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A CONDITIONAL SEQUENCE
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adapted from arXiv:2211.01421

parton level theory

〈

𝛉 NOT 

stochastic;

Frequentist

parton-level 

differential cross section;

including decay

𝛎th … scale unc.

〈
particle level

1. Generators run 

in ‘forward mode’ 

2. Pick up uncertainties

hadronization

analysis level

〈

Likelihood ratio is the optimal statistic

(Neyman-Pearson Lemma)

We use parametrizations in 𝛉, 𝛎.

Unbinned analysis:  machine-learned

https://arxiv.org/pdf/2211.01421.pdf


1. How accurately/low-level should the data be represented?

2. Take an intermediate step towards “latent” fiducial regions/gen-level? 

3. Where to stop, exactly? Publish full likelihood, a Gaussian approximation, CL contours, etc.

QUESTIONS, QUESTIONS, …
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⟵ higher feature dimension

high level features ⟶

⟵ observable latent ⟶

Generic answer: Stop when the 

level is sufficient for θ:

No best answer; make sure 

systematics modeling allows 

combinations

Particle-level SMEFT [exception] 

https://arxiv.org/pdf/2401.10323.pdf


• No optimal observable for many Wilson coefficients.

• tt+X TOP-22-006 captures leading SMEFT dependence with  pT(𝓁,j) or pT(Z)

• D=26  dimensional limits using 178 measurements

DETECTOR LEVEL ANALYSES

• ttɣ differential 

TOP-18-010/TOP-21-004
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held the key to ctZ

Everything else irrelevant!

optimal observable, best limit



• Test statistic: Profiled likelihood ratio (unbinned) θ … SMEFT POI, 𝛎k… nuisances

• Distribution is asymptotically 𝜒2 independent of 𝛎

• Solve with 𝛼=5% for θ to obtain confidence regions.

• Binned approximation for generic detector-level SMEFT analyses

DETECTOR LEVEL ANALYSES
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penaltiesSMEFT dependenceSM yield prefit

uncertainties



• We approximate the yield in a bin j as

• How to get the SMEFT dependence from simulation?

FACTORIZING SMEFT AND SYSTEMATICS
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Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉
staged simulation in forward mode:

Intractable factors cancel

re-calcuable

theory prediction

latent-space

re-weighted

simulation

1) simulation samples the joint space (x,z)

assume systematics to factor out – SMEFT is at a higher energy scale than modelling / detector
possible “post mortem”

(in CMS EFT combination)

2) sampling at a fixed reference point



• A detector level analysis fully integrates

the latent space in each bin.

• Unfolding: Also split in fiducial (gen-level) bins

• SMEFT dependence on the fiducial bin 

• A good approximation if p(x|z) is well localized

and independent of θ. 

• Otherwise, SMEFT “acceptance” effects.

• TTbar amenable to unfolding

• Even STXS acceptance effects are under control

• Well defined data representation for the outside.

UNFOLDED MEASUREMENTS
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reco bin jfiducial bin s

in volume Δz(s)

aka STXS

fiducial (gen.) reco level

SMEFT dependence

associated with bin

SMEFT dependence

associated with template

unfolded: SMEFT effects on the fiducial bin



• All cases enter in the CMS EFT combination

• Highlight #1: PCA

• Highlight #2: “post mortem reweighting”

• Evaluate on existing sample!!

𝜒2 APPROXIMATION + CMS EFT COMBINATION
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Gaussian approximate the likelihood ratio

using the total covariance of the unfolded measurement

unfolded: SMEFT effects on the fiducial bin

SMEFT effects on the detector-level bin



CMS EFT COMBINATION
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• Early example: Left- and right-handed 4-fermion operators

• two-at-atime: tight constraint from combined measurement

• Factor ~10 less powerful marginalized
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left-handed top quarks

all-parameter fits

are less constraining
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• ATLAS charge  asymmetry 

vs. energy asymmetry (two-at-a-time) 

shows comparable same pattern

[Ellis, Sanz, et.al. 

