

Detector Physics

Jörn Grosse-Knetter

HASCO Summer School 2022

Basic concepts

- Interaction of particles with matters
- Ionisation detectors
- Light-based detectors
- Tracking
 - Momentum and vertex measurement
- Calorimeters
 - Electromagnetic and hadronic showers
- Overall concepts

Interaction of particles with matters

Energy Loss: Charged Particles (1)

(Heavy) charged particles:

- Interact with shell electrons → energy is transferred – or lost by inc. particle: dE/dx
- dE/dx can be described by Coulomb interaction and simple kinematics
 - → Bethe-Bloch-mechanism
- Transferred energy can excite or ionise medium
 - → charge or light (from de-excitation) for detection

Energy Loss: Charged Particles (2)

- dE/dx: steeply falling towards p/M~3...4
- Modest rise afterwards → highly relativistic particles very similar in dE/dx

Energy Loss: Charged Particles (3)

• dE/dx: identical in p/M, but different vs momentum → allows particle ID if momentum is known

"Light" charged particles: e[±]

- Excitiation/ionisation loss similar to Bethe-Bloch, but corrections due to scattering partners with same mass
- Additional effect: Bremsstrahlung
 - Emission of photon in field of nucleus
 - $dE/dx \propto Z^2/m^2 \cdot E \rightarrow dominant only for low mass m$ and high energy E, need high-Z material
 - Def. of X₀ (material-dependent radiation length):
 - $dE/dx := E/X_0$

- Multiple scattering of charged particles on medium without energy transfer
 - No measurable signal

- But: deflection of particle → disturbance that needs

to be considered

 Mostly change in direction described by angle θ_0 (1- σ -value of distribution):

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \left[1 + 0.038 \ln \left(x/X_0 \right) \right]$$

- Most processes involving photons absorb them (in contrast to dE/dx as before):
 - Photo effect: photo electron is released with $E_e \sim E_v$
 - Compton effect: $E_{\nu} \gg$ binding energy \rightarrow electron quasi-free → scattering
 - Pair creation: $E_{\gamma} > 2m_e$ allows $\gamma \rightarrow e^{+-}e^{-}$ in the field of a nucleus
 - Process similar to Bremsstrahlung
 - \rightarrow mean free path: 9/7 X₀
 - Relevant process at high E_γ → in HEP

Absorption of Photons (2)

Absorption cross-section in carbon

Absorption cross-section in lead

- None of the above applies to neutrons
 - Can measure it indirectly: knocking off nuclei, measure charged object
 - Ideally: scattering partner of same mass → p
 - → use organic material (significant H-content)
- p,n,π,K at high energies: additional processes possible
 - Creation of further hadrons
 - Nuclear interactions → new γ, n, p (+nuclear fragments)
 - Avg. had. interaction length $\lambda \gg X_0$

Ionisation detectors

Ionisation Detectors: Concept

- General idea of ionisation detectors:
 - Deposited energy E_{dep} causes ionisation, for which on avg. energy W is needed → release of E_{dep}/W charge carriers
 - Apply electric field to extract and read charge pulse
 - Typical media:
 - Gas: e-ion pairs, W ~ few 10eV
 - Semiconductor: e-hole pairs, W ~ few eV
 - Bethe-Bloch signal ∝ density →
 - Gas: too little charge for meas. → amplification
 - Semiconductors: charge detectable, but competes with intrinsic charge carriers

Gas-filled Det.: Field Configuration

- Internal charge amplification achieved by high electric field
 - → need small or close electrodes
 - Small read-out segments, e.g. wires
 - Specific perforated foils
- Operate in proportional mode → can measure dE/dx

grooves

Gas Amplification: Example

- Perforated foil supported by pillars
- Pixel electrodes beneath
 - → amplification and read-out separated

Pixel pad

Semiconductor: pn-junction

- pn-junction under reverse bias:
 - Extract electrons or holes present from doping
 - Provides electric field needed for charge drift and read-out

Segmented Semiconductors

Segmenting pn-junctions → position sensitivity

 NB: implants isolated from each other due to depletion zone around junction

- 1:1 connection sensor segment to read-out cell
 - → bump bonding

- Integrate detection into read-out chip: one device for sensing, amplification and digitisation
 - Based on standard electronics technology (CMOS transistors)
 - Add epitaxial Si layer (low doping) on top of highly doped layer

