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Overview

 Basic concepts
 Interaction of particles with matters
 Ionisation detectors
 Light-based detectors

 Tracking
 Momentum and vertex measurement

 Calorimeters
 Electromagnetic and hadronic showers

 Overall concepts
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Interaction of particles with matters
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Energy Loss: Charged Particles (1)

(Heavy) charged particles:
 Interact with shell electrons → energy is 

transferred – or lost by inc. particle: dE/dx
 dE/dx can be described by Coulomb interaction 

and simple kinematics

→ Bethe-Bloch-mechanism
 Transferred energy can excite or ionise medium 

→ charge or light (from de-excitation) for 
detection
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Energy Loss: Charged Particles (2)
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● dE/dx: steeply falling towards p/M~3...4
● Modest rise afterwards → highly relativistic particles very similar in 
dE/dx
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Energy Loss: Charged Particles (3)

● dE/dx: identical in p/M, but different vs momentum → allows 
particle ID if momentum is known
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Energy Loss of e±

“Light” charged particles: e±

 Excitiation/ionisation loss similar to Bethe-
Bloch, but corrections due to scattering partners 
with same mass

 Additional effect: Bremsstrahlung
 Emission of photon in field of nucleus
 dE/dx ∝ Z2/m2·E → dominant only for low mass m 

and high energy E, need high-Z material
 Def. of X0 (material-dependent radiation length):

dE/dx :=  E/X0 
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Bremsstrahlung
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Multiple Scattering
 Multiple scattering of charged particles on 

medium without energy transfer
 No measurable signal
 But: deflection of particle → disturbance that needs 

to be considered
 Mostly change in direction described 

by angle θ0 (1-σ-value of distribution):

θ0=
13 . 6 MeV

βcp z √x /X0 [1+0. 038ln (x /X0) ]
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Absorption of Photons (1)

 Most processes involving photons absorb them 
(in contrast to dE/dx as before):
 Photo effect: photo electron is released with Ee~Eγ

 Compton effect: Eγ ≫ binding energy → electron 
quasi-free → scattering

 Pair creation: Eγ > 2me allows γ → e+- e- in the field 
of a nucleus

 Process similar to Bremsstrahlung 
→ mean free path: 9/7 X0

 Relevant process at high Eγ → in HEP
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Absorption of Photons (2)

Absorption cross-section 
in carbon

Absorption cross-section 
in lead
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Hadronic Interactions

 None of the above applies to neutrons
 Can measure it indirectly: knocking off nuclei, 

measure charged object
 Ideally: scattering partner of same mass → p 

→ use organic material (significant H-content)
 p,n,π,K at high energies: additional processes 

possible
 Creation of further hadrons
 Nuclear interactions → new γ, n, p (+nuclear 

fragments)
 Avg. had. interaction length λ ≫ X0
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Ionisation detectors
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Ionisation Detectors: Concept

 General idea of ionisation detectors:
 Deposited energy Edep causes ionisation, for which 

on avg. energy W is needed → release of Edep/W 
charge carriers

 Apply electric field to extract and read charge pulse
 Typical media:

 Gas: e-ion pairs, W ~ few 10eV
 Semiconductor: e-hole pairs, W ~ few eV

 Bethe-Bloch signal ∝ density → 
 Gas: too little charge for meas. → amplification
 Semiconductors: charge detectable, but competes with 

intrinsic charge carriers
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Gas-filled Det.: Field Configuration

 Internal charge 
amplification 
achieved by high 
electric field

→ need small or 
close electrodes
 Small read-out 

segments, e.g. wires
 Specific perforated 

foils
 Operate in 

proportional mode → 
can measure dE/dx
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Gas Amplification: Example
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Pixel pad
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Eampl ~ 100 kV/cm

 Perforated foil supported by pillars
 Pixel electrodes beneath

→ amplification and read-out separated
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Semiconductor: pn-junction

 pn-junction under reverse bias:
 Extract electrons or holes present from doping
 Provides electric field needed for charge drift and 

read-out
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Segmented Semiconductors

Pixel electrodes

Detector volume (substrate)

Backside electrode Strip electrodes

 Segmenting pn-junctions → position sensitivity

 NB: implants isolated from each other due to 
depletion zone around junction
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Pixel Detector Read-out

 1:1 connection sensor segment to read-out cell 
→ bump bonding
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Active Pixel Detectors

 Integrate detection into read-out chip: one 
device for sensing, amplification and digitisation
 Based on standard 

electronics technology 
(CMOS transistors)

 Add epitaxial Si layer 
(low doping) on top of 
highly doped layer

 Layer with MOS transistors and collecting implant 
on top

 e/h trapped in epi-layer to due doping differences → 
collected by diffusion into depletion zone → 
measurement → direct connection to amplifier
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Light-based Detectors:
Scintillation & 

Čerenkov Radiation
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Scintillation

 Excitation from
 Bethe-Bloch (chg. 

