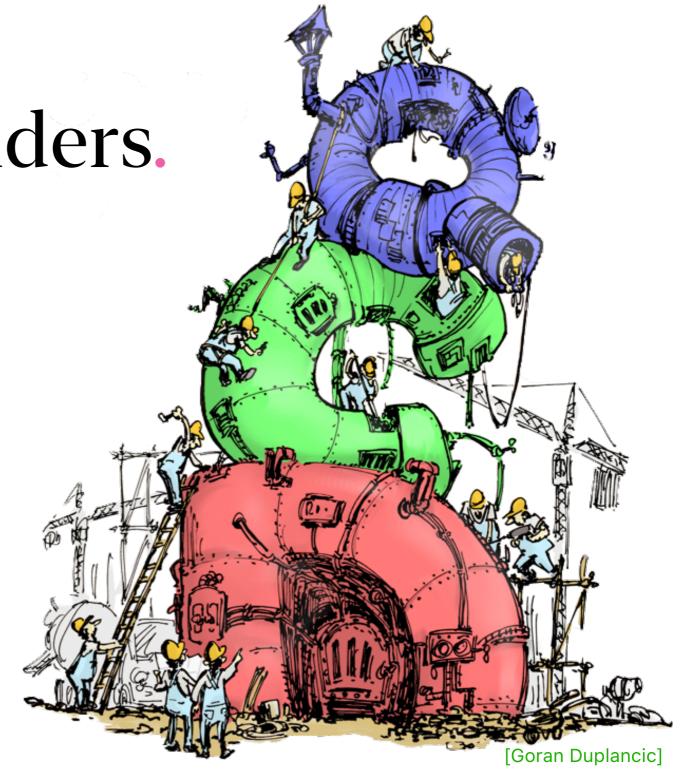
A tour of QCD at hadron colliders.

Part 1 of 2

Enrico Bothmann Institut für Theoretische Physik, Universität Göttingen

HASCO 2022



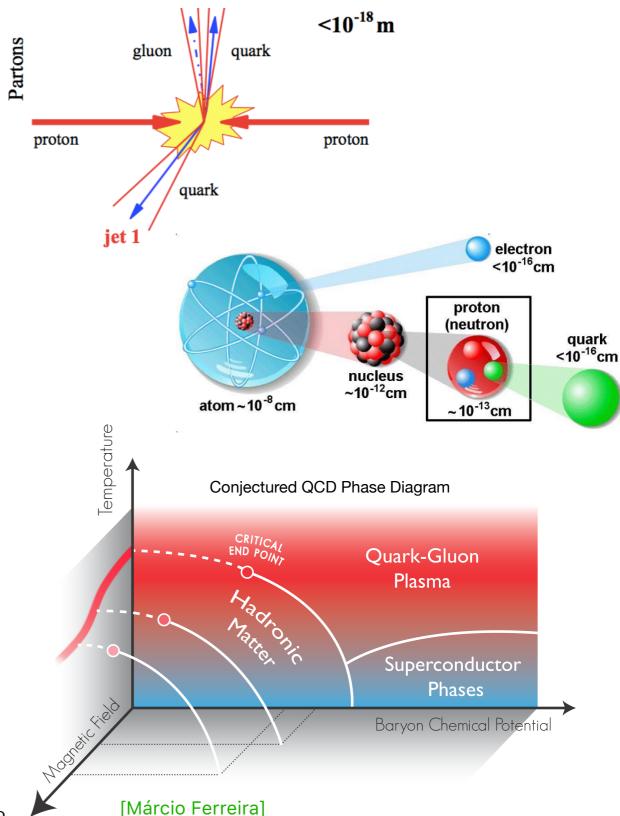
Quantum chromodynamics.

- accounts for strong interaction processes observed at colliders
 - hadronic jets & heavy-flavour production
 - short-distance parton structure of hadrons
 - → QCD plays a role in the prediction & interpretation of any LHC result
- ingredients
 - 3 families of quarks

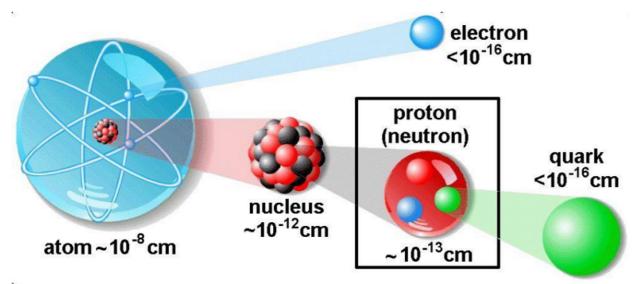
$$\binom{\mathsf{u}}{\mathsf{d}}, \binom{\mathsf{c}}{\mathsf{s}}, \binom{\mathsf{t}}{\mathsf{b}}$$

each one has an anti-partner and comes in 3 "colour" states

- 1 gluon, comes in 8 "colour" states
- a relatively large coupling ~1/10 with a fast "inverse" running



Quantum chromodynamics.



