A tour of QCD at hadron colliders.

Part 2 of 2

Enrico Bothmann Institut für Theoretische Physik, Universität Göttingen

HASCO 2022

Summary of 1st part.

The QCD Lagrangian

- gauge-field theory for the strong force
- dynamics and interactions of colour-charged quarks and colour-charged gluons
- non-abelian: running coupling decreases with energy

The two faces of QCD

- confined phase: large-coupling regime, physics of hadrons
- asymptotic free phase: coupling small, perturbation theory applicable

Soft & collinear divergences

- singularities associated with the emission of soft/collinear gluons
- divergences cancel between real & virtual corrections

Soft & collinear singularities: recap.

soft/collinear gluon emission cross section factorises:

$$|\mathcal{M}_{q\bar{q}g}|^2 d\Phi_{q\bar{q}g} \simeq |\mathcal{M}_{q\bar{q}}|^2 d\Phi_{q\bar{q}} d\mathcal{S}, \text{ where } d\mathcal{S} = \frac{2\alpha_{\rm S}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

 \implies divergent as $E \to 0$ and/or $\theta \to 0$

these singularities cancel between real & virtual:

$$\sigma_{\rm tot}({\rm e^+e^-} \to {\rm q\bar{q}}) = \sigma_{q\bar{q}} \left(\underbrace{1}_{\rm LO} + 1.045 \frac{\alpha_s(Q^2)}{\pi} + \underbrace{\dots}_{\rm higher\ orders} \right)$$

perturbation theory works well for inclusive cross sections

.....

... let's look at more exclusive observables now ${\scriptscriptstyle \!\!\!\!\!-}$ estimate N_g = # emitted gluons

estimate mean number of gluon emissions off a quark with energy $\sim Q$:

$$\langle N_g \rangle \simeq \frac{2\alpha_s C_F}{\pi} \int_{-\pi}^{Q} \frac{dE}{E} \int_{-\pi}^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

• diverges for $E \to 0$ & $\theta \to 0$; cut out transverse momenta ($k_T \simeq E\theta$) smaller than $Q_0 \sim \Lambda_{\rm QCD}$ (below that the language of quarks & gluons loses its meaning!)

$$\langle N_g \rangle \simeq \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0} + \mathcal{O}\left(\alpha_s \ln \frac{Q}{Q_0}\right)$$

• assume $Q=200\,{\rm GeV}$ & $Q_0=1\,{\rm GeV}$ \Rightarrow $\ln^2\frac{Q}{Q_0}\approx 30$ \Rightarrow $\langle N_{\rm g}\rangle>1$

 \implies simple expansion in $\alpha_{\rm S}$ spoiled by large logarithms

Is 1st order perturbation theory useless beyond total cross sections?

- try to calculate next order
- · try to approximate higher-order contributions
- and/or look for better behaved final-state observables

approximate higher-order contributions or: once a gluon is emitted it can itself emit additional gluons

 consider only collinear and/or soft emissions, since we have seen that they are logarithmically enhanced and they factorise:

$$\frac{2\alpha_{s}C_{F}}{\pi}\frac{dE}{E}\frac{d\theta}{\theta}$$

$$\simeq \frac{2\alpha_{s}C_{F}}{\pi}\frac{dE}{E}\frac{d\theta}{\theta}$$

$$\simeq \frac{2\alpha_{s}C_{A}}{\pi}\frac{dE}{E}\frac{d\theta}{\theta}$$

- same divergence structure, independent of emitter
- only difference is colour factor, gluon emits $C_A/C_F=2.25$ times more
- expect structure from 1st order, $\alpha_{\rm S} \ln^2 Q/Q_0$, to repeat at all orders!

Gluon vs. hadron multiplicity.

 gluon multiplicity can be calc'd by summing all orders n of enhanced terms:

$$\langle N_g \rangle \sim \frac{C_F}{C_A} \sum_{n=1}^{\infty} \frac{1}{(n!)^2} \left(\frac{C_A}{2\pi b_0^2 \alpha_s} \right)^n$$

$$\sim \frac{C_F}{C_A} \exp\left(\sqrt{\frac{2C_A}{\pi b_0^2 \alpha_s(Q)}} \right)$$

- interprete as function of $Q \equiv \sqrt{s}$
- direct comparison to data suggests: $\langle N_{\rm had} \rangle = c_{\rm fit} \langle N_g \rangle$
- perturbative QCD can get us quite far!

start out with the $q\bar{q}$ system

quark emits small-angle gluon

gluon radiates additional gluon

... and again ... and again

meanwhile the same happens on the other side

at $Q \sim 1 \, \mathrm{GeV}$ a non-perturbative transition happens ...

