying the standard arithmetic ABCD
calculation to obtain a prediction, and then attempting to validate this method using a validation
region. Typical methods of defining additional systematic uncertainty to the prediction following
this validation (in the case of non-closure) as well as attempts to improve the prediction will also
be discussed.

2.1 The most basic ABCD prediction

The assumption that underpins the ABCD method is that the following statement is true:

Nbkg
C

Nbkg
D

=
Nbkg

A

Nbkg
B

(1)

This will be satisfied if the observables defining the ABCD plane are sufficiently uncorrelated for
background events. A visual inspection of figure 1 might lead us to believe that this should be
approximately true: the data distribution (which we assume is purely background events) looks
approximately uncorrelated in the two variables. Therefore proceeding with the ABCD method
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seems appropriate. It does not matter for the method that there is an obvious anti-correlation in
the signal distribution. The ABCD method only requires equation 1 to be true for the
background distribution that is being estimated.

We assume that all the events recorded in region B, C, and D, are background events. If we had a
reliable theoretical prediction for the signal strength (or for any background that we did not want
to be estimated via the ABCD method) then the contribution from this process can be subtracted
from the recorded number of events in order to give the number of background events in each
region, i.e:

Nbkg
i = Ni −N sig

i , for i = B,C,D (2)

However, in this example we will assume we do not have a reliable prediction for N sig
i and

will therefore assume that they are negligible, i.e. that Nbkg
i = Ni.

The background estimate for the signal region, Nbkg
A is obtained from rearranging equation 1:

Nbkg
A =

Nbkg
C

Nbkg
D

Nbkg
B =

NC

ND
NB . (3)

For the canonical example, the following numbers are given:

NB = 1557

NC = 2249

ND = 96131

=⇒ Nbkg
A = 36.4± 6.0 (stat)± 1.2 (syst), (4)

where the statistical uncertainty is the standard poisson uncertainty on the nominal prediction, and
the systematic uncertainty is obtained from normal error propagation of the statistical uncertainties
on measurements of the (true but unknown) background rates in regions B, C, and D.

2.2 Validating the basic ABCD method

We can define a validation region if we have at least one non-binary observable defining the ABCD
plane (the observable could be discrete, such as number of jets, we just require a way to divide the
plane into six regions now, instead of four1.

Figure 2 shows one possible way to define a validation region: regions B and D are subdivided into
regions B’, A’, D’, and C’. The ABCD method can then be applied to these four regions, where an
attempt is made to estimate the background yield in region A’ (the validation region), using the
other three regions.

For the canonical example, this leads to:

1It is possible to extend a binary observable by incorporating another (binary or otherwise) selection requirement
into the axes variable: i.e. go from bins representing (A,!A) to (A&&B, A&&!B, B&&!A, !A&&!B) or even just (A,
!A&&B, !A&&!B)
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Figure 2: Region B and D of the ABCD plane can be cut into two, to define new regions B’,A’,
D’, and C’. Region B’ can be used as a validation region in which to test the ABCD method.

NB′ = 192

NC′ = 80379

ND′ = 15752

=⇒ Nbkg
A′ = 979± 31 (stat)± 71 (syst), (5)

However, in the canonical example the number of observed events in region A’ is 1365 events.
This suggests there might be a problem with the underlying assumption of the ABCD method
(equation 1) in this case. The following sections will describe a ways to proceed at this point.

2.3 Adding a non-closure uncertainty

The crudest approach to this problem is to assign a non-closure uncertainty, given by the relative
difference between the prediction and the observed events in the validation region. In this case
the relative uncertainty would be 39%. When taking this approach, a statement should be made
regarding the change in the signal sensitivity as a result of the additional uncertainty on the
background.