Particles)
 Photo-electrons 

(→ detection of 
gammas)

 Neutrons 
knocking off 
protons

results in de-
excitation → 
scintillation light
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Čerenkov Radiation

 Particle travels with speed v>cm=c/n (speed of 
light in medium) → light is emitted

v ≪ cm
v > cm

destructive 
interference

Mach-like shock wave →  

constructive interference
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Light Readout: PMT, APD

(in-)organic material  
scintillation or 
Čerenkov light

Photo multiplier tube (PMT) 
 signal amplification

Light guide  
connection to PMT

Alternative to PMT: silicon 
pn-junction with 
amplification (avalanche 
photo diode, APD)
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Tracking
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Aim of Trackers

 Measure trajectory of charged particles
 Measure several points along the track (“hit”) and fit 

curves to the points (helix)
 Use the track curvature in magnetic field to 

determine the particle momentum and charge
 Extrapolate tracks to the point of origin

 Determine positions of primary vertices and identify 
collision vertex 

 Find secondary vertices from decay of long-lived 
particles (lifetime tagging)
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Tracking Concepts
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Single Point Resolution (1)

 Simple case: only single 
hit segment

 Default hit position: centre 
of segment

 Reconstruction error 
(“residual”) varies with 
true hit position

 Flat hit probability: 
residual distribution is a 
box diagram

--
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+

+
+

Hit

p

p/2

-p/2 xtrue
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Δx
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Single Point Resolution (2)

 Reconstruction error = std. deviation defined by 
probability distribution

 Normalised box distribution centred around 0 
with width p:

 Worst possible resolution with pure binary 
readout
 Value improves if several segments are hit per 

track: weighting with pulse height information

σ x=√ 1
p ∫

− p/2

p/2

x2 dx= p
√12
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Pulse Height Weighting

 Simplest method: linear 
interpolation, using the 
charge deposited in the 
edge pixels of the cluster:

 
 Hit position: reconstructed 

from geometrical centre of 
the cluster and Ω:

 Δx calibrated from data 
(plotting residual vs. 
charge sharing)

Ω=
q last

q first +q last

x=xcentre +Δx(Ωx−
1
2 )
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Drift detectors

 Resolution < p/√12 if using drift 
time:
 Precise measurement of arrival 

time of charge signal
 Known electric field → drift 

velocity v = μ E is known
→ determine distance of 
ionisation location from
electrode

 Precision driven by timing 
resolution and smearing           
due to diffusion

drift pathP
os

iti
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n
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From Hits to a Track

 Simple example: straight line fit                         
(a track is of course more complex)

 Measured positions yi with single point resolution as 
before

 χ2 minimisation with yn = a + bxn :
 Errors on a, b from covariance matrix

 Similar approach for
real tracks → allows
error calculation on track
parameters

x0                  xn                   xN  

χ2=∑
n= 0

N ( yn−a−b xn)
2

σ n
2
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Momentum Resolution

 Bending in B-field 

→ pT (GeV/c) = 0.3·B(T)·R(m)
 Determine curvature from fit to N hit points → 

resolution in pT?

L

described by sagitta s
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Gluckstern Formula

 Error calculation by Gluckstern: approximate 
curved track by parabolic fit
 Points on track (x,y) with y = ½ k x2

 From picture: s = ½ k (L/2)2 → R = k-1

  → pT = 0.3·B/k → σpT = 0.3·B·σk/k2= pT/0.3·B·σk

 For large N and equal errors σpoint on spatial hit 
position:

 

            → 

σ k=
σ point

L2 √ 720
N+4

2

2

σ pT

pT
=

pT σ point

0.3 B L2 √ 720
N+4
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Momentum: Multiple Scattering

 pT = 0.3·B·R =    
0.3 ·B·L/(2α)

 σΘ ∝ 1/pT from MS 
translates into σα

 

                 const. in pT

 Adds in quadrature to 
intrinsic resolution → 
MS dominates at low pT, 
intrins. part at high pT

σ pT
MS=0.3BL

2α2 σ α →
σ pT

MS

pT
=27.2MeV

0.3 B√L X0

α
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Sign of Charge

 Sign of charge is defined by the sign of 1/R=k:

 

 Precision on k from Gluckstern:
 Requiring 3σ identification → upper lim. in p:

σ k=
σ point

L2 √ 720
N+4

|1
R
|>3 σk=

3 σpoint

L2 √ 720
N+4

⇒ p< 0.3 B L2

3σ point √ N+4
720



28 July 2022 Detector Physics - Jörn Grosse-Knetter 37

Primary vertices
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Lifetime Tagging

• Tracks from secondary 
vertex have significant 
impact parameter with 
respect to primary vertex

• Example of a fully 
reconstructed event from 
LHCb with primary, 
secondary and tertiary 
vertex
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Vertex Resolution

 Simple case: Two tracking layers at radii r1 and 
r2, extrapolation to r = 0 (intercept theorem) – if 
uncertainty in layer 1 only:

 Added in quadrature:

r1 r2

similarly from layer 2 only:

σ d0
=

r2 σ 1

r2−r1

σ d0

2 =
r2

2σ 1
2 +r1

2 σ2
2

(r2−r1)
2

σ d0
=

r1 σ 2

r2−r1
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Vertex: Multiple Scattering

 Additional contribution due 
to multiple scattering

with σΘ as for      
momentum

 Results in

σ i→σ i⊕Δr σθ

σ d0
=
√r2

2 σ 1
2 +r1

2 σ2
2

r 2−r1
⊕const.

p √ x
X0



28 July 2022 Detector Physics - Jörn Grosse-Knetter 41

(Mis-)Alignment
 Track fit assumes a known position of detector 

elements
 Typ. have systematic shifts due to distortion in 

mech. structures (twist, sagging, bending, …)
 Impact on momentum and vertex reconstruction

 Correct for “broken” tracks → alignment
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• Tracker design:
 Vertex resolution: inner radius as small as possible with best 

point resolution, outer radius as large as possible
 Momentum resolution: many points and long lever arm L
 Both: as little material as possible
 Limit 1 (Inner radius): Beam pipe, track density, radiation 

damage
 Limit 2 (Outer radius): Cost

Tracker Design

σ pT

pT
=

pT σ pt

0.3 B L2 √ 720
N+4

⊕27.2 MeV
0.3 B√L X0

σ d0
=
√r2

2 σ 1
2 +r1

2 σ2
2

r 2−r1
⊕const.

p √ x
X0



28 July 2022 Detector Physics - Jörn Grosse-Knetter 43

Calorimeters
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Electromagnetic Shower (1)

 Alternating Bremsstrahlung and pair creation
 Every ~X0: doubling of no. particles N, ~halves 

energy per particle → N ∝ incid. Energy Ei
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Electromagnetic Shower (2)

 Need to drive shower process and at the same 
time measure shower particles

 Measurement via ionisation charge or 
(scitillation/Čerenkov/…) light:
 Signal is proportional to “track length” ~ N
 With N ∝ Ei→ Signal ∝ Ei

 Shower scales 
 Longitudinally with X0, but only logarithmically in Ei

 Laterally: scales with RM ~ ZX0
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Longitudinal Profile

t in Pb (X0)

Shower proceeds until Ee<Ec (ionisation takes over)
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Transverse Profile

1GeV

1TeV
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Overall Profile



28 July 2022 Detector Physics - Jörn Grosse-Knetter 49

Calorimeter Types (1)
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absorber & detector: the same         separate absorber and detector
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Calorimeter Types (2)

Homogeneous
 Material:

 Scintillators (crystals)

 Čerenkov-Radiators
 (Semiconductors)

 (Liquid gases)

 Good Resolution

 Small X0: difficult

 Segmentation?

Sampling
 altern. detector 

material:
 Scintillators (plastic)

 (Liquid)gases

 (Semiconductors)

+ Absorber:
 Fe, Pb, W, U

 Compact, easily 
segmented

 Poorer resolution
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Energy Resolution (1)

 Intrinsic (“stochastic”) fluctuations:
 Shower processes have intrinsic fluctuations (QM 

nature of processes) → N follows Poisson statistics
 → σN = √N
 With N ∝ E → σE ∝ √E or

 Sampling fluctuations
 Homogeneous calorimeters: observe entire signal, 

sampling: only a fraction is observed → poorer stat.
 Absorber thickness d → observed signal  ∝ E/d → 

σ E

E
∝ 1
√E

σ E

E
∝√ d

E
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Sampling Fluctuations

d (mm1/2)
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Energy Resolution (2)

 Similar to sampling effect, also            :
 Missing (fluctuating) parts of signal due to leakage 

effects
 Intrinsic fluctuations in measured signal (Landau 

and path length fluctuation) – typ. “thin” media like 
gas

 Noise from read-out (electronics, PMT, …)
 Size of noise independent of shower → const. in E

→ 
 Signal ∝ E must be calibrated → limited 

precision scales with E, leads to 

σ E

E
∝ 1
√E

σ E

E
∝ 1

E

σ E

E
∝const.
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Leakage Effects

Loss (%)


E/

E
 (%

)
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Energy Resolution (3)

Pb-Gas Kalor.