- → QCD plays a role in the prediction & interpretation of any LHC result
- ingredients
 - 3 families of quarks

$$\binom{\mathsf{u}}{\mathsf{d}}, \binom{\mathsf{c}}{\mathsf{s}}, \binom{\mathsf{t}}{\mathsf{b}}$$

each one has an anti-partner and comes in 3 "colour" states

- 1 gluon, comes in 8 "colour" states
- a relatively large coupling ~1/10 with a fast "inverse" running

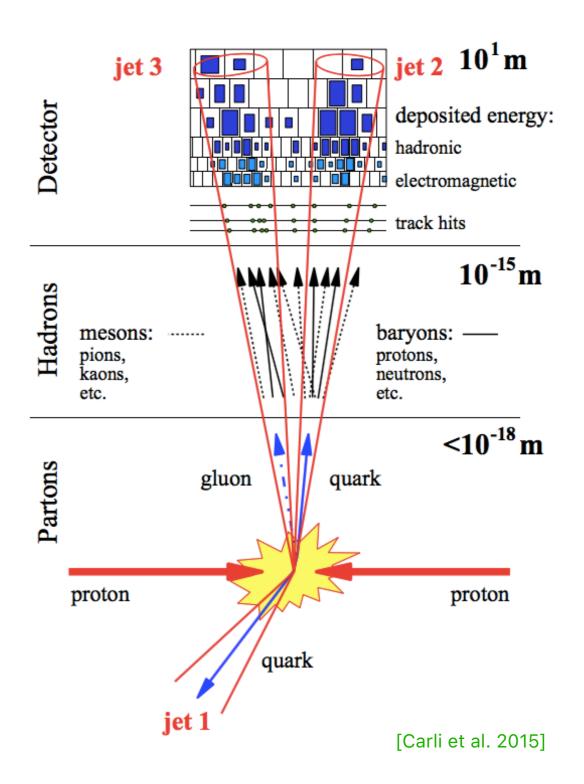
field	mass [GeV]	spin	el. charge [e]	#colour
d	~0.005	1/2	-1/3	3
u	~0.002	1/2	+2/3	3
s	~0.1	1/2	-1/3	3
С	~1.3	1/2	+2/3	3
b	~4.2	1/2	-1/3	3
t	~172.8	1/2	+2/3	3
g	0	1	0	8

interaction	long-distance	rel. strength*
strong	$\sim r$	1
electromagnetic	$\frac{1}{r^2}$	1.4×10^{-2}
weak	$\frac{1}{r}e^{-m_{W,Z}r}$	2.2×10^{-6}
gravity	$\frac{1}{r^2}$	1.2×10^{-38}

*at 1 GeV = $0.2 \text{ fm} = 2 \times 10^{-14} \text{ cm}$

Aim of this tour.

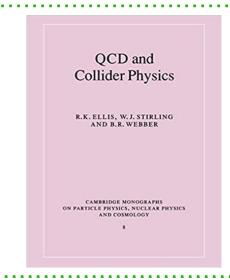
- give you an overview about:
 - general features of QCD
 - QCD in hadron collisions
 - ... and their simulation
- not included in this tour:
 - details & derivations
 - lattice simulations
 - quark gluon plasma
 - neutron stars

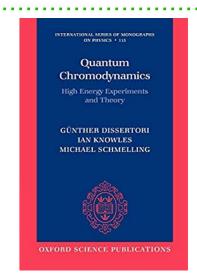


Contents.

- QCD basics
 - Colour & Lagrangian
 - Perturbation theory & Running coupling
- Soft & collinear singularities
- concepts of jets & parton showers
- QCD for processes with incoming protons
- Monte-Carlo event generators

- much of the material based on Steffen Schumann's 2012 HASCO lectures
- further reeding: Ellis, Stirling and Webber: "QCD and Collider Physics" (aka "the pink book of QCD"); Dissertori, Knowles and Schmelling: "QCD High Energy Experiments and Theory"





Exercise 1.1.1.1.1a: Given locality, causality, Lorentz invariance, and known physical data since 1860, show that the Lagrangian describing all observed physical processes (sans gravity) can be written:

QCD basics.

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ ${\textstyle\frac{1}{2}}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2G^a + g_sf^{abc}\partial_\mu\bar{G}^aG^bg_\mu^c - \partial_\nu W_\mu^+\partial_\nu W_\mu^- M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c_-^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H \frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2c^2}M\phi^0\phi^0 - \beta_h\left[\frac{2M^2}{g^2} + \frac{1}{2}(M^2\phi^0)^2\right]$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^-_\mu)]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W_{\mu}^+W_{\nu}^-W_{\mu}^+W_{\nu}^- + g^2c_w^2(Z_{\mu}^0W_{\mu}^+Z_{\nu}^0W_{\nu}^- - Z_{\mu}^0Z_{\mu}^0W_{\nu}^+W_{\nu}^-) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- W_{\nu}^{+}W_{\mu}^{-}$) $-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}$] $-g\alpha[H^{3}+H\phi^{0}\phi^{0}+2H\phi^{+}\phi^{-}]$ - $\frac{1}{9}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)]^{\tilde{-}}+\tfrac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-} \phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\nu\nu}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu\nu}^{2}}{c_{\nu\nu}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_\mu(W_\mu^+\phi^- - W_\mu^-\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z_\mu^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2\frac{1}{c_w^2}Z_\mu^0Z_\mu^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_\mu^0\phi^0(W_\mu^+\phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}^{2}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_\mu \bar{A}_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{u}_i^\lambda (\gamma \partial + m_u^\lambda) u_i^\lambda \bar{d}_{i}^{\lambda}(\gamma \partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s_w^2-1-\gamma^5)e^\lambda)+(\bar{u}^\lambda_i\gamma^\mu(\frac{4}{3}s_w^2-1)e^\lambda)]$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) +$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{i}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ γ^5 $[u_j^{\kappa}] - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_j^{\lambda} u_j^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_j^{\lambda} d_j^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_j^{\lambda} \gamma^5 u_j^{\lambda}) \frac{ig}{2} \frac{m_A^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 -$ $\frac{M^2}{c^2}$ $X^0 + \bar{Y} \partial^2 Y + igc_w W_u^+ (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W_u^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0)$ $\partial_{\mu}\bar{X}^{+}Y$) + $igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+})$ $\partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}$) $-\frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $igM s_w [\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-] + \frac{1}{2} igM [\bar{X}^+ X^+ \phi^0 - \bar{X}^- X^- \phi^0]$

The quark model.