... resulting in a bunch of hadrons collimated w/r/t the initial $q\bar{q}$ system

Defining jets.

jet definition (prel.): jets are collimated sprays of hadronic particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons' directions

Counting jets

- near perfect two-jet event
- almost all energy contained in two cones

Defining jets.

jet definition (prel.): jets are collimated sprays of hadronic particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons' directions

Counting jets

- hard emissions can induce more jets
- jet counting not obvious, is this a three- or a four-jet event?

Defining jets.

jet definition (addendum): jet number should not change when adding a soft/collinear emission

otherwise the cancellation of divergences would be spoiled, perturbative expansion gets out of controlled (at some order, depending on observable & jet definition)

collinear unsafe jet algorithm

soft & collinear safe jet algorithm

need infrared & collinear safe jet (& observable) definitions

crucial for comparing theory with experimental results

Jet algorithms.

Jet definition determined by ...

- how to group together particles into common jets
 - typical parameter is R, distance in y– ϕ space
- how to combine momenta of jet constituents to yield jet momentum
- two generic types of jet algorithms in common use
 - cone algorithms
 - widely used in the past at TEVATRON
 - jets have regular/circular shapes
 - some older ones suffer from IR or collinear unsafety
 - sequential recombination algorithms
 - widely used at LEP [Durham kT algorithm]
 - jets can have irregular shapes
 - default at the LHC experiments [anti-kT algorithm]

Sequential recombination algorithms.

- 1. compute distance measure y_{ij} for each pair of final-state particles
- 2. at hadronic colliders: determine all distance measures w/r/t the beam y_{iB}
- 3. determine the minimum y_{\min} of all y_{ij} and y_{iB}
- 4. exclusive case:
 - if $y_{\min} = y_{ij} < y_{\text{cut}} \rightarrow \text{recombine } i \text{ and } j \text{ into single new } ij$ return to step 1
 - if $y_{\min} = y_{iB} < y_{\text{cut}} \rightarrow \text{recombine } i$ with the "beam jet" (i.e. forget about it) return to step 1
 - otherwise declare all remaining objects to be jets and stop
- 4. inclusive case (no $y_{\rm cut}$ or beam jet, needs a-posteriori IR safety criterion, e.g. $p_{\rm T,min}$):
 - if $y_{\min} = y_{ij}$, recombine i and j into single new ij, return to step 1
 - if $y_{\min} = y_{iB}$, declare i to be a jet and remove it from the list, return to step 1
 - stop when no particles remain

different algorithms use different measures y_{ij} & y_{iB}

Sequential recombination: k_T algorithm.

recall the soft/collinear splitting probability

$$dS \simeq \frac{2\alpha_s C_{A/F}}{\pi} \frac{dE_i}{\min(E_i, E_i)} \frac{d\theta_{ij}}{\theta_{ij}}$$

(using $min(E_i, E_j)$ we can avoid specifying which is soft)

motivates the

 k_T algorithm's distance measure:

$$y_{ij} = 2 \frac{\min(E_i^2, E_j^2)}{Q^2} (1 - \cos \theta_{ij})$$

• in the collinear limit same dependence as $d\mathcal{S}$ denominator

- relative transverse momentum, normalised to total energy
- soft/collinear particles get clustered first
- effectively inverts the sequence of shower emissions (more soon)

Sequential recombination: anti- k_T algorithm.

invert energies:
$$y_{ij} = 2Q^2 \min(E_i^{-2}, E_j^{-2}) (1 - \cos \theta_{ij})$$

- jet finding starts with hardest objects
- later on, softer particles get clustered into hard jets
- produces nicely regular shaped jets

default in current LHC physics analyses

k_T algorithm at work @ LEP.

 k_T jet fractions at LEP

anti- k_T algorithm at work @ LHC.

anti- k_T inclusive jets at LHC

QCD for processes with incoming hadrons.

Processes with incoming hadrons.