You also should then attempt to validate your non-closure. This involves defining a new validation
region (and accompanying control region) in which to check that your ABCD prediction with
additional non-closure uncertainty will cover the observed number of events in this new validation
region. This means we are now up to requiring 8 regions:

1. Signal region (region A).

2. Accompanying control region (region B).

3. Primary validation region, where non-closure is discovered and an uncertainty is measured
(region A’).

4. Accompanying control region of the primary validation region (region C’).
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5. Region giving the numerator of the transfer factor for the validation (region B’).

6. Region giving the denominator of the transfer factor for the validation (region D’).

7. Secondary validation region, to test the non-closure uncertainty

8. Accompanying control region of the secondary validation region

In this guide we have not made all these regions orthogonal: we defined regions 2-4 with subregions
of the regions we ultimately were using as the the control region and transfer factor denominator
for the main background estimation of region A (the numerator coming from region C). It should
be discussed whether it is appropriate to use non-orthogonal regions in this process.

Finally, whatever secondary validation region you choose, ideally the prediction should have a
similar order-of-magnitude background prediction as your final signal region. So in this canonical
example, we would choose a secondary validation region that has a prediction of O(10) events
(given our signal region background prediction is approximately 36 events).

2.4 Improving the prediction

This improvement is only really possible if at least one of the ABCD plane axes is defined by a
continuous observable. In this example we will utilise that v2 is continuous, since we used v1 to
define our validation region.

Figure 3 shows three alternative ways to define a subregion of region C and D (the transfer factor
numerator and denominator regions): the black-shaded region of 0 < v2 < x, the blue-shaded
region of x < v2 < 50, and the red-shaded region of x − 5 < v2 < x + 5. The transfer factor can
be measured as a function of x, and the result of this is shown in figure 4. A clear trend in the
transfer factor is seen, and it is reasonable to believe that the transfer factor defined closest to the
signal region (i.e. to the right of the plot) is closest to the “correct” transfer factor that should be
applied to the control region (region B or B’) in order to obtain the prediction for the signal or
validation region (region A or A’).

Using the transfer factors, NC/ND and NC′/ND′ , measured nearest the signal and validation
regions gives:

NC′

ND′
= 6.64± 0.13

=⇒ Nbkg
A′ = NB′

NC′

ND′
= 1275± 35 (stat)± 95 (syst) (observed 1365) (6)

NC

ND
= 0.032± 0.001

=⇒ Nbkg
A = NB

NC

ND
= 49.5± 7.0 (stat)± 2.3 (syst) (7)

(8)

A new non-closure systematic could also be assigned at this point, however the uncertainty on
the estimate in the validation region covers the observation, so an additional systematic may be
deemed unnecessary in this case.
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Figure 3: The ratio NC/ND (and NC′/ND′) can be measured in subregions of region C and D
(C ′ and D′) when the v2 variable is sufficiently continuous. Making this measurement may show
evidence of a trend in the data that is inconsistent with the base assumption that NC/ND =
NB/NA for background events. The shaded black region corresponds to 0 < v2 < x, shaded blue
is x < v2 < 50 and shaded red is x− 5 < v2 < x+ 5, where in all cases x = 20. The ratios can be
measured as a function of x, by varying the subregions as indicated by the green arrows.

(a) Regions C and D (b) Regions C’ and D’

Figure 4: The ratiosNC/ND andNC′/ND′ measured as a function of x for three different definitions
of sub-regions of C, D, D′, and C ′. See figure 3 for further explanation of x. The dashed green
lines indicate the ratio obtained from the full regions.
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2.5 Summary of arithmetic approach and difficulties

3 Likelihood based approach

A likelihood-based approach to the ABCD method is really just fitting a statistical model that is
constructed with an underlying assumption about the relationship of the background distribution
between different regions.

