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Fixed target e.g. SHIP @ CERN SPS

Simpler design/implementation
→ cost!

Potential for very high
intensity beams & large
numbers of collissions

Collider e.g. LHC @ CERN

More complex design
+ many extra challenges

LAB frame = CM frame
→ maximum energy available

for new particle creation



E.H.Maclean, HASCO, 28nd July 2022 8

Key Points

Accelerators aren’t just for HEP

advantages / disadvantages of a
beam collider vs fixed target experiment

Of 114 times a Nobel Prize in physics has been awarded

≈ 25 involved direct use of a particle accelerator!

A further 20 Nobel Prizes across Physics/Chemistry/Medicine

have been awarded for research using X-rays!

https://www.epfl.ch/labs/lpap/wp-content/uploads/2018/10/AcceleratorsNobelPrizes.pdf

https://www.epfl.ch/labs/lpap/wp-content/uploads/2018/10/AcceleratorsNobelPrizes.pdf
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Ek post-LIU
(extraction) (≥ 2020)

Linac 4 (H−) 160MeV

PSB (H+) 2.0GeV

PS 25GeV

SPS 449GeV

LHC ≥ 6.8TeV
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Linear Accelerator→‘Linac’

Colloquially ‘Linac’ can refer both to a general Linear

Accelerator facility or to a specific accelerating structure

Single pass accelerator
→ beam goes through once

→ facility not always straight, e.g. SLC

Energy depends on length

For HEP 2 main applications:

Low energy hadrons

High energy e− or e+ collider
e.g. Stanford Linear Collider (1987-98, 3 km/0.09TeV)

e.g. next-gen lepton colliders: ILC (50 km / 1TeV)

e.g. next-gen lepton colliders: CLIC (50 km / 3TeV)
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Synchrotron
→ e.g. LHC, LEP, Tevatron, RHIC, HERA, SPS, PS...

→ ‘circular accelerator’, ‘collider ring’
(doesn’t actually need to be a circle)

Repeated passage around the
accelerator ring → great for HEP!
→ re-use accelerating structures & repeatedly collide same beams

During acceleration guiding fields increase

to keep the beam on (∼) same orbit
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Bending

~F = q(~E + ~v × ~B)
Use Lorentz force to bend bunches
around the synchrotron ring

Use dipole magnets
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Conventional dipole field
defined by core

Conventional dipoles limited to
∼ 2T by saturation of core

> 2T need very large current
→ superconductors!!!!

Field defined by coil geometry
→ I ∝ cosΘ

For discussion of magnet design: S.Russenschuck, Design of accelerator magnets,

CERN accelerator school, Loutraki, Greece, Oct’ 2000 https://cds.cern.ch/record/865932

https://cds.cern.ch/record/865932
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Focusing

Use quadrupole fields to focus particle beams

→ F ∝ displacement from center

→ I ∝ cos 2Θ

For discussion of magnet design: S.Russenschuck, Design of accelerator magnets,

CERN accelerator school, Loutraki, Greece, Oct’ 2000 https://cds.cern.ch/record/865932

https://cds.cern.ch/record/865932
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Focusing

Single quadrupole can focus in either H or V. Not both.

Use alternating lattice of focusing/defocusing quads
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Accelerators can also use a variety of higher-order multipole magnets to

control various aspects of linear & nonlinear beam dynamics

Quadrupoles focus low & high

momentum particles differently

CHROMATICITY: Q
′
= ∂Q/∂

(

δP
P0

)

Momentum dependent focusing causes

tune-spread within the bunch

Chromaticity controlled with SEXTUPOLES →

2n-pole field defined by complex potential:

Ψn = (∂
n−1Bx

∂yn−1 + i ∂
n−1Bx

∂xn−1 )
(x+iy)n

n!

Ψn = (Bn + iAn)
(x+iy)n

n

octupoles, decapoles, dodecapoles have

all been used in particle accelerators
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Key Points

The LHC injector chain

What is a synchrotron?

What is the Tune (Qx ,y)?

How do we accelerate?