- so far: processes with final-state hadrons only
- at hadron colliders, all processes are induced by quarks & gluons, even if otherwise of electroweak nature (as e.g. γ, W, Z, h production processes)
- in order to predict cross sections for processes with initial-state hadrons: need info on proton short distance structure

starting point: the naïve parton model

- quarks bound inside proton
- soft gluon exchange $\sim \Lambda_{\rm QCD}$, acts as binding force responsible for this confinement
- exchange of hard photon breaks the proton apart via recoil
- → learn about proton structure via Deep Inelastic Scattering (DIS)

Naïve parton model factorisation.

 hadronic cross section in the naïve parton model:

$$\sigma(s) = \sum_{ij} \int dx_1 f_{i/p}(x_1) \int dx_2 f_{j/p}(x_2) \,\hat{\sigma}_{ij \to X}(x_1 x_2 s)$$

- · cross section is factorised
 - assume partons move collinearly with protons: $p_i = x_i P_i$
 - partonic vs. hadronic centre-of-mass energy: $\hat{s} = x_1 x_2 s$
 - \bullet parton distribution functions $f_{\it i/p}$ parametrise number density of quarks inside protons

Parton distribution functions: sum rules.

• proton contains "valence" quarks: $|p\rangle = |u \ u \ d\rangle$

$$\Rightarrow \int_{0}^{1} dx \left(f_{u/p}(x) - f_{\bar{u}/p}(x) \right) = 2 \quad \& \quad \int_{0}^{1} dx \left(f_{d/p}(x) - f_{\bar{d}/p}(x) \right) = 1$$

measure fraction of proton momentum carried by quarks:

$$\sum_{q} \int_{0}^{1} dx \, x f_{q/p}(x) \simeq 0.5$$

- need to take gluons into account, carry remaining $\simeq 0.5$ of proton momentum
- gluons appear in splitting process q o qg
- let's better check for the impact of higher-order QCD corrections

Factorisation 2.0.

• most fluctuations inside the proton happen at times $t_{\rm had} \sim 1/\Lambda_{\rm QCD}$

- a hard interaction (e.g. γ^* in DIS) probes much shorter times $t_{\rm hard} \sim 1/Q$
- hard probe takes instantaneous snapshot of hadron structure with "resolution" $\sim 1/Q$

ightharpoonup PDFs are scale-dependent objects: $f_{i/p}(x)
ightarrow f_{i/p}(x,Q^2)$

The factorisation scale.

• consider soft & collinear emisssions from an initial-state quark

$$\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

• where we assume σ_h involves momentum transfers $Q\gg k_t$

$$\sigma_{V+h}(p) \simeq -\sigma_h(p) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

total cross sections receives contributions from both

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_s C_F}{\pi} \underbrace{\int_0^{Q^2} \frac{dk_t^2}{k_t^2}}_{\text{infinite}} \underbrace{\int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]}_{\text{finite}}$$

regulate singularity in k_t by factorisation scale μ_F , & absorb singularity into redefined scale-dependent PDFs

Factorised hadronic cross section.

Review of factorization theorems: [Collins, Soper, Sterman hep-ph/0409313]

factorisation into hard and soft component (resummed in PDFs)

- emissions with $k_t \lesssim \mu_F$ implicitly included in PDFs
- emissions with $k_t \gtrsim \mu_F$ explicitly described by the hard process
- change of PDFs w/r/t μ_F covered by perturbative QCD, calculable
 - ightharpoonup "running" PDFs in analogy to the renormalisation scale μ_R
 - only need to extract PDFs at some input scale
- typically identify μ_F with the inherent process scale Q

Aside: $\mathcal{O}((\Lambda_{\mathrm{QCD}}/Q)^p)$.

- exponent p depends on observable
 - with $p = 1 \rightarrow \mathcal{O}(1\%)$ correction \rightarrow "dirty"
 - with $p = 2 \rightarrow \mathcal{O}(0.01\%)$ correction \rightarrow quite safe
 - lack the framework to reliably determine p easily
- Jet physics at LHC $\rightarrow p = 1$
- jet-inclusive LHC cross sections $\rightarrow p = 2$
- Z, W and Higgs production with non-zero p_T (i.e. jet recoil) p=1 or p=2?
 - answer appears to be 2
 [Ferraro Ravasio, Limatola & Nason, 2011.14114; Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, 2108.08897 + 2204.02247]
- critical for LHC programme and its sub-percent level measurements of Z, W and H p_T , in turn important for constraining $\alpha_{\rm s}$ and PDF etc.!

PDFs for the LHC.