The assumption of the basic ABCD method (equation 1) can be expressed as:

ÑA = m̃ÑB , ÑC = m̃ÑD, (9)

and the likelihood for observing the data data = {NA, NB , NC , ND} is given by:

L(data|ÑB , ÑD, m̃) = Pois(NA|m̃ÑB)Pois(NB |ÑB)Pois(NC |m̃ÑD)Pois(ND|ÑD)

= Pois(NA +NB +NC +ND|Ñtot)
∏
NA

m̃ÑB

Ñtot

∏
NB

ÑB

Ñtot∏
NC

m̃ÑD

Ñtot

∏
ND

ÑD

Ñtot

, (10)

where

Ñtot = m̃ÑB + ÑB + m̃ÑD + ÑD. (11)

The notation used is that free parameters in the fit have a ∼ above them. The form of equation 10
is to emphasise that the model should be thought of as a four-bin model, where the observable is
the bin that each event falls in to. Therefore the probability of observing the data is the product
of the probabilities for each event to have fallen into the bin that it did, multiplied by an overall
Poisson probability of observing the total number of events that were observed. The splitting of the
likelihood into a single overall Poisson term and a series of probabilities of each event is a feature
of the RooFit model building toolkit. In RooFit likelihoods are built from normalized PDFs for
the event-level observables (the region is the observable in this case), with a Poisson term added
when the PDF is an extended pdf.

3.1 Counting degrees of freedom

It is important to verify that the number of free parameters is not greater than the number of
observations, otherwise the fit would be underconstrained. In this case, there are four observations
(NA, NB , NC , ND) and three free parameters (m̃, ÑB , ÑD) so if performing a fit to all four regions
we actually have room in our model for one more free parameter. Later on when incorporating
signal into the model, we will introduce signal strength as the additional free parameter. However,
when performing a fit on blinded data, NA is not available and is removed from the model:
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L(blinded data|ÑB , ÑD, m̃) = Pois(NB +NC +ND|Ñblind tot)
∏
NB

ÑB

Ñblind tot∏
NC

m̃ÑD

Ñblind tot

∏
ND

ÑD

Ñblind tot

, , (12)

with
Ñblind tot = ÑB + m̃ÑD + ÑD. (13)

3.2 Constructing the basic likelihood model

We now show how to construct this model using the TRooFit extension to RooFit. The manner
in which the model is constructed will allow it to be made more sophisticated in several ways:

• Binning within the individual regions.

• More general relationships between the regions (compared to the simplest relationship defined
by equation 9).

• Adding signal shape information to the simultaneous fit.

The model will be constructed with four TRooH1D, which should be thought of as a version of a
ROOT TH1D histogram that have extra features so that it can function as a PDF in the RooFit

toolkit. We start by constructing these four TRooH1D.

int nBins = 1 ; //number o f b ins per reg ion . S ta r t wi th 1 bin
double cLe f t =0; // l e f t edge o f reg ion C
double aLe f t =50; // l e f t edge o f reg ion A
double aRight=100; // r i g h t edge o f reg ion A
double cTop=100; // top edge o f reg ion C
double cBottom=60; //bottom edge o f reg ion C
double dBottom=0; //bottom edge o f reg ion D

const char∗ r eg i onLabe l s [ 4 ] = {”C” , ”A” , ”D” , ”B” } ;
//odd order ing i s so t ha t when we draw reg ions
//we w i l l g e t :
// C | A
// D | B

RooRealVar x ( ”v2” , ”v2” , cLeft , aRight ) ; //a RooFit cont inuous v a r i a b l e with range
// cLe f t to aRight

TRooH1D∗ b [ 4 ] ; // w i l l po in t to the four TRooH1D we w i l l c r ea t e

for ( int i =0; i <4; i++) {
b [ i ] = new TRooH1D(Form( ”b %s” , r eg i onLabe l s [ i ] ) ,

Form( ”Region %s bkg” , r eg i onLabe l s [ i ] ) ,
x , nBins , ( i ==0|| i ==2)? cLe f t : aLeft , ( i ==0|| i ==2)?aLe f t : aRight ) ;

b [ i ]−>Se tF i l lCo l o r (kCyan ) ;
b [ i ]−> s e tF l oo r ( true ) ; // prevent s ’ va lue ’ o f the histogram being l e s s than 0