- "flavour" $SU(3)_V$ structure observed in spectrum of light mesons & baryons
 - \Rightarrow quark model: mesons (baryons) bound states of 2 (3) quarks, led e.g. to prediction & discovery of Ω^- @ Brookhaven 1964

$\Delta^{-} \qquad \Delta^{0} \qquad \Delta^{+} \qquad \Delta^{++} \qquad \qquad \text{ddd} \qquad \text{ddu} \qquad \text{uuu}$ $\Sigma^{-} \qquad \Sigma^{0} \qquad \Sigma^{+} \qquad \qquad \text{dds} \qquad \text{dus} \qquad \text{uus}$ $\Xi^{-} \qquad \Xi^{0} \qquad \qquad \text{dss} \qquad \text{uss}$ $\Omega^{-} \qquad \qquad \text{sss}$

quark content

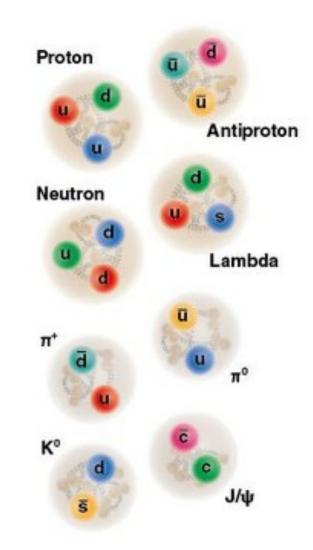
- fractional quark electric charges to account for baryon charges → credibility issue
- quarks have spin-1/2 to account for observed baryon spins

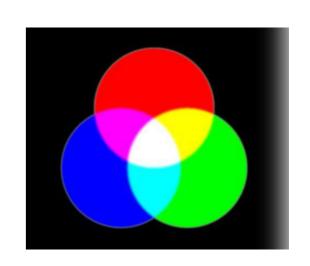
baryon decouplet

- evidence for point-like constituents ("partons") inside hadron targets at SLAC 1970 further studies: partons conform to the quark model → quark-parton-model (QPM)
- Note: $SU(3)_V \neq SU(3)_c$... now let's talk about colour!

Colour.

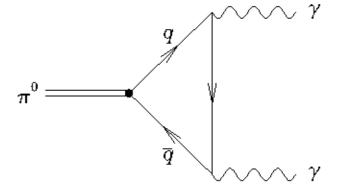
- problem (also see intro lecture pt. 2): quarks e.g. in spin-3/2 baryon $\Delta^{++}=|u_\uparrow u_\uparrow u_\uparrow\rangle$ are in a fully symmetric state of space, spin and flavour
 - → violation of Fermi-Dirac statistics!
 - idea of extra d.o.f. "colour", baryon wave function is then made antisymmetric in new colour index: $\Delta^{++} = \epsilon^{abc} \, | \, u_{a\uparrow} u_{b\uparrow} u_{c\uparrow} \rangle$
- next problem → many new states with different colours, but no such degeneracy was observed
 - ad-hoc requirement of "confinement": only colour-singlet states shall exist
- if colour group is $SU(3)_c$ & quarks in fundamental representation, basic colour singlets are
 - $|q_a \bar{q}^a\rangle$ (mesons) color+anticolour = "white"
 - $\epsilon^{abc} | q_a q_b q_c \rangle$ (baryons) red+blue+green = "white"





Colour: pion decays.

- so long descriptive .. what about predictions of $SU(3)_c\mbox{?}$



• decay $\pi^0 o \gamma \gamma$, leading-order calculation gives

$$\Gamma^{\text{theo}}(\pi^0 \to \gamma \gamma) = \xi^2 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{64\pi} \frac{m_\pi^3}{f_\pi^2} = 7.6 \,\xi^2 \,\text{eV}$$

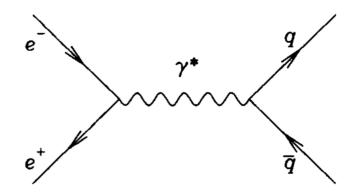
$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right)$$

- pion decay constant $f_\pi\approx 93\,{\rm MeV}$ measured independently from $\pi^-\to\mu^-\bar\nu_\mu$
- electric-charge-and-colour factor

$$\xi = N_{\rm C} \cdot \left[\left(\frac{2}{3} \right)^2 - \left(-\frac{1}{3} \right)^2 \right] = N_{\rm C} \cdot \frac{1}{3}$$

• experimental value $\Gamma^{\rm exp}(\pi^0 \to \gamma \gamma) = 7.74(55)\,{\rm eV}; ~~ \xi \approx 1 ~~ N_{\rm C} = 3$ [PDG]

Colour: R-factor.