FitMaker JHEP04(2021)279]EXTERNAL GLOBAL FITS

left-handed
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https://link.springer.com/article/10.1007/JHEP04(2021)279
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ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058]

[CMS-TOP-PAS-20-006]

• [ML4EFT] – study ZH and top quark pairs

• Pheno study with parametrized NN classifiers

• Top quark pairs in low (Nf=2) and high feature dimension Nf=18

• Pairs of 2D limits with 6 more ops marginalized

• Binned vs. unbinned: Some gain w/ unbinned when using 2 features

• High dimensional observation (Nf=18) constraining a 

high-dimensional (Ncoef=8) model using an SM candle

• Large improvement for Nf=18– mostly in (only) the 

marginalized limits

IMPROVING HIGH DIMENSIONAL LIMITS

• Whether the sensitivity gain survives systematics in 

an unbinned detector-level analysis is an open 

question

https://arxiv.org/abs/2211.02058
http://cds.cern.ch/record/2803771?ln=en
https://arxiv.org/abs/2211.02058


SMEFT EFFECTS & FEATURE CORRELATION
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• TT(2ℓ) parton-level kinematics, charge asymmetry, spin-correlation, 

all have some information on some of the WC 

• 16 operators, 72 features: TTbar is a SM candle with EFT sensitivity:

Ideal case to develop methodology for an unbinned analyses
linear feature correlation in tt(2ℓ) for HT>500

spin correlation

polarisation

rapidities

momenta/

masses

charge asymmetries

spin correlation charge asymmetry

SC; lin. only CA; lin. only

charge asymmetry



• We must be able to efficiently evaluate 

• Parametrize the differential cross section ratio in terms of POIs and nuisances.

• ML fit of SMEFT dependence: A solved problem

TOWARDS AN UNBINNED ANALYSIS
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Available in simulation! Only nominal simulation

Fit with neural networks

or with trees

lin/quad

SMEFT dependencies

SMEFT dependence: ℝ72→ℝ136

(learned with Boosted Information Tree)



PARAMETRIZING THE LIKELIHOOD RATIO

• What about the systematic dependence?
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weight-based

systematics

parametrized 

systematics

SMEFT dependence: ℝ72→ℝ136

(learned with Boosted Information Tree)

Need to parametrize

nuisances, e.g., JEC

(here: total)

+71 other features

lin/quad

SMEFT dependencies

?



BESTIARY OF SYSTEMATICS (RECIPIES)
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JERC

b-tagging

lepton-eff

scales



CALIBRATION SYSTEMATICS
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• Need: Likelihood ratio for the same observatio x and different 𝛎:

• Have: JME prescription “J” that varies x and 𝛎 such that the likleihood const.:

• Solution: Train a parametric regressor a parametrisation

Tree or NN Tree or NNJEC variied samples

Use many!

a factor in the LLR

parametric in vJEC

TT(2ℓ), HT>500 (8 features), 𝛎: JES total 𝛎: JESFlavorQCD



• Must we learn b-tagging? After all, it produces event weights 

that can be interpreted as likleihood ratio

• However f, the true jet flavor, is latent. Jet pT, η are observed.

• Can not compute the LLR(𝛎HF) test statistic from an observation

• B-tagging must be learned.

• Pro: Covers efficiency & udsg/c-fakes

OBJECT LEVEL: B-TAGGING
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B-tag reweighting

is latent



• Must we learn lepton-efficiency SF ? 

• Parametrized in terms of measured quantities.

Need not be learned.

• Normalization uncertainties

• There is a catch: non-prompt/fakes are sourced by jets,

hence we do not use scale factors. 

• The non-prompt background component is on the same 

footing as tW, diboson, ttV backgrounds

• Train a multiclassifier to scale the cross sections

within uncertainties

LEPTON UNCERTAINTIES & NORMALIZATIONS

18



SUMMARY
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LEARNING SYSTEMATICS

• Let’s start with Cross-Entropy and a single variation 𝛎

• L converges to

• To learn a more general dependence, let’s inject our exponential ansatz for NN outputs 𝛅, Δ

• This gives:

which we can write as 
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LEARNING JEC & OTHERS

• As a start, fit 7 features to JEC-total [all plots]
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Probably more precise than

binned 2-point variations

Expect no issues with fitting

split JEC nuisance effects

(Famous last words.)

https://schoef.web.cern.ch/schoef/pytorch/tt-jec/training/ht/


BOOSTED PARAMETRIC TREE

• Long story short: We made a parametric tree-boosting algorithm that learns the Taylor series of the 

log-likelihood ratio 

• It has the usual interpretation as a Fisher-Information optimum
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• [ML4EFT] derives the non-centrality term of the asymptotic 𝜒2 distribution of the test statistic as

• It is quite marvelous that, after minimizing the LLR, we can compute the asymptotic distribution of the 

test statistic for arbitrary parameter points without toys

TOOLS FOR R&D: UNBINNED ASIMOV DATASET
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https://arxiv.org/pdf/2211.02058.pdf
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• Madminer: Neural networks based likelihood-free inference & related techniques 