}

We want to allow the values of the region B and region D TRooH1Ds to be free parameters in the
model. For this we can introduce an additional RooRealVar for each bin, and attach them to each
bin of the TRooH1D using the addShapeFactor method. A shapeFactor is a scale factor applied
to the value of a single bin of a TRooH1D. This means that there needs to be a non-zero bin content
in order for the scale factor to have an effect. Since we expect the post-fit bin values to be very
close to the data measurement in that bin, we can choose to set the bin content equal to the data
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measurement (or 2, if the measurement is fewer than 2 events), and then giving the scale factor a
range of 0-5 should be adequate to cover the fit solution.

for ( int j =2; j<=3; j++) { // j = reg ion index . . . reg ion 2 and 3 = D and B
for ( int i =1; i<=nBins ; i++) {

RooRealVar∗ s f = new RooRealVar (Form( ” s f %s b in%d” , r eg i onLabe l s [ j ] , i ) ,
Form( ” s f %s b in%d” , r eg i onLabe l s [ j ] , i ) , 1 , 0 , 5 ) ;

b [ j ]−>SetBinContent ( i , hdata [ j ]−>GetBinContent ( i ) ) ;
i f (b [ j ]−>GetBinContent ( i )<2) b [ j ]−>SetBinContent ( i , 2 ) ;
b [ j ]−>addShapeFactor ( i ,∗ s f ) ;

}
}

In the above code, hdata[i] is a histogram containing the observed data for the ith region, with
the same binning as the TRooH1D. So far the inner loop will only be over a single bin, but setting
up the code in this way will the model to be generalised to multiple bins per region.

The model then requires that value the region A and C PDFs should correspond to the region
B and D PDFs multiplied by an additional scale factor, m̃. This can be accomplished with the
following code:

b[0]−> F i l l (∗b [ 2 ] ) ; //makes bin content o f reg ion C equa l to reg ion D
b[1]−> F i l l (∗b [ 3 ] ) ;

// i n i t i a l i z e m parameter to r a t i o o f i n t e g r a l s o f data his tograms
// in reg ions C and D
//We choose range o f m to be between 0 and 5 . . .
RooRealVar m( ”m” , ”#t i l d e {m}” , hdata [0]−> I n t e g r a l ( )/ hdata [2]−> I n t e g r a l ( ) , 0 , 5 ) ;

b[0]−>addNormFactor (m) ;
b[1]−>addNormFactor (m) ;

A normFactor is a scale factor applied to all bins, as opposed to a shapeFactor which applies to
only a single bin.

At this stage we can inspect what the four regions look like by drawing them, along with the data
(except in the signal region (region A, which has index=1)):

TCanvas c ( ” P r e f i t ” , ” P r e f i t d i s t r i b u t i o n s ” , 800 , 600 ) ;
c . Divide ( 2 , 2 ) ;
for ( int i =0; i <4; i++) {

c . cd ( i +1);
b [ i ]−>Draw ( ) ;
i f ( i !=1) hdata [ i ]−>Draw( ”same” ) ;
i f ( i==1) {

// pr in t the TRooH1D i n t e g r a l ( i . e . p r ed i c t i on ) in s i g n a l reg ion
TText t ;
double bkgErr ;
double bkgPred i c i t i on = b [ i ]−> Integra lAndError ( bkgErr ) ;
t .DrawTextNDC( 0 . 4 , 0 . 8 , Form( ”Pred ic ted = %g +/− %g” , bkgPredict ion , bkgErr ) ) ;

}
}

The result of this code, for the canonical example, is given in figure 5. The histograms in region
B, C, and D all line up with the data due to the choice of initial values for the free parameters.
The prediction for region A is consistent with the number calculted in equation 4. However, there
is no systematic error on the integral because the fit has not been performed yet.