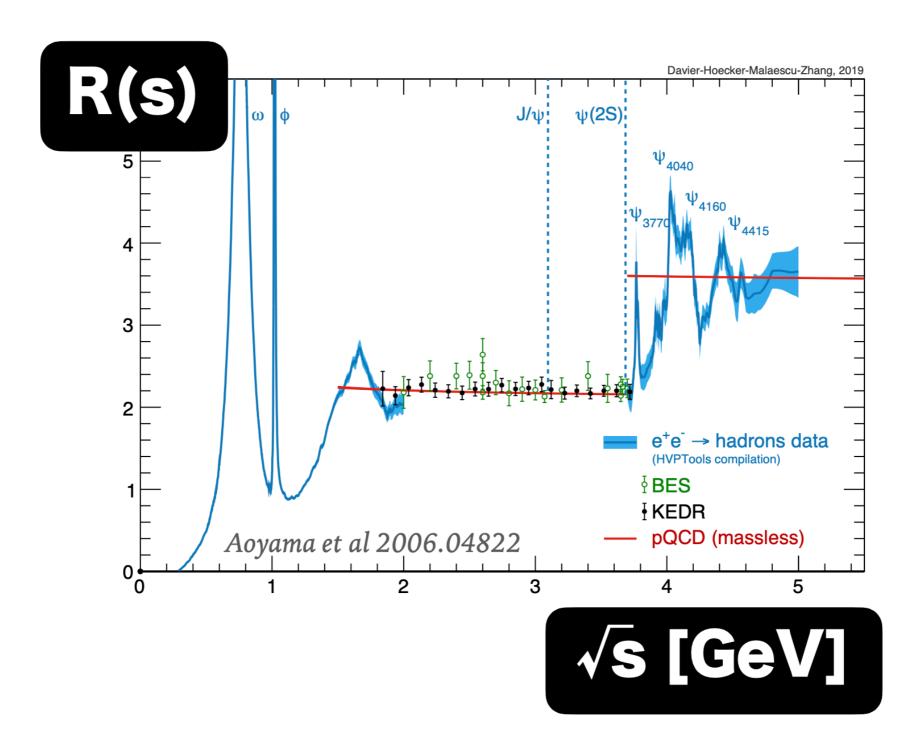
total cross-section ratio

$$R = \sum_{q} \sigma_{\text{tot}}(e^{+}e^{-} \to q\bar{q})/\sigma_{\text{tot}}(e^{+}e^{-} \to \mu^{+}\mu^{-}) = N_{\text{C}} \sum_{q} Q_{q}^{2}$$

 need to be over threshold to have quarks contribute to the sum:

low energies
$$\Rightarrow d, u, s \Rightarrow R = N_{\rm C} \left[1 \left(\frac{2}{3} \right)^2 + 2 \left(-\frac{1}{3} \right)^2 \right] = N_{\rm C} \frac{2}{3}$$
 intermediate energies $\Rightarrow d, u, s, c \Rightarrow R = N_{\rm C} \left[2 \left(\frac{2}{3} \right)^2 + 2 \left(-\frac{1}{3} \right)^2 \right] = N_{\rm C} \frac{10}{9}$

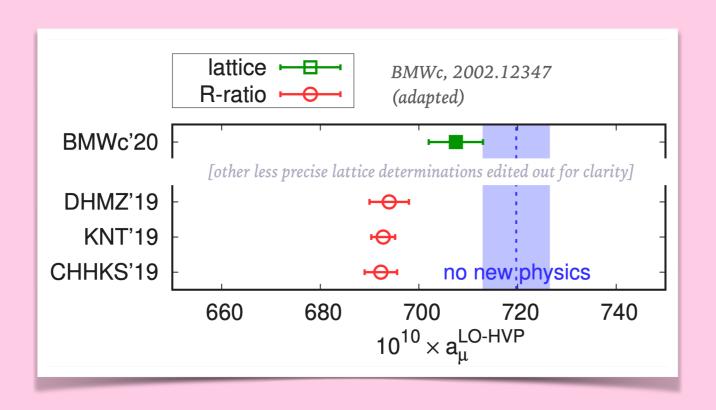
Colour: R-factor.

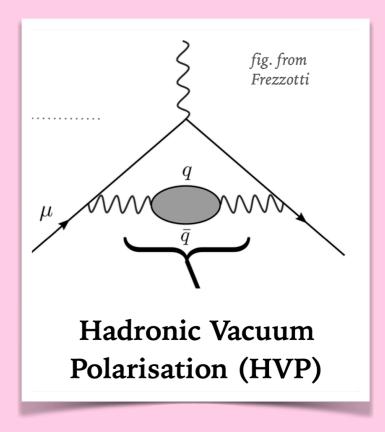


 \rightarrow data taken at different collider energies support $N_{\rm C}=3$

Aside: R-factor and g — 2.

- anomalous magnetic moment of the muon shows a $\sim 4\,\sigma$ discrepancy (theory vs. data)
- largest theory uncertainty: HVP, determined by ...
 - option 1: re-interpret s-channel e+e- → hadrons R ratio data
 - option 2: simulate HVP on a space-time lattice





$SU(3)_{C}$.

• SU(3) generators are the Hermitian & traceless Gell-Mann matrices

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix}$$

- no evidence so far for a $\lambda^9 = diag(1,1,1)$ (essentially a second photon), which would give $U(3)_c$
- quarks are column vectors, anti-quarks are row vectors in colour space
- by convention for $SU(3)_C$ we take $t_{ab}^A \equiv \frac{1}{2} \lambda_{ab}^A \rightsquigarrow U = \exp\left(i\alpha_A t^A\right)$
- group structure constants f_{ABC} defined by $[t^A, t^B] = i f_{ABC} t^C$
- $f_{ABC} \neq 0 \Rightarrow$ non-abelian!
- analogues for $\mathrm{SU}(2)$ are the Pauli matrices σ_i and the structure constant ϵ_{ijk}

QCD Lagrangian building blocks.

quarks

spin-1/2 quark fields ψ_q^a , with colour $a \in \{1,2,3\}$ (fundamental representation)

$$\mathcal{L}_{\text{free Dirac}} = \sum_{q} \bar{\psi}^a_q i \delta_{ab} \gamma^\mu \partial_\mu \psi^b_q - m_q \bar{\psi}^a_q \psi^a_q \quad \text{with} \quad q \in \{u, d, s, c, b, t\}$$