MSTW 2008 NLO PDFs (68% C.L.)

- note g/10! → gluon-initiated processes are enhanced at the LHC
- current PDF sets extracted from DIS, pp̄ & fixed target data
- more recently LHC data has also become important part of fits

Summary of pert. QCD.

Perturbative QCD gets us quite far!

Multiple gluon emission & jets

- we can calculate multiple gluon emission efficiently
- resummation of leading higher-order terms (e.g. using parton shower, see later)
- giving rise to internal structure of jets
- proper jet definition allows to consistently use jets
 - ... in fixed-order calculations
 - ... after parton-showering, hadronisation, detector simulation
 - ... in experimental analyses (and compare them to theory!)

The hadron-hadron cross section

- factorisation of soft and hard component
- hard kernel convoluted with non-perturbative PDFs
- need to be extracted from data
- PDFs scale dependent, evolution described by pQCD

New Physics in a busy QCD environment.

- identify relevant & measurable signatures
 - largest cross section for colour-charged particles
- find selection criteria to enhance signal over SM background [S/B ~ 1]
 - many hard jets, isolated leptons/photons, large ${\not \! E}_{
 m T}$
 - might need to focus on rare decays, e.g. h $\rightarrow \gamma \gamma$
 - New Physics encoded in energies, flavours, kinematical edges

What does a discovery look like?

Searching for New Physics in collision events

find excess of events over the Standard Model expectation

mass peak

- fully reconstructed resonance, e.g. new gauge boson Z[']
- simple invariant mass variable
- → largely independent of background

broad high-mass (high- p_T) excess

- inclusive multi-particle final state,
 e.g. unreconstructed cascade decay
- sum of all transverse momenta
- → knowledge of backgrounds crucial

Theory challenge: precise SM predictions & flexible New Physics simulations.

Theoretical modelling of pp collisions.

Monte Carlo event generators

- Hard interaction exact matrix elements $|\mathcal{M}|^2$
- QCD bremsstrahlung parton showers in the initial and final state
- Multiple interactions beyond factorisation: modelling
- Hadronisation non-perturbative QCD: modelling
- Hadron decays
 phase space or effective theories
- stochastic simulation of pseudo data
- → fully exclusive hadronic final states
- → direct comparison with experimental data

 (after detector simulation) e.g. ATLAS, CMS, LHCb, D0, CDF

PYTHIA, HERWIG, SHERPA

[Buckley, S. et al. Phys. Rept. **504** (2011) 145]

Hard-process generation.

The hard process.

$$\sigma_{pp\to X_n} = \sum_{ab} \int dx_1 \, dx_2 \, f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \, |\, \mathcal{M}_{ab\to X_n}|^2 \, d\Phi_n$$

generic features

- high-dimensional phase space: $\dim(\Phi_n) = 3n 4$
- $|\mathcal{M}_{ab \to X_n}|^2$ wildly fluctuating over Φ_n
- steep parton density functions

state of the art

- tree-level fully automated, up to $2 \rightarrow 8...10$
 - extract Feynman rules from Lagrangian $\mathscr L$ [FeynRules by Christensen & Duhr Comput. Phys. Commun. **180** (2009) 1614]
 - generate compact expressions for $|\mathcal{M}|^2$
 - self-adaptive Monte-Carlo integrators, e.g. MADGRAPH, ALPGEN, SHERPA
- at NLO QCD up to $2 \rightarrow 5$ results available
 - automation of one-loop calculations (but not always practical/available)
- quite a few results at NNLO QCD available, at least then relevant too: NLO EW

Hard processes to NLO QCD.

Anatomy of NLO QCD calculations (in dim. reg. $d=4-2\epsilon$)

$$\sigma_{2\rightarrow n}^{\rm NLO} = \int_n \mathsf{d}^{(4)} \sigma^B + \int_n \mathsf{d}^{(d)} \sigma^V + \int_{n+1} \mathsf{d}^{(d)} \sigma^R$$

- (UV renormalised) virtual corrections $\sigma^{
 m V} \sim {
 m IR}$ divergent
- real emission $\sigma^{R} \rightarrow IR$ divergent
 - for IR-safe observables sum is finite