This code allows us to easily change the number of bins in the distributions, for example figure ??
shows the prefit distributions when there are 10 bins per region (nBins=10). The small change in
the prediction in region A is due to the setting on histogram bin contents in region B and D to
never be smaller than 2.
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Figure 5: Prefit state of the model when using nBins=1, with the data overlaid in regions B, C,
and D. The prediction (integral of the blue histogram) in region A is also shown. There is no error
because the fit has not yet been performed.

Figure 6: Prefit state of the model when using nBins=10, with the data overlaid in regions B, C,
and D. The prediction (integral of the blue histogram) in region A is also shown. There is no error
because the fit has not yet been performed. The slight difference in the prefit prediction compared
to the nBins=1 case is due to the overriding of bin contents in regions B and D, as explained in the
text. The disagreement between the data and model in region C is suggesting that the standard
ABCD model is not appropriate in this case.
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Finally, we need to bring all four TRooH1D together to build a model that is a function of the event-
level observable, the region. The region observable is represented with a RooCategory object:

// de f ine a RooCategory to repre sen t which reg ion the event i s in
RooCategory cat ( ” r eg i on ” , ” r eg i on ” ) ;
for ( int i =0; i <4; i++) cat . def ineType ( r eg i onLabe l s [ i ] ) ;

// cons t ruc t the f u l l model
RooSimultaneous model ( ”model” , ”model” , cat ) ;
for ( int i =0; i <4; i++) {

model . addPdf ( ∗b [ i ] , r eg i onLabe l s [ i ] ) ; // a s s o c i a t e s PDF b [ i ] wi th i t h reg ion
}

3.3 Fitting the model to the data

In order to use RooFit to fit the model to the data, the data must be placed in a RooDataSet. In
the following code, the data comes from a TTree in a file called abcdInputTrees.root.

TFile da taF i l e ( ” abcdInputTrees . root ” ) ;
TTree∗ dataTree = (TTree∗) da taF i l e . Get ( ”data” ) ;
double v1 , v2 ;
dataTree−>SetBranchAddress ( ”v1” ,&v1 ) ;
dataTree−>SetBranchAddress ( ”v2” ,&v2 ) ;

RooDataSet data ( ”data” , ”data” , RooArgSet (x , cat ) ) ;
for ( int i =0; i<dataTree−>GetEntr ies ( ) ; i++) {

dataTree−>GetEntry ( i ) ;

i f ( v1>cTop ) continue ;
i f ( v2<cLe f t ) continue ;
i f ( v2>aRight ) continue ;
i f ( v1<dBottom) continue ;

i f ( v1<cBottom&&v2<aLe f t ) cat . s e tLabe l ( ”D” ) ;
else i f ( v1>=cBottom&&v2<aLe f t ) cat . s e tLabe l ( ”C” ) ;
else i f ( v1<cBottom&&v2>=aLef t ) cat . s e tLabe l ( ”B” ) ;
else cat . s e tLabe l ( ”A” ) ;
x=v2 ;
data . add (RooArgSet (x , cat ) ) ; //how to add an event to a RooDataSet

}

We are just about ready to fit the model to the data now. This would normally be performed by
simply doing:

RooFitResult ∗ f i t R e s u l t = model . f i tTo ( data , RooFit : : Save ( ) ) ;

where the fitResult object will contain the post-fit values of the free parameters, along with the
uncertainties and correlation information for those parameters. However, this is only appropriate
if we are fitting with the unblinded data. If the data is still blinded, a fit should only be performed
with regions B, C, and D. To achieve this, the data is reduced to remove the events in the signal
region, and the signal region of the model (b[1]) has its BlindRange set so that it effectively is
masked out of the model:

x . setRange ( ”myRange” , aLeft , aRight ) ; // crea t e a RooFit b l i n d range
b[1]−> setBl indRange ( ”myRange” ) ; // b l i n d the s i g n a l reg ion in t h i s range
RooAbsData∗ blindedData = data . reduce ( ” r eg i on !=1” ) ; //removes the reg ion A data
RooFitResult ∗ f i t R e s u l t = model . f i tTo (∗ blindedData , RooFit : : Save ( ) ) ;
b[1]−> setBl indRange ( ”” ) ; //remove the b l i n d i n g range fo r the post− f i t p l o t t i n g
delete blindedData ;