• gluons

spin-1 gluon fields A_{μ}^{A} , with index $A \in \{1,...,8\}$ (adjoint representation)

$$\mathscr{L}_{\text{pure Gluon}} = -\frac{1}{4} F^A_{\mu\nu} F^{A\mu\nu} \quad \text{with} \quad F^A_{\mu\nu} = \partial_\mu A^A_\nu - \partial_\nu A^A_\mu - g_s f_{ABC} A^B_\mu A^C_\nu$$

quark-gluon interactions

minimal coupling, restoring local gauge symmetry

$$\mathcal{L}_{\text{interaction}} = \sum_{q} g_s \bar{\psi}_q^a \gamma^\mu t_{ab}^A A_\mu^A \psi_q^b \quad \text{with} \quad g_s^2 = 4\pi\alpha_s$$

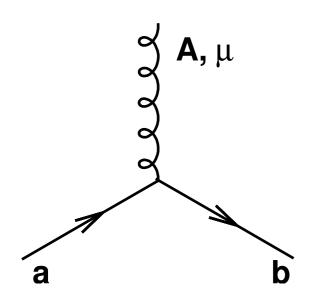
QCD classical Lagrangian.

$$\begin{split} \mathscr{L}_{\text{QCD}} &= \mathscr{L}_{\text{free Dirac}} + \mathscr{L}_{\text{interaction}} + \mathscr{L}_{\text{pure Gluon}} \\ &= \sum_{q} \bar{\psi}^{a}_{q} \left(i \delta_{ab} \gamma^{\mu} \partial_{\mu} + g_{s} \gamma^{\mu} t^{A}_{ab} A^{A}_{\mu} \right) \psi^{b}_{q} - m_{q} \bar{\psi}^{a}_{q} \psi^{a}_{q} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} \\ &= \sum_{q} \bar{\psi}^{a}_{q} \left(i \gamma^{\mu} (D_{\mu})_{ab} - \delta_{ab} m_{q} \right) \psi^{b}_{q} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} \\ \text{with } (D_{\mu})_{ab} &= \delta_{ab} \partial_{\mu} - i g_{s} t^{A}_{ab} A^{A}_{\mu} \text{ the SU(3)}_{\text{C}} \text{ covariant derivative} \end{split}$$

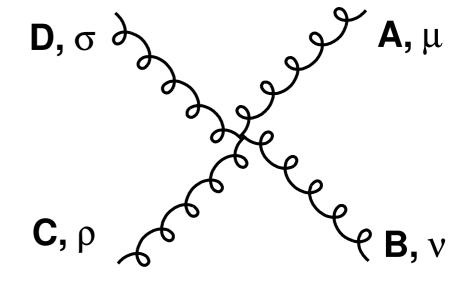
- share same form as QED (Yang-Mills), "only" gauge symmetry differs
 - squared terms give quark and gluon propagators
 - no gluon mass term (would violate gauge symmetry)
 - quark-anti-quark-gluon interaction, gluon³ and gluon⁴ self-interactions
- construction of gluon propagator requires gauge-fixing terms (same as in QED) and—depending on the gauge—ghost fields that cancel unphysical d.o.f. (always decouple in QED since it is abelian)

QCD Feynman rules.

$$\mathcal{L}_{\mathrm{QCD}}\supset\bar{\psi}_{q}^{a}\left(-ig_{s}\gamma^{\mu}t_{ab}^{A}A_{\mu}^{A}\right)\psi_{q}^{b}-g_{s}f^{ABC}(\partial_{\mu}A_{\nu}^{A})A^{B\mu}A^{C\nu}-\frac{1}{4}g_{s}^{2}f^{XAB}f^{XCD}A^{A\mu}A^{B\nu}A_{\mu}^{C}A_{\nu}^{D}$$



$$\mathbf{C}, \rho$$
 \mathbf{C}, ρ
 \mathbf{C}



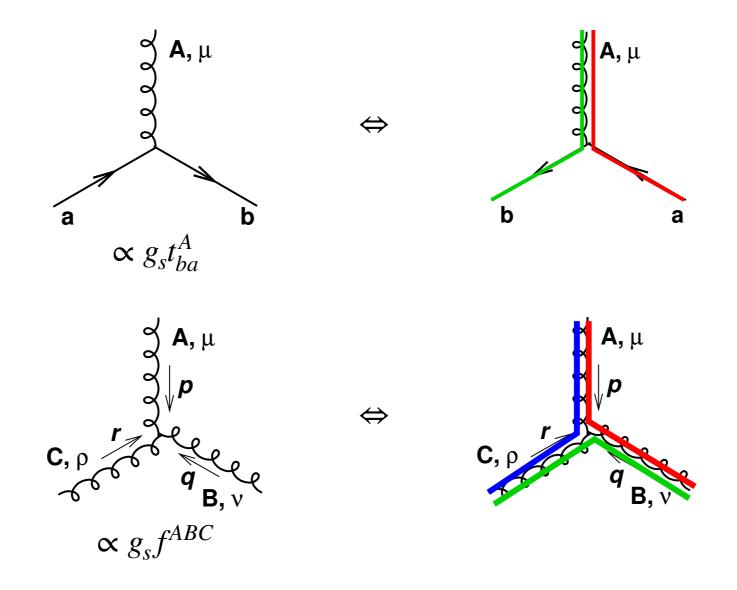
$$-ig_s t_{ba}^A \gamma^\mu$$

$$-g_s f^{ABC} [(p-q)^{\rho} g^{\mu\nu} + (q-r)^{\mu} g^{\nu\rho} + (r-p)^{\nu} g^{\rho\mu}]$$

$$-g_{s}f^{ABC}[(p-q)^{\rho}g^{\mu\nu} \qquad -ig_{s}^{2}f^{XAC}f^{XBD}[g^{\mu\nu}g^{\rho\sigma}-g^{\mu\sigma}g^{\nu\gamma}]$$

$$+(q-r)^{\mu}g^{\nu\rho} \qquad +(C,\gamma)\leftrightarrow(D,\rho)+(B,\nu)\leftrightarrow(C,\gamma)$$

QCD colour flow.