PWO Kalor.

In total, we get:                                dominating term dep. on  
                                                                   calor. type: 

total E/E
a = stochastic, 2.7%
b = calib., sig. non-unif., 5 ‰
c = noise, < 200 MeV

E
cb

E
a

E
E 


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Hadron Showers
 Similar to em shower, hadronic processes lead 

to a shower of particles → same concepts as 
before (also resolution)

 Generally, much larger due to λ ≫ X0, no good 
homogenous calorimeter → only sampling

 Additional complication:
 em showers are simple: just γ, e±

 Hadron showers are more complex:
 Pure hadronic part, visible (π±, p, …)
 Electromagnetic (large fraction due to e.g. π0→ γγ) 
 Invisible (n, nuclear fragments)
 Escaped (ν)
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Content of a had. Shower (1)
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Content of a had. Shower (2)

 Composition varies with energy → non-linearity
 Stat. variation in composition (shown by “error bars”) 

→ fluctuations in resolution
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Compensation

 Net result: different response from calorimeter 
to electromagnetic shower, e.g. from e, and to 
hadronic shower, e.g. from π±

 Ratio of response often noted as e/h (>1 w/o 
any further action)

 Mitigation: compensation to achieve e/h=1
 Enhance h signal, e.g. by recovering n-contribution

 Plastic scintillators well suited for n detection
 Tune effect by thickness ratio absorber/plastic → also 

affects resolution due to sampling effect
 Reduce e-signal, e.g. by identifying “compact” 

shower and post-processing
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Hardware Compensation

● Tuning e/h and the resolution by adjusting absorber thickness for 
fixed plastic scintillator  (PMMA) thickness
● Depends on absorber → different nuclear processes
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Software Compensation

 Aim: identify em sub-
showers → need a fine 
segmentation of 
calorimeter

 Identify cells with high 
energy density and re-
weight cell energy Ei:
Ei' = Ei·(1-C·Ei)

 Parametrise C as 
function of (un-
weighted) jet energy 
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Calorimeter Design
 Inner part: tuned for em showers (λ ≫ X0)

 Homogeneous: only few crystals with useful X0 
available

 Sampling: variety of material
 Choice drives resolution, but also other requ.: read-

out speed, radiation hardness,…
 Segmentation: separation of individual particles, 

e.g. photons from π0→ γγ
 Outer part: tuned for had. showers

 Size is critical: avoid leakage problems
 Decide if sw/hw-compensation is required → e.g. 

fine segmentation
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Overall Concepts
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Multi-layer HEP Detector
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Complementary Measurements

 Tracking: measure 
momentum p

 Relative resolution 
degrades with rising p

 Calorimeter: measure 
energy E

 Relative resolution 
improves with rising E

total E/E
a = stochastic, 2.7%
b = calib., sig. non-unif., 5 ‰
c = noise, < 200 MeV
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Material Budget

 Inner detector layers influence outer layers
 Multiple scattering: influence on tracking itself, but 

also on track-calo. matching
 Possible photon-conversion and Bremsstrahlung → 

calorimeter doesn't measure “original” e, γ
→ keep material as low as possible

 Material budget is not 
just the pure detector 
(gas or silicon): cables, 
cooling pipes, support 
structures,… contribute
as well
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Muon Detectors (1)

 Muons penetrate calorimeter layers → detector 
in outermost layer

 Independent tracking system
 Magnetic field: return yoke from inner tracking 

system (CMS), or additional magnets (ATLAS)
 Complementary momentum

measurement
 Adjust for energy 

loss in calorimeter: 
several processes, contri-
bution is energy dependent
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Muon Detectors (2)

 Combine measurement with inner tracking 
system:
 Each provides independent momentum 

measurement → reduce syst. error
 More hits and larger L improves resolution

ba
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ps
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Real Detectors
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Real Detectors

Thanks for your 
attention!
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