The result of the fit is shown in figure 7, where when drawing the TRooH1D objects the "e3005"

option has been used; this option draws a shaded error band (with FillStyle=3005). In fact,

12



to ensure that all the correlations between the free parameters are properly accounted for when
calculating the error band, the fitResult object should also be passed to the Draw method.
If this object is not passed, then the errors come directly from the free parameters themselves
(RooFit copies the post-fit errors onto the parameters), and any correlations between the errors
are neglected.

b [ i ]−>Draw( ” e3005” ) ; //draws TRooH1D with a shaded error band
b [ i ]−>Draw( ” e3005” , f i tR e s u l t ) ; //draws error band , t ak ing c o r r e l a t i o n s in to account

Figure 7: Post-fit distributions, in the nBins=1 case.

Figure 8 with the additional bins shows that the model is clearly not adequate at describing the
data.

Figure 8: Post-fit distributions, in the nBins=10 case.
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3.4 Validation and non-closure uncertainties

Single bin validation .... (by defining validation regions and fitting in those regions) ... adding a
relative uncertainty to region A ... (just adding a constrained normFactor, with uncert given by
the validation region relative fit difference)

3.5 Using a linear model

We can attempt to improve the model by replacing the simple ABCD relationship of equation 10
with a relationship that is a function of one of the ABCD plane observables:

ÑA(x) = ÑB(x)(m̃1x+ m̃2), ÑC(x) = ÑD(x)(m̃1x+ m̃2), (14)

This naturally only works for continuous observables. Additionally, in order to use this model
we cannot have a single bin per region (if fitting in the blinded case) because we now have an
additional free parameter in the fit. We will focus on the 10-bin case for now, but any number of
bins greater than 1 would in theory be sufficient to provide enough data points to constrain the
model.

The linear model can be constructed using standard RooFit classes:

RooRealVar m1( ”m1” , ”#t i l d e {m} {1}” ,0 . , −5 ,5 ) ; // i n i t i a l guess i s 0 g rad i en t
RooRealVar m2( ”m2” , ”#t i l d e {m} {2}) ” , hdata [0]−> I n t e g r a l ( )/ hdata [2]−> I n t e g r a l ( ) , −5 ,5) ;
RooFormulaVar t rans f e rFunc ( ” t rans f e rFunc ” ,

”Trans fe r Factor as func t i on o f v2” ,
” (m1∗v2 + m2) ” , RooArgList (m1,m2, x ) ) ;

In the model construction, instead of adding m as a normFactor to b[0] and b[1], one should use
transferFunc. This would be sufficient to construct the model.

However, it would also be useful to be able to visualize the transferFunc function, as well as
ensure that its value can never go negative (since a negative transfer factor would be unphysical).
There are a number of ways to achieve both these things, but one way is to use another TRooFit

class called the TRooHF1D. This is similar to a TRooH1D except that it represents a function rather
than a PDF, i.e. its value is not a density, and it is not a normalized distribution. In this
example, a separate TRooHF1D has been used for each pair of regions, so that they are easier to
plot individually.