- gluon is charged: carries colour and anti-colour
 - ⇒ gluon emission re-paints the mother parton

QCD colour algebra.

- useful $SU(N_C)$ colour algebra relations
 - → appear when summing over colours of squared amplitudes

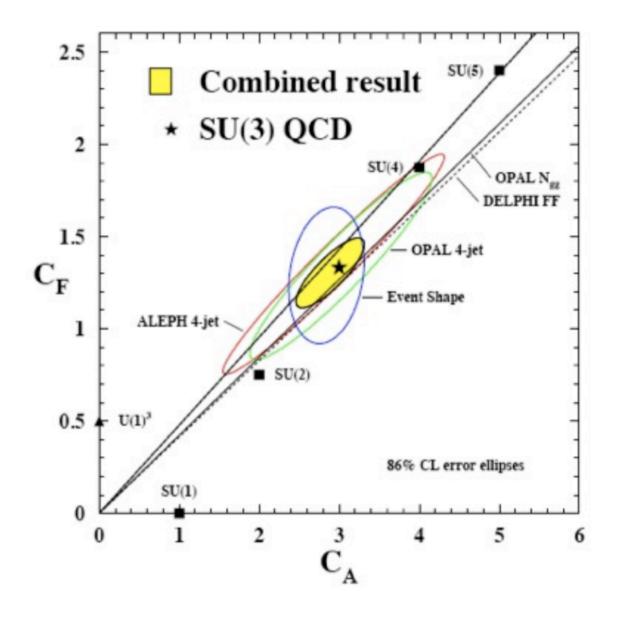
trace relation	corresponding diagram
$\operatorname{Tr}\{t^A t^B\} = T_R \delta^{AB}, T_R = \frac{1}{2}$	A B
$\sum_{A} t_{ab}^{A} t_{bc}^{A} = C_{F} \delta_{ac}, C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}}$	$\frac{a}{c}$
$\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB}, C_A = N_c$	A B

- → gluon emissions are enhanced w/r/t gluon splittings into quark pairs
- $\dot{}$ in particular gluon emissions off other gluons come with a relatively large prefactor $C_A=3$
- → gluon corrections play an important role in QCD

QCD colour algebra.

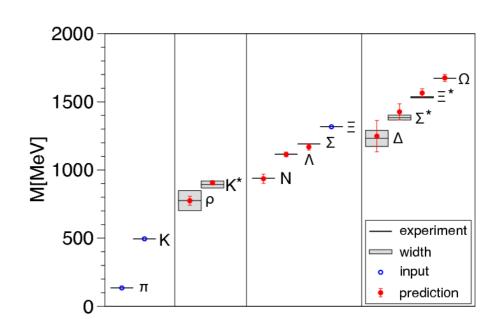
\rightarrow Let's measure the $SU(N_C)$ group constants!

trace relation	corresponding diagram
$\operatorname{Tr}\{t^A t^B\} = T_R \delta^{AB} , T_R = \frac{1}{2}$	A B B B
$\sum_{A} t_{ab}^{A} t_{bc}^{A} = C_{F} \delta_{ac} , C_{F} = \frac{N_{c}^{2} - 1}{2N_{c}}$	a seesag sc
$\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB} , C_A = N_c$	A reconstruction of the second
$e^{-\frac{1}{q}}$	$2 \sim C_F$
e^{-} e^{+} q	$\begin{vmatrix} 2 \\ \sim C_A \end{vmatrix}$



QCD perturbation theory I.

- given \mathscr{L} , we can start calculating physical observables ...
 - Lattice QCD approach: numerical simulation in discritised space time
 - suitable for static properties of hadrons, e.g. masses
 - dynamical LHC collision events not tractable



• **Perturbative method**: order-by-order expansion relying on $\alpha_{\rm S} \ll 1$:

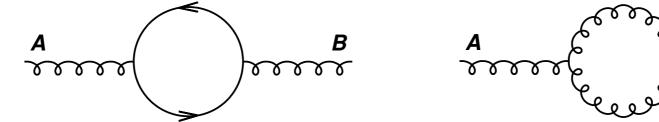
$$\mathcal{O} \approx C_0 + C_1 \alpha_s + C_2 \quad \underline{\alpha_s^2} \quad + C_3 \quad \underline{\alpha_s^3} \quad + \quad \underline{\dots}$$
small smaller negligible?

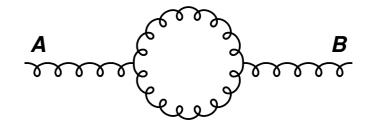
• calculational complexity grows extremely fast with power of α_S \rightarrow better be small, so we get away with first few orders!

The running coupling.