→ Particles come in bunches

Dipoles and quadrupoles to bend/focus

Nonlinear multipole magnets can also be used,
e.g. sextupoles for chromaticity correction
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The Large Hadron Collider (LHC)

Twin-ring synchrotron collider

Collides p, Pb, Xe, O

2 counter-rotating beams

Curvilinear coordinate system

8 straight insertion regions (IRs) & 8 bending Arcs ‘A12 → A81’
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Arcs utilize superconducting ≈ 8T dual bore dipoles
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Arcs utilize superconducting ≈ 8T dual bore dipoles
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Arcs have repeating pattern (‘lattice’) of magnets

Magnets powered in series (arc-by-arc or families)
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23 repeating ‘cells’ per Arc

Magnets powered in series (arc-by-arc or families)
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23 repeating ‘cells’ per Arc

Most space occpied by dipoles and main quadrupoles
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23 repeating ‘cells’ per Arc

Higher order magnets correct field imperfections in main dipoles
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23 repeating ‘cells’ per Arc

Need room for beam instrumentation & magnet connections
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The Large Hadron Collider (LHC)

8 insertions:

IR2: LHC B1 injection + HEP (ALICE)

IR8: LHC B2 injection + HEP (LHCb)

IR1: HEP (ATLAS)

IR5: HEP (CMS)

IR3: COLLIMATION (momentum)

IR7: COLLIMATION (transverse)

IR4: Acceleration + instrumentation

IR6: LHC B1+B2 BEAM DUMP
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Structure of a HEP insertion:

→ e.g. Insertion Region 1 (IR1) hosting the ATLAS experiment

→ Beams collide at the Interaction Point (IP1)
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IR design varies with function
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IR design varies with function
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Day to day operation of the CERN accelerators handled by the
operations group, from the CERN Control Center (CCC)
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LHC page 1: machine status & OP comments
https://op-webtools.web.cern.ch/vistar/vistars.php

https://op-webtools.web.cern.ch/vistar/vistars.php
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For general questions about LHC one commonly used resource is
the LHC Design Report

LHC Design Report, v.1 : the LHC Main Ring

http://cds.cern.ch/record/782076/

LHC Design Report, v.2 : the LHC Infrastruc-
ture and General Services
http://cds.cern.ch/record/815187

LHC Design Report, v.3 : the LHC Injector

Chain http://cds.cern.ch/record/823808

BE CAREFUL: some parameters may
be out of date
→ LHC has already exceeded its
design performance in many ways!

http://cds.cern.ch/record/782076/
http://cds.cern.ch/record/815187
http://cds.cern.ch/record/823808
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Key Points

Coordinate scheme for accelerators

Overall structure of LHC

→ 8 Arcs - this is where the beams are bent around the ring

→ 8 IRs - various functions

Repeating lattice in the arcs → the LHC arc cell

→ can’t fill the arc completely with dipoles!

→ also quadrupoles for focusing, sextupoles for
momentum-dependent focussing & chromaticity, nonlinear
magnets for correcting field errors, instrumentation...

Typical layout of an insertion region
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What do particle physicists care
about??

Energy
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Limiting factor for circular e+ / e− accelerators:

→ particles emit synchrotron radiation as they are bent around ring

∆E/turn ∝
(βrelγrel)

4

ρ

LEP (e) energy loss: ∼ 3GeV/turn (@ 101GeV)

LHC (p) energy loss: ∼ 5 keV/turn (@ 6.5TeV)
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Limiting factor for circular hadron collider:

→ need sufficient dipole field strength to bend beams around the ring

→ High Energy = high magnetic rigidity

FLorentz = Fcentrip

qvB =
γmrestv

2

ρ
=

pv

ρ

Bρ =
p

q

Bρ is Magnetic rigidity: defines the maximum energy you can
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Limiting factor for circular hadron collider:

→ need sufficient dipole field strength to bend beams around the ring

→ High Energy = high magnetic rigidity

Bρ [Tm] =
p [kgms−1]

q [C]

Bρ [Tm] =
10

2.998
p [GeV /c]

Bρ is ‘magnetic rigidity’: defines the maximum energy you can
reach for a given dipole field in a given tunnel geometry
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The Future of laboratory based HEP?

∆E/turn ∝
(βrelγrel)

4

ρ
Bρ [Tm] =

10

2.998
p [GeV /c]

linear e/e colliders (ILC/CLIC)

100 km e/e collider ring (FCC-ee,CEPC)

New magnets in LHC tunnel (HE-LHC)

100 km hadron collider (FCC-hh,SppC)

Something new?
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In practice LHC still not reached its design energy!