- Layer with MOS transistors and collecting implant on top
- e/h trapped in epi-layer to due doping differences → collected by diffusion into depletion zone → measurement → direct connection to amplifier

Light-based Detectors: Scintillation & Čerenkov Radiation

Excitation from

- Bethe-Bloch (chg. Particles)
- Photo-electrons(→ detection of gammas)
- Neutrons knocking off protons

results in deexcitation → scintillation light Particle travels with speed v>c_m=c/n (speed of light in medium) → light is emitted

destructive interference Mach-like shock wave → constructive interference

Light Readout: PMT, APD

Alternative to PMT: silicon pn-junction with amplification (avalanche photo diode, APD)

Tracking

- Measure trajectory of charged particles
 - Measure several points along the track ("hit") and fit curves to the points (helix)
- Use the track curvature in magnetic field to determine the particle momentum and charge
- Extrapolate tracks to the point of origin
 - Determine positions of primary vertices and identify collision vertex
 - Find secondary vertices from decay of long-lived particles (lifetime tagging)

Tracking Concepts

Single Point Resolution (1)

- Simple case: only single hit segment
- Default hit position: centre of segment
- Reconstruction error ("residual") varies with true hit position
- Flat hit probability: residual distribution is a box diagram

- Reconstruction error = std. deviation defined by probability distribution
- Normalised box distribution centred around 0 with width p:

$$\sigma_x = \sqrt{\frac{1}{p} \int_{-p/2}^{p/2} x^2 dx} = \frac{p}{\sqrt{12}}$$

- Worst possible resolution with pure binary readout
 - Value improves if several segments are hit per track: weighting with pulse height information

 Simplest method: linear interpolation, using the charge deposited in the edge pixels of the cluster:

$$\Omega = \frac{q_{last}}{q_{first} + q_{last}}$$

 Hit position: reconstructed from geometrical centre of the cluster and Ω:

$$x = x_{centre} + \Delta_x \left(\Omega_x - \frac{1}{2} \right)$$

• Δ_x calibrated from data (plotting residual vs. charge sharing)

- Resolution $< p/\sqrt{12}$ if using drift time:
 - Precise measurement of arrival time of charge signal
 - Known electric field → drift velocity $\vec{v} = \mu E$ is known
 - → determine distance of ionisation location from electrode
 - Precision driven by timing resolution and smearing due to diffusion

- Simple example: straight line fit (a track is of course more complex)
 - Measured positions y_i with single point resolution as before
 - χ^2 minimisation with $y_n = a + bx_n$: $\chi^2 = \sum_{n=0}^N \frac{(y_n a bx_n)^2}{\sigma^2}$
 - Errors on a, b from covariance matrix
- Similar approach for real tracks → allows error calculation on track parameters

Bending in B-field

$$\rightarrow$$
 p_T (GeV/c) = 0.3·B(T)·R(m)

 Determine curvature from fit to N hit points → resolution in p_T?

described by sagitta s s $s = R(1 - \cos \alpha)$ 2α

- Error calculation by Gluckstern: approximate curved track by parabolic fit
 - Points on track (x,y) with $y = \frac{1}{2} k x^2$
 - From picture: $s = \frac{1}{2} k (L/2)^2 \rightarrow R = k^{-1}$

$$\rightarrow p_T = 0.3 \cdot B/k \rightarrow \sigma_{pT} = 0.3 \cdot B \cdot \sigma_k/k^2 = p_T^2/0.3 \cdot B \cdot \sigma_k$$

- For large N and equal errors σ_{point} on spatial hit position:

$$\sigma_k = \frac{\sigma_{\text{point}}}{L^2} \sqrt{\frac{720}{N+4}}$$

$$\rightarrow \frac{\sigma_{pT}}{p_T} = \frac{p_T \sigma_{\text{point}}}{0.3BL^2} \sqrt{\frac{720}{N+4}}$$

Momentum: Multiple Scattering

- $p_T = 0.3 \cdot B \cdot R =$ $0.3 \cdot B \cdot L/(2\alpha)$
- $\sigma_{\Theta} \propto 1/p_T$ from MS translates into σ_{α}

$$\sigma_{pT}^{MS} = \frac{0.3 BL}{2 \alpha^2} \sigma_{\alpha} \rightarrow \frac{\sigma_{pT}^{MS}}{p_T} = \frac{27.2 \text{ MeV}}{0.3 B \sqrt{L X_0}}$$

const. in p_T

 Adds in quadrature to intrinsic resolution → MS dominates at low p_T , intrins. part at high p_T