Dipole subtraction method [Catani, Seymour Nucl. Phys. B 485 (1997) 291]

$$\sigma_{2\rightarrow n}^{NLO} = \int_{n} \left[\mathbf{d}^{(4)} \sigma^{B} + \int_{\text{loop}} \mathbf{d}^{(d)} \sigma^{V} + \int_{1} \mathbf{d}^{(d)} \sigma^{A} \right]_{\epsilon=0} + \int_{n+1} \left[\mathbf{d}^{(4)} \sigma^{R} - \mathbf{d}^{(4)} \sigma^{A} \right]$$

- subtraction terms yield local approximation for the real-emission process
- exactly describe the amplitude in the soft & collinear limits, i.e. correct $1/\epsilon$ and $1/\epsilon^2$ poles

$$\int_{n+1} d^{(d)} \sigma^{A} = \sum_{\text{dipoles}} \int_{n} d^{(d)} \sigma^{B} \otimes \int_{1} d^{(d)} V_{\text{dipole}}$$

spin- & colour correlations ←

→ universal dipole terms

Hard processes to NLO QCD.

The emerging picture: a fully differential NLO calculation

$$\sigma_{2\rightarrow n}^{NLO} = \int_{n+1} \left[\mathbf{d}^{(4)} \sigma^{\mathbf{R}} - \mathbf{d}^{(4)} \sigma^{\mathbf{A}} \right] + \int_{n} \left[\mathbf{d}^{(4)} \sigma^{B} + \int_{\mathbf{loop}} \mathbf{d}^{(d)} \sigma^{\mathbf{V}} + \int_{1} \mathbf{d}^{(d)} \sigma^{\mathbf{A}} \right]_{\epsilon=0}$$

Monte-Carlo codes

- all the tree-level bits
- subtraction of singularities
- efficient phase-space integration

One-Loop codes

- loop amplitudes, i.e. $2\Re(\mathscr{A}_V\mathscr{A}_B^\dagger)$
- including loop integration, i.e. ...
- $1/\epsilon$, $1/\epsilon^2$ coefficients & finite terms

Hard processes to NLO QCD.

Example: BlackHat+Sherpa Z + 4 jets lhc predictions

[Ita et al. Phys. Rev. D **85** (2012) 031501]

 include one-loop virtual & real-emission corrections, as e.g. in diagrams

reduced scale uncertainties in cross sections & differential distributions

Parton showers & matching.

Approximating multi-parton production.

n-parton cross section dominated by soft and/or collinear emissions

Final-state splitting

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

Initial-state splitting

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

- valid when the gluon is much lower in energy than the emitter, i.e. $z \lesssim 1 \dots$
- ... and/or emission angle θ ($k_t \simeq E\theta$) is much smaller than the angle between the emitter and any other parton in the event (angular ordering, colour coherence)
- factorisation lends itself to Markov Chain simulation: parton shower of subsequent emissions

Approximating multi-parton production.

The QCD parton shower picture

- construct explicitly the initial- & final-state partons history/fate
- successive branching of incoming and outgoing legs
 - → exclusive partonic final states
- evolve parton ensemble from hard process scale to low cut-off scale $Q_0 \sim \mathcal{O}(1~{\rm GeV}^2)$
 - → link the hard process to universal hadronisation models
- model intra-jet energy flows: jets become multi-parton objects

Matching exact matrix elements with parton showers.

The art of combining matrix elements with parton showers

- model (few) hardest emissions by exact matrix elements
- avoid any double counting or dead regions of emission phase space
- preserve fixed-order & logarithmic precision of the calculation
- seminal work:
 - multileg tree-level matching: [Catani et al. JHEP 0111 (2001) 063] ME+PS
 - NLO + Parton Shower: [Frixione, Webber JHEP 0206 (2002) 029] MC@NLO

Matching exact matrix elements with parton showers.

The art of combining matrix elements with parton showers

- model (few) hardest emissions by exact matrix elements
- avoid any double counting or dead regions of emission phase space
- preserve fixed-order & logarithmic precision of the calculation
- seminal work:
 - multileg tree-level matching: [Catani et al. JHEP 0111 (2001) 063] ME+PS
 - NLO + Parton Shower: [Frixione, Webber JHEP 0206 (2002) 029] MC@NLO

[→] standard for LHC event generation [Alwall et al. Eur. Phys. J. C 53 (2008) 473]

[→] necessitates truncated showering [Höche, S. et al. JHEP 0905 (2009) 053]

Leaving behind perturbative grounds: The underlying event & hadronisation.

The underlying event: remnant-remnant interactions.

