CURRENT STATE OF SOLAR (astalan ROTATION MEASUREMIENTS

Rafael A. García

Astrophysics Division, CEA-Saclay, France
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France

> I-Introduction

- Why Rotation?
- Importance in the context of Solar (stellar) modelling?
- Some open questions still need to be solved
> II- Measuring Surface and Internal rotation
- Methods and some historical context
- Methods to infer internal rotation
$>$ III-Results
- Convective Zone, Tachocline, Radiative interior
- Current limits
- High latitudes \& Core
- Temporal (cyclic) variations
- Torsional oscillations
$>$ IV-Stellar rotation
- Is the Sun rotation profile representative of other MS stars?
> V-Conclusions \& Perspectives

I- Introduction

inimarato

$>$ Rotation is a key parameter of stellar evolution

> Temporal evolution of stellar rotation

- Shows complex behaviour pointing out to different physical processes at work as a function of time

$>$ Simulated time evolution of stars up to the solar age
- Placing the Sun in a more stellar context

$>$ Rotation is a key parameter of stellar evolution
- Diagnostics of different physics in stellar interior models
- The Sun is not always the best calibrator. We need to look at earlier and later ages

> YREC Models
- Hydro and solid body models: the weakest and strongest possible coupling of AM
- Hybride models: in addition to AM diffusion induced by hydrodynamics, drive additional parametrized constant diffusion.

Surface (differential) Rotation

- Main probe of the convective envelope
- One of the main ingredients
- Magnetic activity (\& Cycles)
[e.g. Brun \& Browning 2017
Role of the interactions with the environment
- Solar wind
- Space weather
- Planets
- Dynamics
[e.g. Georgieva 2013]
- Habitability
- Are planet host stars rotating slower?

[e.g.Sibony, Helled, Feldmann 2022
Ferraz-Mello \& Beaugé 2023]]

Surface (differential) Rotation

- Main probe of the convective envelope
- One of the main ingredients
- Magnetic activity (\& Cycles)
[e.g. Brun \& Browning 2017]
Role of the interactions with the

Internal (differential) Rotation

- Angular momentum transport
- Internal mixing
- Connexion with surface abundances (e.g. Li, He)

Internal rotation profile

- Not yet completely understood
- What happens:
- at the poles?
- At the core?
> Close-in planets migration due to tidal and magnetic torques: Depends on stellar rotation evolution.

$>$ The fast migration phase is dominated by the tides
$>$ After co-rotation, the magnetic torque is responsible for the migration towards the star
$>$ Close-in planets migration due to tidal and magnetic torques: Depends on stellar rotation evolution

Perturbation by a planet of mass $1 \mathrm{M}_{\text {Jup }}$ Initial semi-major axis : 0.03 AU

Signature of the destruction of a planet

$>$ Close-in planets migration due to tidal and magnetic torques: Depends on stellar rotation evolution.

II- Measuring

Surface and Internal rotation

II-MEASURING ROTATION: SURFACE
$>$ Tracking features on the surface of the Sun

- SDO/AIA $1700 \AA$

$>$ Integrating the total flux
- SoHO/VIRGO/SPM (visible light)

SoHO Observations

- VIRGO/SPM Green channel
- GOLF: Doppler velocity

II-MEASURING ROTATION: SURFACE

$>$ Oriental Observations:

A BIT OF HISTORY

- Naked eye observation of sunspots started in China
- Book of Changes, oldest surviving Chinese book compiled at around 800 BC

- The text reads "A dou/mei is seen in the Sun". From the context, the words (i.e., Chinese characters) "dou" and "mei" mean "darkening" or "obscuration".

Yaư, 1988, Vaquero \& Vázquez, 2009]
> Occidental Observations

- December 8, 1128 by John of Worcester
- "...there appeared from the morning right up to the evening two black spheres against the sun. The first was in the upper part and large, the second in the lower and small, and each was directly opposite the other as this diagram shows..."