Sign of charge is defined by the sign of 1/R=k:

$$Q = +1 \quad \frac{1}{R} > 0 \qquad \qquad Q = -1 \quad \frac{1}{R} < 0$$

- Precision on k from Gluckstern: $\sigma_k = \frac{\sigma_{\text{point}}}{I^2} \sqrt{\frac{720}{N+4}}$
- Requiring 3σ identification → upper lim. in p:

$$\left|\frac{1}{R}\right| > 3 \sigma_k = \frac{3 \sigma_{\text{point}}}{L^2} \sqrt{\frac{720}{N+4}} \Rightarrow p < \frac{0.3 B L^2}{3 \sigma_{\text{point}}} \sqrt{\frac{N+4}{720}}$$

Lifetime Tagging

 Tracks from secondary vertex have significant impact parameter with respect to primary vertex

Example of a fully reconstructed event from LHCb with primary, secondary and tertiary vertex

 Simple case: Two tracking layers at radii r₁ and r_2 , extrapolation to r = 0 (intercept theorem) – if uncertainty in layer 1 only:

$$\sigma_{d_0} = \frac{r_2 \sigma_1}{r_2 - r_1}$$

similarly from layer 2 only:

$$\sigma_{d_0} = \frac{r_1 \sigma_2}{r_2 - r_1}$$

Added in quadrature:

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{\left(r_2 - r_1\right)^2}$$

 Additional contribution due to multiple scattering = 40

$$\sigma_i \rightarrow \sigma_i \oplus \Delta r \sigma_\theta$$

with σ_{Θ} as for momentum

Results in

$$\sigma_{d_0} = \frac{\sqrt{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}}{r_2 - r_1} \oplus \frac{\text{const.}}{p} \sqrt{\frac{x}{X_0}}$$

- Track fit assumes a known position of detector elements
 - Typ. have systematic shifts due to distortion in mech. structures (twist, sagging, bending, ...)
 - Impact on momentum and vertex reconstruction
- Correct for "broken" tracks → alignment

$$\sigma_{d_0} = \frac{\sqrt{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}}{r_2 - r_1} \oplus \frac{\text{const.}}{p} \sqrt{\frac{x}{X_0}} \qquad \frac{\sigma_{pT}}{p_T} = \frac{p_T \sigma_{pt}}{0.3 B L^2} \sqrt{\frac{720}{N+4}} \oplus \frac{27.2 \,\text{MeV}}{0.3 B \sqrt{L X_0}}$$

Tracker design:

- Vertex resolution: inner radius as small as possible with best point resolution, outer radius as large as possible
- Momentum resolution: many points and long lever arm L
- Both: as little material as possible
- Limit 1 (Inner radius): Beam pipe, track density, radiation damage
- Limit 2 (Outer radius): Cost

Calorimeters

- Alternating Bremsstrahlung and pair creation
- Every ~X₀: doubling of no. particles N, ~halves energy per particle → N ∝ incid. Energy E_i

- Need to drive shower process and at the same time measure shower particles
- Measurement via ionisation charge or (scitillation/Čerenkov/...) light:
 - Signal is proportional to "track length" ~ N
 - With N ∝ E_i → Signal ∝ E_i
- Shower scales
 - Longitudinally with X₀, but only logarithmically in E_i
 - Laterally: scales with R_M ~ ZX₀

absorber & detector: the same

GEORG-AUGUST-UNIVERSITÄT

separate absorber and detector

sampling

Homogeneous

- Material:
 - Scintillators (crystals)
 - Čerenkov-Radiators
 - (Semiconductors)
 - (Liquid gases)
- Good Resolution
- Small X₀: difficult
- Segmentation?