- · definition attempt: everything but the hard interaction including the shower and the hadronisation
- soft & hard remnant-remnant interactions

• beyond factorisation: multiple-parton interactions (MPI)

$$\sigma_{\rm QCD}^{2\to2}(p_{\rm T,min}^2) = \int_{p_{\rm T,min}^2}^{s/4} {\rm d}p_{\rm T}^2 \frac{{\rm d}\sigma_{\rm QCD}^{2\to2}(p_{\rm T}^2)}{{\rm d}p_{\rm T}^2} = \iiint_{p_{\rm T,min}^2}^{s/4} {\rm d}x_a {\rm d}x_b {\rm d}p_{\rm T}^2 f_a(x_a,p_{\rm T}^2) f_b(x_b,p_{\rm T}^2) \frac{{\rm d}\hat{\sigma}_{\rm QCD}^{2\to2}}{{\rm d}p_{\rm T}^2}$$

• for low $p_{\rm T,min}$: $\langle \sigma_{\rm QCD}^{2\to2}(p_{T,\rm min}^2)/\sigma_{pp}^{\rm ND} \rangle > 1$, interpret as average number of interactions per pp collision $\langle n \rangle$, Poissonian if assumed to be independent:

$$\mathscr{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

- strong dependence on cut-off $p_{\mathrm{T,min}}$

Experimental evidence for MPI.

Direct: DPS in γ + 3 jets

[CDF Phys. Rev. **D56** (1997) 3811]

Indirect: jet shapes

A simple multiple interactions model.

[Sjöstrand, Zijl Phys. Rev. D 36 (1987) 2019]

- ullet hard process defines scale $p_{
 m T,hard}$
- generate sequence of additional $2 \rightarrow 2$ qcd scattering ordered in p_{T}

$$\mathcal{P}(p_{\mathrm{T}}) = \frac{1}{\sigma_{ND}} \frac{\mathrm{d}\sigma_{\mathrm{QCD}}^{2 \to 2}}{\mathrm{d}p_{\mathrm{T}}^{2}} \exp \left\{ - \int\limits_{p_{\mathrm{T}}^{2}}^{p_{\mathrm{T,hard}}^{2}} \frac{1}{\sigma_{ND}} \frac{\mathrm{d}\sigma_{\mathrm{QCD}}^{2 \to 2}}{\mathrm{d}p_{\mathrm{T}}^{2'}} \mathrm{d}p_{\mathrm{T}}^{2'} \right\}$$

with $\hat{\sigma}_{\mathrm{OCD}}^{2 o 2}$ regulated according to

$$\frac{\mathrm{d}\hat{\sigma}_{\mathrm{QCD}}^{2\to2}}{\mathrm{d}p_{\mathrm{T}}^2} \to \frac{\mathrm{d}\hat{\sigma}_{\mathrm{QCD}}^{2\to2}}{\mathrm{d}p_{\mathrm{T}}^2} \times \frac{p_{\mathrm{T}}^4}{(p_{\mathrm{T}}^2 + p_{\mathrm{T,min}}^2)^2} \frac{\alpha_{\mathrm{S}}^2(p_{\mathrm{T}}^2 + p_{\mathrm{T,min}}^2)}{\alpha_{\mathrm{S}}^2(p_{\mathrm{T}}^2)} \quad \text{with parameter} \quad p_{\mathrm{T,min}} \approx 2 \, \mathrm{GeV}$$

Further features

- impact parameter dependence (typically double Gaussian)
 - $\stackrel{\leadsto}{}$ central collisions more active, \mathscr{P}_n broader than Poissonian
- use rescaled PDFs taking into account used up momentum
 - $\rightarrow \mathscr{P}_n$ narrower than Poissonian
- attach parton showers & hadronisation

The underlying event: comparison to TEVATRON data.

 N_{charged} vs. $p_{\mathrm{T,jet1}}$ in different $\Delta\phi$ regions w/r/t the leading jet

From partons to hadrons: hadronisation models.

Aim: dynamical hadronisation of multi-parton systems

- capture main non-perturbative aspects of QCD
- universality
 - robust extrapolation to new machines, higher energies
 - → should not depend on specifics of the hard process
- model (un)known decays of (un)known hadrons
 - hadron multiplicities, meson/ baryon ratios
 - → decay branching fractions
 - hadron-momentum distibutions

Lund-string fragmentation

implemented in PYTHIA

cluster-hadronisation model

implemented in Herwig & Sherpa

From partons to hadrons: cluster-hadronisation model.