→ main dipole designed for 8.327T =⇒ 7.0TeV/beam (protons)
→ “Report of the Task Force on the Incident of 19th September 2008 at

the LHC”, CERN-LHC-PROJECT-Report-1168 https://cds.cern.ch/record/1168025/

“The dipole bus bar at the location of the
arc was vaporized, as well as the M3 line
bellows around it, thus breaking open the
helium enclosure...”

“The force was applied to the external
support jacks, displacing the cryomagnets
from them and in some cases, rupturing
their ground anchors or the concrete in
the tunnel floor.”

To ensure machine protection the LHC operated at lower energy during Run1
until hardware consolidation performed during the first long-shutdown

https://cds.cern.ch/record/1168025/
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SC-magnets must be trained to
reach higher fields/currents

Time needed for training also
influenced choice of LHC energy
in Run2 and Run3

Year mode Beam energy pp-CoM
[TeV ] [TeV ]

2010-2011 pp 3.5 7.0

2012 pp 4.0 8.0

2015-2018 pp 6.5 13.0

≥2022 pp ≥6.8? ≥13.6?

Ultimate energy of LHC

is still unclear!

“New High Luminosity LHC Baseline

and Performance at Ultimate Energy”

CERN-ACC-2018-069

WATCH OUT: HEP normally discuss CoM → ABP may use alternative

definition of energy! e.g. energy/nucleon or beam energy (E*Z/A)

http://cds.cern.ch/record/2653736/
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Key Points

Different limitations on beam-energy for e± and
hadron accelerators

What is magnetic rigidity & where does it come
from? → the future of colliders?

Accelerator physicists don’t always talk about CoM -
watch out!
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What do particle physicists care about???

→ How much data (how many collisions) are generated?

Luminosity
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Event rate for a HEP interaction:

R = L × σ

R: Event Rate [s−1]

σ: Cross Section [barn = 10−24cm2]
property of the HEP interaction

L: Luminosity [inverse barn / s]
property of the collider
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L = f
√

(v̄1−v̄2)
2
−(v̄1×v̄2)

2
/ c2 N1N2

∫∫∫

+∞
∫

−∞

ρ1(x ,y ,s,−s0)ρ2(x ,y ,s,s0) dx dy ds ds0

For detailed discussion of Luminosity relations:

W.Herr & B.Muratori, Concept of Luminosity, CERN Accelerator School, Zeuthen, Germany, 15 - 26 Sep 2003

Toshio Suzuki, General Formulas of Luminosity for Various Types of Colliding Beam Machines, KEK-76-3, (1976)

M.A. Furman, The Møller Luminosity Factor, LBNL-53553,CBP Note-543, September 24, 2003

C.Møller, General properties of the characteristic matrix in the theory of elementary particles I,
K. Danske Vidensk. Selsk. Mat.-Fys. Medd. 23, 1 (1945) http://gymarkiv.sdu.dk/MFM/kdvs/mfm 2020-29/mfm-23-1.pdf

https://cds.cern.ch/record/941318/
https://inspirehep.net/literature/111239
https://escholarship.org/uc/item/3897k3zp
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with some approximation:

L =
(frevncoll) N1N2

2π
√

(

σ2
x ,1 + σ2

x ,2

)

√

(

σ2
y ,1 + σ2

y ,2

)

Assume:

uncorrellated gaussian bunch profiles in x,y,s

head-on colinear collission of equal/opposite velocity beams

equal bunch lengths σs,1 ≈ σs,2

revolution frequency of 2 beams are in sync

ncoll colliding bunches are all described by similar N1,2, σ
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L =
(frevncoll) N1N2

2π
√

(

σ2
x ,1 + σ2

x ,2

)

√

(

σ2
y ,1 + σ2

y ,2

)

ncoll : Number of colliding bunches
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How many bunches can we fit in the LHC?

LHC revolution frequency ≈ 11.245 kHz

→ revolution period ≈ 89µs

Minimum separation of bunches defined by RF
system of the injector chain

→ 25ns bunch spacing

soooo... ≈ 3560 bunches?