- perturbation series requires renormalisation, which removes UV divergences \rightarrow introduces unphysical scale μ_R where divergence subtractions are performed
- problem when μ_R very different from process scale Q^2 , because Feynman diagrams with n loops contain terms $\sim (\alpha_{\rm s} \ln \mu_{\rm R}^2/Q^2)^n$
- can absorb such known corrections into running coupling: $\alpha_{\rm S} o lpha_{\rm S}(Q^2)$, then log terms at all orders are resummed!
- β function gives the dependence and can be calculated perturbatively:

$$\mu_R^2 \frac{\partial \alpha_S}{\partial \mu_R^2} = \beta(\alpha_S), \quad \beta(\alpha_S) = -\alpha_S^2(b_0 + b_1 \alpha_S + b_2 \alpha_S^2 + \dots)$$





The running coupling.

$$\mu_R^2 \frac{\partial \alpha_S}{\partial \mu_R^2} = \beta(\alpha_S), \quad \beta(\alpha_S) = -\alpha_S^2(b_0 + b_1\alpha_S + b_2\alpha_S^2 + \dots)$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_A n_f - 3C_F n_f}{24\pi^2}$$

- $n_f=$ number of "active" flavour, not large enough to make overall prefactor for β positive \sim coupling decreases for large energy transfers
- "anti-screening" due to gluon self-interaction,
 i.e. consequence of non-abelian gauge group

asymptotic freedom

[Nobel price 2004 for Gross, Polizer, Wilczek]

- high μ_R^2 $^\sim$ small coupling $^\sim$ quarks/gluons interact weakly, perturbation theory works
- low μ_R^2 $^{\sim}$ large coupling $^{\sim}$ quarks/gluons interact strongly, perturbation theory fails ($^{\sim}$ confinement @ large distances)

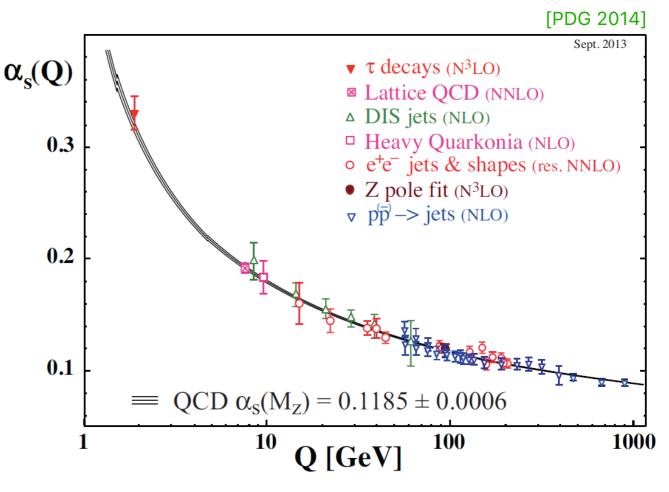
The running coupling.

ullet at leading order (only retaining b_0 term), integrates to

$$\frac{d \alpha_s}{d \ln \mu_R^2} = -b_0 \alpha_s^2 \quad \Rightarrow \quad \alpha_s(\mu_R^2) = \frac{\alpha_s(\mu_0^2)}{1 + b_0 \alpha_s(\mu_0^2) \ln \frac{\mu_R^2}{\mu_0^2}} = \frac{1}{b_0 \ln \frac{\mu_R^2}{\Lambda_{\text{OCD}}^2}}$$

QED running: $\alpha(\mu_R^2) = \frac{\alpha_0}{1 - b_0 \alpha_0 \ln \frac{\mu_R^2}{m_e}}$

- · result expressed in terms of
 - a reference scale μ_0 , e.g. $\mu_0 = m_Z^2 \rightarrow \text{measure } \alpha_s(\mu_0^2)$
 - data $\rightarrow \alpha_s(m_Z^2) \simeq 0.118$
 - or alternatively, the scale where the coupling formally diverges: $\Lambda_{\rm OCD} \simeq 0.2\,{\rm GeV}$
 - perturbation theory valid for $\mu_R^2 \gg \Lambda_{\rm OCD}$

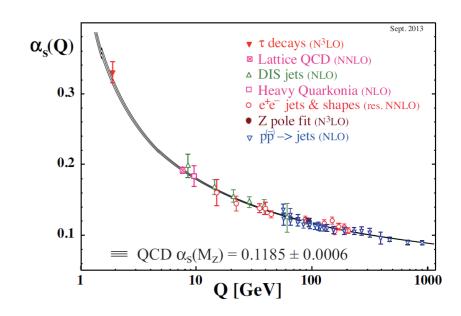


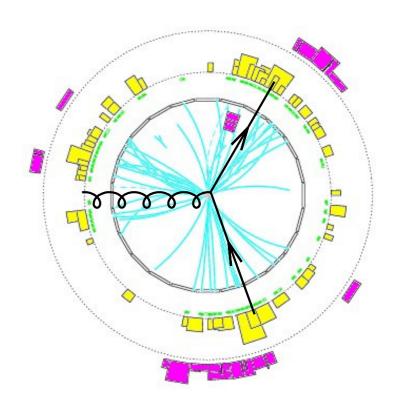
QCD perturbation theory II.

QCD perturbation theory at the LHC?

- typical scales at the LHC (e.g. for New Physics searches) $\mu \sim p_T \sim 30\,{\rm GeV}$ to $5\,{\rm TeV}$ \sim small coupling \checkmark
- on the other hand:
 - collide protons with $m_p \simeq 1 \, {\rm GeV} \sim {\rm large}$ coupling
 - detectors see hadrons, not free partons
 → perturbation theory does not apply
 most striking: we see hundreds of hadrons in a typical event, so certainly there is no one-to-one parton-hadron correspondence for pQCD calculations to first or second order!
- ➡ PT can not give a full solution for QCD at colliders

the factorisation theorem will allow us to untangle perturbative QCD and non-perturbative modelling





How to proceed from here.