Sampling

- altern. detector material:
 - Scintillators (plastic)
 - (Liquid)gases
 - (Semiconductors)
 - + Absorber:
 - Fe, Pb, W, U
- Compact, easily segmented
- Poorer resolution

Intrinsic ("stochastic") fluctuations:

- Shower processes have intrinsic fluctuations (QM) nature of processes) → N follows Poisson statistics
- $\rightarrow \sigma_N = \sqrt{N}$
- With N \propto E \rightarrow $\sigma_{\rm E} \propto \sqrt{\rm E}$ or $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$
- Sampling fluctuations
 - Homogeneous calorimeters: observe entire signal, sampling: only a fraction is observed → poorer stat.
 - Absorber thickness d → observed signal ∝ E/d →

$$\frac{\sigma_E}{E} \propto \sqrt{\frac{d}{E}}$$

Sampling Fluctuations

- Similar to sampling effect, also $\frac{o_E}{F} \propto \frac{1}{\sqrt{F}}$:
 - Missing (fluctuating) parts of signal due to leakage effects
 - Intrinsic fluctuations in measured signal (Landau and path length fluctuation) - typ. "thin" media like gas
- Noise from read-out (electronics, PMT, ...)
 - Size of noise independent of shower → const. in E $\rightarrow \frac{\sigma_E}{F} \propto \frac{1}{F}$
- Signal ∝ E must be calibrated → limited precision scales with E, leads to $\frac{\sigma_E}{E} \propto \text{const.}$

In total, we get:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

dominating term dep. on calor. type:

- Similar to em shower, hadronic processes lead to a shower of particles → same concepts as before (also resolution)
- Generally, much larger due to $\lambda \gg X_0$, no good homogenous calorimeter \rightarrow only sampling
- Additional complication:
 - em showers are simple: just γ, e[±]
 - Hadron showers are more complex:
 - Pure hadronic part, visible (π^{\pm} , p, ...)
 - Electromagnetic (large fraction due to e.g. $\pi^0 \rightarrow \gamma \gamma$)
 - Invisible (n, nuclear fragments)
 - Escaped (v)

Content of a had. Shower (1)

Content of a had. Shower (2)

- Composition varies with energy → non-linearity
- Stat. variation in composition (shown by "error bars")
 - → fluctuations in resolution

- Net result: different response from calorimeter to electromagnetic shower, e.g. from e, and to hadronic shower, e.g. from π^{\pm}
- Ratio of response often noted as e/h (>1 w/o any further action)
- Mitigation: compensation to achieve e/h=1
 - Enhance h signal, e.g. by recovering n-contribution
 - Plastic scintillators well suited for n detection
 - Tune effect by thickness ratio absorber/plastic → also affects resolution due to sampling effect
 - Reduce e-signal, e.g. by identifying "compact" shower and post-processing

Hardware Compensation

- Tuning e/h and the resolution by adjusting absorber thickness for fixed plastic scintillator (PMMA) thickness
- Depends on absorber → different nuclear processes

Software Compensation

- Aim: identify em subshowers → need a fine segmentation of calorimeter
- Identify cells with high energy density and reweight cell energy E_i:
 E_i' = E_i·(1-C·E_i)
- Parametrise C as function of (unweighted) jet energy

- Inner part: tuned for em showers ($\lambda \gg X_0$)
 - Homogeneous: only few crystals with useful X₀ available
 - Sampling: variety of material
 - Choice drives resolution, but also other requ.: readout speed, radiation hardness,...
 - Segmentation: separation of individual particles, e.g. photons from $\pi^0 \rightarrow \gamma \gamma$
- Outer part: tuned for had. showers
 - Size is critical: avoid leakage problems
 - Decide if sw/hw-compensation is required → e.g. fine segmentation

Overall Concepts

Multi-layer HEP Detector

Complementary Measurements

- Tracking: measure momentum p
- Relative resolution degrades with rising p

- Calorimeter: measure energy E
- Relative resolution improves with rising E

- Inner detector layers influence outer layers
 - Multiple scattering: influence on tracking itself, but also on track-calo. matching
 - Possible photon-conversion and Bremsstrahlung → calorimeter doesn't measure "original" e, y
 - → keep material as low as possible
- Material budget is not just the pure detector (gas or silicon): cables, cooling pipes, support structures,... contribute as well

- Muons penetrate calorimeter layers → detector in outermost layer
- Independent tracking system
 - Magnetic field: return yoke from inner tracking system (CMS), or additional magnets (ATLAS)
 - Complementary momentum measurement
 - Adjust for energy

 loss in calorimeter:
 several processes, contri bution is energy dependent

- Combine measurement with inner tracking system:
 - Each provides independent momentum measurement → reduce syst. error
 - More hits and larger L improves resolution

Real Detectors

Real Detectors