NO!
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Crossing angles reduce the luminosity

L =
(frevncoll) N1N2

2π
√

(

σ2
x ,1 + σ2

x ,2

)

√

(

σ2
y ,1 + σ2

y ,2

)

× S

Exact value of S depends on operating conditions

Very approximately S ≈ 0.8
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L =
(frevncoll) N1N2

2π
√

(

σ2
x ,1 + σ2

x ,2

)

√

(

σ2
y ,1 + σ2

y ,2

)

Beamsize:

σx,y =
√

βx,y (s) ǫx,y

β(s): ‘beta-function’ [m]

→ Property of the magnetic lattice

→ varies around the ring

ǫ: ‘emittance’ [µm]

→ Property of the particle bunch

→ Invariant around the ring
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σx,y(s) =
√

βx,y (s) ǫx,y
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Particle motion about central closed-orbit described by Hill’s equation:

linear restoring force from quadrupoles is a function of location around the ring

restoring force is periodic to at least the accelerator circumference

d2x

ds2
− K(s)x = 0 x =

√

2Jxβx(s) cos (φx(s) + φ0)
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β-function describes envelope of particle oscillations
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β-function describes envelope of particle oscillations
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β-function describes envelope of particle oscillations
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Triplet quadrupoles in experimental IRs squeeze βx ,y

→ β∗ = minimum β in the IR ≈ 25 cm

0
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4
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β x
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Longitudinal location w.r.t. IP1 (ATLAS)   [ m ]

Insertion Region 1

Arc 81 Arc 12

Beam 1

Beam 2

Dipole Quad
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σx,y(s) =
√

βx,y (s) ǫx,y
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Characterise particle trajectory by position (x) and angle (x ′ = dx
ds )
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Characterise particle trajectory by position (x) and angle (x ′ = dx
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Characterise particle trajectory by position (x) and angle (x ′ = dx
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Characterise particle trajectory by position (x) and angle (x ′ = dx
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Characterise particle trajectory by position (x) and angle (x ′ = dx
ds )
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Characterise particle trajectory by position (x) and angle (x ′ = dx
ds )
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Characterise particle trajectory by position (x) and angle (x ′ = dx
ds )
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Particles trace out elliptical paths in (x,x’) phase space

shape changes around the ring

Area of ellipse is invariant (for constant energy)
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Particles trace out elliptical paths in (x,x’) phase space

in practice have many particles

all follow similar elliptical trajectories (linear approximation)
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Particles trace out elliptical paths in (x,x’) phase space

‘beam emittance’ is area/π of elipse enclosing 1σ of the
particles in the bunch
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What about the real world?

→ Linear & nonlinear magnetic errors can introduce substantial
perturbations to the optics/beam-size
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Local optics correction, LHCB2, β*=0.6m

Virgin LHC
Local corrs

Beam-based correction of β
needed to ensure ALTAS/CMS
delivered correct luminosity

Emittance evolution in LHC and
injector chain still not fully under-
stood!
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More accurate beam-size description considers coupled 4D-phase-space

Σ2
x = β11ǫ1 + β12ǫ2

Σ2
y = β21ǫ1 + β22ǫ2

Betatron motion with cou-
pling of horizontal and
vertical degrees of freedom
V.A.Lebedev, S.A.Bogacz
FERMILAB-PUB-10-383-AD

Plot courtesy T.H.B. Persson (CERN)

Poor local coupling correction in IR2 during 2018 Pb/Pb run

caused 50% reduction to Luminosity delivered to ALICE

until diagnosed & corrected
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L =
(frevncoll) N1N2

2π
√

(

σ2
x ,1 + σ2

x ,2

)

√

(

σ2
y ,1 + σ2

y ,2

)

N1,2: Number of particles per bunch
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Accumulate bunch trains in the LHC ring at 450GeV

Accelerate to 6.5TeV

Bring bunches into collision & store for several hours

Dump / Repeat
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Beam intensity decays during a fill

Show a corresponding reduction in instantaneous luminosity

Bulk of decay (LHC ideal conditions) is losses
of particles which are colliding at the IPs ‘burnoff’
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Can try to maintain luminosity while N1,2 decays by changing
other accelerator parameters which influence luminosity

‘Luminosity levelling’ → e.g. β∗-levelling
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Can try to maintain luminosity while N1,2 decays by changing
other accelerator parameters which influence luminosity

‘Luminosity levelling’ → e.g. crossing-angle levelling
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Large amplitude particles’ motion can become chaotic &
unstable → ‘Dynamic aperture’

x’
 

x

Constant octupole strength
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The more nonlinear the beam dynamics becomes the
smaller the dynamic aperture
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Use sextupole, octupole, decapole & dodecapole magnets
to correct nonlinear dynamics in LHC & HL-LHC
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Key Points

What is luminosity?

What are its main dependencies?