QCD basics ✓



- what PT tells us about the structure of QCD events
 - soft-/collinear singularities and the concept of jets
 - parton distribution functions (PDF)
- methods to carry out QCD predictions
 - fixed-order perturbative calculations
 - Monte-Carlo event generators

Soft & collinear singularities and the concept of jets.

Soft gluon emission amplitude.

$$(e^{+}e^{-} \rightarrow)\gamma^{*} \rightarrow q\bar{q}$$

$$\mathcal{M}_{q\bar{q}} = \bigvee_{\substack{ie\gamma_{\mu} \\ p_{2}}}^{ie\gamma_{\mu}} = \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}\delta_{ab}v_{b}(p_{2})$$

now emit a gluon with momentum k and polarisation vector ϵ

$$=-\bar{u}_a(p_1)ig_s\gamma_\nu\epsilon^\nu t^A_{ab}\frac{i\gamma_\sigma(p_1^\sigma+k^\sigma)}{(p_1+k)^2}ie_q\gamma_\mu v_b(p_2)+\bar{u}_a(p_1)ie_q\gamma_\mu\frac{i\gamma_\sigma(p_2^\sigma+k^\sigma)}{(p_2+k)^2}ig_s\gamma_\nu\epsilon^\nu t^A_{ab}v_b(p_2)$$

make gluon soft, i.e. $k \ll p_{1,2}$ and only keep leading terms

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}_a(p_1)ie_q\gamma_\mu t_{ab}^A v_b(p_2) g_s \left(\frac{p_1 \cdot \epsilon}{p_1 \cdot k} - \frac{p_2 \cdot \epsilon}{p_2 \cdot k}\right)$$

Soft gluon emission amplitude: squared.

$$|\mathcal{M}_{q\bar{q}g}|^2 \simeq \sum_{A,a,b,\text{pol}} \left| \bar{u}_a(p_1)ie_q \gamma_\mu t^A_{ab} v_b(p_2) g_s \left(\frac{p_1 \cdot \epsilon}{p_1 \cdot k} - \frac{p_2 \cdot \epsilon}{p_2 \cdot k} \right) \right|^2$$

$$= -|M_{q\bar{q}}| \frac{C_F g_s^2}{p_1 \cdot k} - \frac{p_2}{p_2 \cdot k} \Big)^2 = |M_{q\bar{q}}| \frac{C_F g_s^2}{(p_1 \cdot k)(p_2 \cdot k)} = |M_{q\bar{q}}| \frac{2}{C_F g_s^2} \frac{2}{E^2(1 - \cos \theta)}$$

now include phase-space factor: $d\Phi_{q\bar{q}g} \simeq d\Phi_{q\bar{q}} \frac{d^3 \overrightarrow{k}}{2E(2\pi)^3} = d\Phi_{q\bar{q}} \frac{E^2 dE \sin\theta d\theta d\phi}{2E(2\pi)^3}$

$$|\mathcal{M}_{q\bar{q}g}|^2 d\Phi_{q\bar{q}g} \simeq |\mathcal{M}_{q\bar{q}}|^2 d\Phi_{q\bar{q}} d\mathcal{S}$$

ightharpoonup factorisation into hard $qar{q}$ piece & soft-gluon emission probability $\mathrm{d}\mathcal{S}$

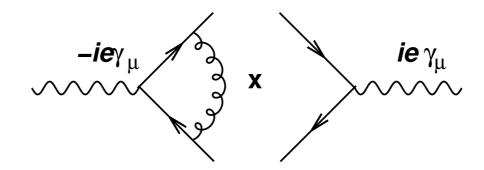
$$d\mathcal{S} = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}, \text{ with } \theta = \theta_{p_1 k} \& \phi \text{ azimuth}$$

gluon emission singularity structure (process-independent):

- diverges for $E \rightarrow 0$, infrared/soft singularity
- diverges for $\theta \to 0$ and $\theta \to \pi$, collinear singularity

Real-virtual cancellation.

• $\mathcal{O}(\alpha_{\mathrm{S}})$ correction to total cross section also includes virtual contributions:



• total cross section must be finite, i.e. virtual must cancel the real divergence:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} R\left(\frac{E}{Q}, \theta\right) - \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} V\left(\frac{E}{Q}, \theta\right) \right)$$

- $R(E/Q,\theta)$ parametrises the full real-emission matrix element, last slide: $R \to 1$ for $E \to 0$
- $V(E/Q, \theta)$ parametrises virtual corrections
- for every divergence, R and V cancel: $\lim_{E \to 0} (R V) = 0$ and $\lim_{\theta \to 0, \pi} (R V) = 0$

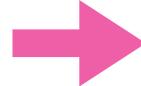
The total cross section.

The emerging picture

- ullet corrections to $\sigma_{
 m tot}$ dominated by hard, large-angle gluons
- soft and/or collinear gluons play no role for $\sigma_{
 m tot}$
 - collisions characterised by time scale $t_{\rm hard} \sim 1/Q$
 - soft gluons emitted on long time scales $t_{\rm soft} \sim 1/(E\theta^2)$ \sim can not influence cross section
 - similarly: transition to hadrons occurs on long time scales $t_{\rm had}\sim 1/\Lambda_{\rm QCD}$ $^{\rightarrow}$ can thus be ignored
- with proper choice for scale of $\alpha_{\rm S}, \mu_{\rm R}=Q$, perturbation theory works well

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(\underbrace{\frac{1}{1} + 1.045 \frac{\alpha_s(Q^2)}{\pi}}_{\text{NLO}} + 0.94 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 - 15 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^3 + \cdots \right)$$

coefficients given for $Q = m_Z$



total cross sections are quantities that are inclusive w/r/t the number of additional QCD partons