- Cluster-formation model
- Cluster-decay model

Features

→ preconfinement

colour-neighbouring partons after shower tend to be close in phase space; independent of hard process; ~ universal invariant mass distribution

- parametrisation of primaryhadron generation
- → locality and universality

cluster-hadronisation model

implemented in Herwig & Sherpa

From partons to hadrons: cluster-formation model.

Result after the parton shower: a colour-ordered parton list

- parton masses
 - → constituent masses
- enforced gluon splitting

$$g \rightarrow q\bar{q}, g \rightarrow q_1q_2\bar{q}_1\bar{q}_2$$

colour-singlet clusters formed

→ independent of centre-of-mass energy of the hard process (preconfinement)

From partons to hadrons: cluster-decay model.

Ansatz: cluster mass \Rightarrow transition type

- cluster mass in hadron regime
 - $^{\sim}$ 1-body decay $\mathscr{C} \to \mathscr{H}$
- else 2-body decay $\mathscr{C} \to \mathscr{X}\mathscr{Y}$
 - o determine $M_{\mathscr X}$ and $M_{\mathscr Y}$
 - $\stackrel{\sim}{}$ select channel accordingly $\mathscr{X},\mathscr{Y}=\mathscr{C}$ or \mathscr{H}

kinematics \Downarrow flavour content

Point of reference: LEP $(a)\sqrt{s} = 91.2 \text{ GeV}.$

particle multiplicities: HERWIG++

Particle	Measured LEP	Herwig++
All Charged	20.924 ± 0.117	20.814
$\overline{\gamma}$	21.27 ± 0.6	22.67
π^0	9.59 ± 0.33	10.08
$\rho(770)^{0}$	1.295 ± 0.125	1.316
π^{\pm}	17.04 ± 0.25	16.95
$ ho$ (770) $^{\pm}$	2.4 ± 0.43	2.14
η	0.956 ± 0.049	0.893
$\omega(782)$	1.083 ± 0.088	0.916
η' (958)	0.152 ± 0.03	0.136
κ^0	2.027 ± 0.025	2.062
K*(892) ⁰	0.761 ± 0.032	0.681
$K^*(1430)^0$	0.106 ± 0.06	0.079
κ^{\pm}	2.319 ± 0.079	2.286
K*(892) [±]	0.731 ± 0.058	0.657
$\phi(1020)$	0.097 ± 0.007	0.114
р	0.991 ± 0.054	0.947
Δ^{++}	0.088 ± 0.034	0.092
Σ^-	0.083 ± 0.011	0.071
Λ	0.373 ± 0.008	0.384
Σ^0	0.074 ± 0.009	0.091
Σ^+	0.099 ± 0.015	0.077
Σ (1385) $^{\pm}$	0.0471 ± 0.0046	0.0312*
ΞÒ	0.0262 ± 0.001	0.0286
$\Xi(1530)^{0}$	0.0058 ± 0.001	0.0288*
Ω –	0.00125 ± 0.00024	0.00144

[Gieseke et al. JHEP 0402 (2004) 005]

event shapes: SHERPA

$$T = \max_{|n|=1} \frac{\sum_{i} n \cdot p_{i}}{\sum_{i} |p_{i}|}$$

QCD at TeV energies.

Direct multijet production @ LHC.

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

multijet-production rates well under control

Direct multijet production @ LHC.

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

- → more differential observables can discriminate calculations / parameter choices
- $\stackrel{\sim}{}$ matrix-element based approaches superior for high- $p_{\rm T}$ jets

Direct multijet production @ LHC.

ATLAS Z(\rightarrow e⁺e⁻/ μ ⁺ μ ⁻) + jets analysis [G. Aad et al. Phys. Rev. D 85 (2012) 032009]

Indirect multijet sensitivity @ LHC.

CMS diphoton analysis [S. Chatrchyan et al. JHEP 1201 (2012) 133]

preliminary NNLO

Summary of 2nd lecture.

Monte-Carlo generators: stochastic simulation of exclusive events

Precise predictions for the Standard Model

- multileg tree-level & one-loop matrix elements
- sophisticated parton-shower & matching algorithms

Flexible New Physics simulations

- quick and easy implementation of new ideas
- generic search strategies

QCD is a very predictive theory plenty of interesting phenomena

QCD Monte Carlos are predictive tools for LHC physics