There are many real world complications which
affect the luminosity!
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Event rate for a HEP interaction:

R = L × σ

R: Event Rate [s−1]

σ: Cross Section [barn = 10−34cm2]
property of the HEP interaction

L: Luminosity [inverse barn / s]
property of the collider

Total number of interactions defined by the Integrated
Luminosity [inverse femto-barn]

N =

(
∫

L(t)dt

)

× σ
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Integrated Luminosity is key figure of merit for collider like LHC

→ significant factor is how much time spent on luminosity production
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Approximate schedule for LHC lifetime (accurate up to 2021)

LHC operation is interspersed with regular shutdown periods for
maintenance and upgrades
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LHC schedule over 1 year (2017)

Many types of activities during 1 year of LHC operation

Technical Stop (YETS + regular breaks)

Accelerator commissioning

Accelerator physics/technology studies

Luminosity production proton-proton and special runs
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LHC is an extremely complicated system
Even small technical problems add up over 1 year

Statistics for LHC availabitity/faults monitored by availability
working group, e.g. 2017:



E.H.Maclean, HASCO, 28nd July 2022 90

LHC is an extremely complicated system
Even small technical problems add up over 1 year

Statistics for LHC availabitity/faults monitored by availability
working group, e.g. 2017:
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Not all time during operation spent colliding beams: LHC cycle (2012)

Dipole current Octupole current IP1 squeeze
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Reduced turn-around-time inceases integrated lumi: LHC cycle (2018)

Dipole current Octupole current IP1 squeeze
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Key Points

Integrated luminosity is the key figure of merit for a
collider like the LHC

How much time is actually spent colliding beams
together?

What are we doing the rest of the time?
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Many thanks for your attention!
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Reserve
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Particles come in bunches!

∆E=(Ep -Esync)

1/0

VRF

time

Picutre valid for low-energy particles (below transition energy). For high energy particles (above transition) picture can be
reversed if higher-energy particles take longer to travel around the ring due to relativistic saturation of particle velocity and
dependence of path length on particle momentum.
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Arcs utilize superconducting 8.3T dual bore dipoles
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NbTi coils cooled to 1.9K with superfluid helium
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NbTi coils cooled to 1.9K with superfluid helium
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NbTi coils cooled to 1.9K with superfluid helium
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Limiting factor for circular hadron collider:

→ need sufficient dipole field strength to bend beams around the ring

→ High Energy = high magnetic rigidity

FLorentz = Fcentrip

consider pure dipole fields

(px , py ) << ps

Bρ is Magnetic rigidity: defines the maximum energy you can
reach for a given dipole field in a given tunnel geometry
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

FLorentz = Fcentrip

FLorentz = q(~E + ~v × ~B)

consider proton (q/A = 1)

assume pure dipole fields

(px , py ) << ps
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

FLorentz = Fcentrip

FLorentz = q(~E + ~v × ~B)

= evBdipole (1)
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

Fcentrip =
dp

dt

(2)
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

dp = pdθ

ds = ρdθ

p = γrelmrestv

(3)
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

Fcentrip =
dp

dt

= p
dθ

dt
=

p

ρ

ds

dt

=
pv

ρ
=

γm0v
2

ρ
(4)
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

FLorentz = Fcentrip

evB =
γm0v

2

ρ
=

pv

ρ

Bρ =
p

e
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

Bρ is ‘Magnetic Rigidity’

Bρ [Tm] =
p [kgms−1]

e [C]

Not so convenient units
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Limiting factor for circular hadron collider:
→ High Energy = high magnetic rididity

Bρ is ‘Magnetic Rigidity’

Bρ [Tm] =
10

2.998
p [GeV /c]

Magnetic rigidity defines the maximum energy you can reach for
a given dipole field in a given tunnel geometry
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Beams themselves can introduce large nonlinearities into
the dynamics e.g.

Direct Space Charge

Repulsive (defocusing) force on a
particle due to the field of all other
particles in the bunch

A big challenge at low energy in
injector chain
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Optics errors can reduce data delivered to HEP experiments

Create Luminosity imbalance between HEP experiments

→ Aim for β∗-beat ≤ 1%

MACHINE PROTECTION → require beta-beat ≤ 18%
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Emittance conserved provided particle’s energy is constant

Acceleration

Define ‘normalized emittance’ which is

invariant with the beam energy

ǫ∗ = βrelγrelǫ

In practice many effects can
change or dilute emittance

Injection errors

Synchrotron radiation

IntraBeam Scattering

Emittance evolution in LHC
still not fully understood!