TRooHF1D tDC(”tDC” , ”Trans fe r from reg i on D to C, as func t i on o f v2” ,
x , nBins , cLeft , aLe f t ) ;

tDC . F i l l ( t rans f e rFunc ) ; // uses the func t i on as i t s va lue
tDC . s e tF l oo r ( true ) ; // prevent s going negat ive , which would be unphys i ca l

TRooHF1D tBA( ”tBA” , ”Trans fe r from reg i on B to A, as func t i on o f v2” ,
x , nBins , aLeft , aRight ) ;

tBA . F i l l ( t rans f e rFunc ) ; // uses the func t i on as i t s va lue
tBA . s e tF l oo r ( true ) ; // prevent s going negat ive , which would be unphys i ca l

// l a t e r on . . .
b[0]−>addNormFactor (tDC ) ; // ins t ead o f b[0]−>addNormFactor (m) ;
b[1]−>addNormFactor (tAB ) ; // ins t ead o f b[1]−>addNormFactor (m) ;

When the fit is rerun with this model, a very different prediction is obtained, as shown in figure 9.
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Figure 9: Post-fit distributions, in the nBins=10 case, with a linear model used for the transfer
factor from region D (B) to C (A). The bottom two graphs so the post-fit values of the transfer
factor (compared to the ratio of the data in regions C and D on the left hand side).

4 ABCD method checklist

Analyses using the ABCD method are required to define a minimum of six regions: the four main
regions, and two additional regions with which to perform a validation of the method. More may
be required, depending on the success of the validation.

1. Define signal region (region A), accompanying control region (region B), and transfer factor
measurement regions (region C and D).

2. Define your transfer factor model for the background. The two options explored in this guide
were:

• Standard ABCD assumption i.e. constant transfer factor (m):

NA = mNB , NC = mND (15)

• Linear transfer factor model (valid for continuous variable x):

NA(x) = NB(x)(m1x+m2), NC(x) = ND(x)(m1x+m2) (16)

Another option, not explored in this guide, but known to have been used by some analyses,
is:

• Adjusted flat model:
NA = ρmNB , NC = mND (17)

where ρ is a nuisance parameter constrained by an observable corresponding to the
estimate of ρ from, e.g., MC simulation (estimate ρ from (NMC

A /NMC
B )/(NMC

C /NMC
D )).
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3. If including signal (only possible when enough measurements are defined) with an unknown
signal strength, run the fit with signal strength floating, ensuring that the range of the
strength parameter is sufficiently large to cover the assumption that all the data in the control
regions is due to signal. Repeat the fit with signal strength fixed to 0. Take the difference
between the signal region predictions as an uncertainty on the background predictions due
to uncertain signal strength.

4. Define a (primary) validation region (region A’), accompanying control region (region B’),
and transfer factor control regions (regions C’ and D’). Figure 10 shows some examples of
possible control regions that can be defined when the ABCD-plane variables are continuous.
It is also possible to define validation regions by inverting a binary selection.

5. If non-closure (beyond statistical fluctuations) is observed in the validation region, either
improve the model, or assign a non-closure uncertainty equal to the non-closure relative to
the prediction.

6. If a non-closure uncertainty is added, define a secondary validation region and accompanying
control regions. These regions should be orthogonal to the primary validation and accom-
panying control regions, and the prediction in the secondary validation region should be the
same order of magnitude as the prediction in the signal region.

7. Confirm that the prediction with non-closure uncertainty adequately covers the observation
in the secondary validation region.

8. Additional validation regions may be defined in order to improve confidence in the estimate.

9. Where continuous variables have been used for both axes of the ABCD plane, swapping over
the variables used to define the regions is a good way to cross-check the prediction.

Figure 10 shows suggestions of how to define possible validation regions. An alternative way to
define validation regions is to invert an analysis cut to define a validation ABCD plane.
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(a) Nominal regions (b) Possible validation regions 1

(c) Possible validation regions 2 (d) Possible validation regions 3

Figure 10: Illustrations of the nominal signal and control regions, and possible validation and ac-
companying control regions. The ability to define the validation regions depends on the discreteness
of the observables defining the plane.
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5 From ABCD to the Matrix Method

5.1 The single-object case

In section 3 the ABCD method was expressed in terms of a free parameter m̃ that represented a
transfer factor between region D and C (and, by assumption, region B and A). We will now see
how the ABCD method can be seen as equivalent to the simplest case of the matrix method of
background estimation.