• K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

• J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn [1908.06980]

• A. Butter, T. Plehn, N. Soybelman, J. Brehmer [2109.10414]

• established many of the main ideas & statistical interpretation in various NN applications

• Weight derivative regression (A.Valassi) [2003.12853]

• Parametrized classifiers for SM-EFT: NN with quadratic structure

• S. Chen, A. Glioti, G. Panico, A. Wulzer [JHEP 05 (2021) 247]

• Boosted Information Trees: Tree algorithms & boosting

• S. Chatterjee, S. Rohshap, N. Frohner, R.S., D. Schwarz [2107.10859], [2205.12976]

• ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058] 

• All approaches are “SMEFT-specific ML” with differences mostly on the practical side

my practical

experience

WH with Bkgs

REFERENCES

https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
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https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf
https://arxiv.org/pdf/1908.06980.pdf
https://arxiv.org/pdf/2109.10414.pdf
https://arxiv.org/abs/2003.12853
https://arxiv.org/abs/2007.10356
https://arxiv.org/abs/2107.10859
https://arxiv.org/abs/2205.12976
https://arxiv.org/abs/2211.02058


EXPLOITING SMEFT REWEIGHTING
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Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉
staged simulation in forward mode:

Intractable factors cancel

re-calcuable

theory prediction

weighted

simulation

𝛉 - aware

We start with SM and BSM samples

EFT sample SM sample

Let’s write this under one integral

z … latent space

… and use just one sample 

& joint likelihood ratio

SM sample

“joint” likelihood ratio
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Similar to 

S. Chen, A. Glioti, 

G. Panico, A. Wulzer

JHEP 05 (2021) 247

arXiv:2308.05704

invert likelihood trick

insert model knowledge: 

fit universal

coefficient functions

MSE or cross entropy

K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] 

[1805.00020] 

[1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

“Madminer” 

Why would you

want to use trees instead?

Integrates latent space!

PARAMETRIZED CLASSIFIERS

https://arxiv.org/abs/2007.10356
2308.05704
https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
https://arxiv.org/pdf/1805.00020.pdf
https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf


A SIMPLE TREE ALGORITHM

• Let us make a tree-based ansatz for the differential cross-section ratio R

• The “weak learner” is a tree  associating a sub-region (j) of a partitioning 𝒥 with a  predictive function Fj

• Note: A tree algorithm can have an arbitrarily complicated predictive function; here it is a SMEFT polynomial

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.
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cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:

e.g. “CART” algo

x1

x2

F1(𝛉) F2(𝛉) F3(𝛉)

F4(𝛉)
F7(𝛉)F6(𝛉)

F8(𝛉)

phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

phase space

partitioning J
prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

A simple tree

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


28

Regress in r,  including its the polynomial 𝛉 dependence

Tree ansatz

Fj(𝛉) polynomial with const. coeff.

(per node) 

Solve for optimal partitioning with greedy CART algorithm

We’ll find an optimized tree.

→ boost

[arXiv:2107.10859, arXiv:2205:12976]

→ will allow to compute the

optimal LLR test statistic q(𝒟)

find optimal 

partitioning

find optimal 

predictor

No trainable parameters in the predictor

PARAMETRIZED TREES

sum up event weights

within node & divide

Remove DOF from predictor:

We’re optimizing the Fisher information!

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


CONCRETE SOLUTION: TREE BOOSTING

• Boosting: Fit model iteratively to pseudo-residuals of the preceding iteration with learning rate η

• Ansatz :

• Insert into the loss function:

29

previous iteration current iteration

pseudo-residual, amounting

to event-leve reweighting

current 

iteration

current

iteration

previous

iteration

…. perform this iteratively
“Boosted Information Tree”

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


1. Simulation:

2. Exploit simplicity of the joint space: Intractable factors cancel in the joint likelihood ratio

3. Regress (e.g.) in the joint likelihood ratio, ignoring the latent space.

4. Obtain change of likelihood for a specific observation, suitably integrating latent histories. NP optimal!
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[Madminer 1805.00020] 

Full list of references in backup

Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉
staged simulation in forward mode:

Intractable factors cancel

Latent space is integrated

in numerator and denominator

Available in simulation!

(MSE loss only for illustration)

what we actually want:

change in likelihood of

a specific observation

re-calcuable

theory prediction

Needed:

weighted

simulation

SIMULATION BASED INFERENCE 

https://arxiv.org/pdf/1805.00020.pdf