In the simplest case of the matrix method, an event is flagged as tight (t) or anti-tight (t̄) depending
on whether a particular property of the event satisfies a requirement or not. The tight events are
the signal region events and anti-tight events are the control region B events. The events in these
two regions are either real (e.g. signal events) or fake (e.g. background events) in nature. The
yield of tight (Nt ≡ NA) and anti-tight (Nt̄ ≡ NB) events are related to the underlying number of
true but unknown real and fake events ÑR and ÑF by:

[
NA

NB

]
=

[
r f

1− r 1− f

]
×
[
ÑR

ÑF

]
, (18)

where r and f are efficiencies for real and fake events to pass the tight event requirement. These
efficiencies can be parameterized somehow, in which case the calculation can be repeated in the
windows of the parameterization where the efficiencies are constant (i.e. within each bin of the
parameterized efficiencies).

We will now see how this is identical to a certain case of the ABCD method. In the ABCD method
with the presence of a signal and using the uniform model for the transfer factor, one has the
following equations:

NA = m̃Ñbkg
B + µ̃N sig

A

NB = Ñbkg
B + µ̃N sig

B

NC = m̃Ñbkg
D + µ̃N sig

C

ND = Ñbkg
D + µ̃N sig

D (19)

We can define the following relationships:

µ̃ =
ÑR

N sig
A +N sig

B

(20)

r =
N sig

A

N sig
A +N sig

B

(21)

Ñbkg
B = (1− f̃)ÑF (22)

m̃ =
f̃

1− f̃
(23)

(24)

and for simplicity we make an assumption that there is no signal contribution in region C or D
(i.e. N sig

C = N sig
D = 0). We then find that the four equations defined by equation 19 become:
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NA = f̃ ÑF + r̃ÑR

NB = (1− f̃)ÑF + (1− r̃)ÑR

NC =
f̃

1− f̃
Ñbkg

D

ND = Ñbkg
D (25)

The first two equations are exactly the ones defined by the matrix method equation 18. The latter
two equations effectively provide a measurement of the fake efficiency f̃ : dividing one by the other
leads to an estimate for f̃ = NC/(NC + ND). We see that the ABCD method can be equivalent
to the matrix method where the fake efficiency is determined by the events recorded in regions C
and D, and the real efficiency is determined from the signal predictions in regions A and B.

5.2 Extending to multi-objects

Extending the matrix method to multiple objects amounts to further subdividing the data based
on another discriminant. For example, NA in equation 18 represented the events passing a tight
selection. This could be divided into two sub-categories: NAA and NAB , where NAA is the number
of events that satisfy both tight selections, and NAB is the number of events that satisfy the first
tight selection but fail the second. A similar subcategorization can be applied to define NBA and
NBB from the anti-tight events NB .

NAB = m̃1Ñ
bkg
BB + µ̃N sig

AB

NBB = Ñbkg
BB + µ̃N sig

BB

NAA = m̃1Ñ
bkg
BA + µ̃N sig

AA

NBA = Ñbkg
BA + µ̃N sig

BA
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Appendix

In a paper, an appendix is used for technical details that would otherwise disturb the flow of the
paper. Such an appendix should be printed before the Bibliography.
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Auxiliary material

In an ATLAS paper, auxiliary plots and tables that are supposed to be made public should be
collected in an appendix that has the title “Auxiliary material”. This appendix should be printed
after the Bibliography. At the end of the paper approval procedure, this information can be split
into a separate document – see atlas-auxmat.tex.

In an ATLAS note, use the appendices to include all the technical details of your work that are
relevant for the ATLAS Collaboration only (e.g. dataset details, software release used). This
information should be printed after the Bibliography.
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