- Observations by telescope
- 1612 by Galileo Gallilei
- Rotation of the Sun \& the inclination of the rotation axis
- 1630 Christoph Scheiner
- Depicted a slight inclination of the Sun's axis of rotation with respect to the ecliptic (70)
- Prot of 25 to 35 d from equator to near the poles

II-MEASURING ROTATION: SURFACE A BIT OF HISTORY

> Richard Christopher Carrington:

- Devised a system of heliographic coordinates to track the motion of sunspots across the solar disk.
- Defined a reference meridian and assigned a fixed longitude to it.
- Introducing a synodic rotation period of 27.2753 days the solar
- corresponds to the average motion of sunspots at a latitude of 26 degrees
- This period is still used today as a standard unit for solar rotation and is known as a Carrington rotation
[Appourchaux \& Grundhal 2018]
- Other discoveries:
- Discovery of Sun's differential latitudinal rotation
- Discovery of equatorward migration of spots in the course of the cycle

- Determination of the Sun's rotation axis with an accuracy previously unprecedented
- First and serendipitous observation of a white-light flare.

II-MEASURING ROTA TION: SEISMOLOGY A BIT OF HISTORY: SPACE INSTRUMENTATION

$>$ The development of space instrumentation for asteroseismology

- Linked to the study of rotation
$>$ CNES Instrument: Étude de la Variabilité, de la Rotation et des Intérieurs Stellaires (EVRIS)
- A bord de la mission MARS96
- A failure of the second fourth-stage burn
- Burnt over the Pacific Ocean
> CNES/ESA: Convection, Rotations et Transits planétaires mission (CoRoT, 2006-2014)

- Success for asteroseismic studies and rotation
> Studies for ESA prior to PLATO:
- PRISMA: Probing Rotation and Interior of Stars: Microvariability and Activity
- STARS: "...will determine an average ot the internal angular celocity from measurements of the rotational splitings..."
- EDDINGTON: "...quantitatively determining, e.g., the size of convective regions, ..., internal rotation..."

Mode family:
Restoring force:

p modes

Compressibility

g modes	Inertial modes
Buoyancy	Coriolis force

Each perturbation can be expressed:

$$
f^{\prime}(r, \theta, \phi, t)=\sqrt{4 \pi} \operatorname{Re}\left[f^{\prime}(r) Y_{l}^{m}(\theta, \phi) e^{-i w_{n, l, m} t}\right]
$$

Mode family	p modes	g modes	Inerial modes
Restoring force	Compressibility	Buoyancy	Corivils force

> Asymptotically

- equally spaced in period
$>$ Excitation
- by convection in solar-type stars
> Evanescent
- in convective regions
$>$ Effect of the rotation on the m components of an $\mathrm{I}=1$ mode

II-MEASURING ROTATION: SEISMOLOGY

$>$ Effect of the rotation inclination axis on the visibility of the m components of an $\mathrm{I}=1$ mode

université PARIS-SACLAY UV Sidinesster
> Imaged instruments
$>$ Integrated (Sun-as-a-star) instruments

- Low-degree modes

- High-degree modes
$>$ Lower turning point of p modes depend on:
- Degree
- Frequency

$$
\begin{gathered}
r_{\mathrm{t}}=c_{\mathrm{t}} L /\left(2 \pi v_{n \ell}\right) \\
L=\ell+1 / 2 \\
c_{\mathrm{t}}=c\left(r_{\mathrm{t}}\right)
\end{gathered}
$$

$>$ Which are the best modes to extract information on the inner radiative regions?

- Balance between intrinsic sensibility and precision on the measurements

$>$ For low-degree modes
- Splittings are directly fitted to the data
- Multi-Lorentzian profile
$v_{n, \ell, m}=v_{n, \ell}-m v_{\mathrm{s}}$
Sensitivity of the splitings to the inner $0.2 \mathrm{R}_{\odot}$

II-MEASURING ROTATION: SEISMOLOGY
> Measuring mid- and high-degree splittings

- By fitting polynomials to the ridges

> Leakage problem
- Spherical harmonic masks are used to separate the contributions from modes of different degrees and azimuthal orders

$M_{l, m} \propto Y_{l, m}(\theta, \phi) A(\rho)$

[Howe \& Thompson 1998 see also Schou \& Brown 1994]

universitė PARIS-SACLAY
- Because only part of the solar surface is visible at any time:
- Masks are not completely orthogonal
- Modes "leak" into neighboring spectra

From splittings to internal rotation profile:

Simulated rotation profiles

Theoretical an observed splittings

Helioseismic inversion

Aim of inversion: to make inferences about (usually) localized properties of the solar interior

Helioseismic inversion

Aim of inversion: to make inferences about (usually) localized properties of the solar interior

Kernels

Model-dependent spatial weighting functions

Aim of inversion: to make inferences about (usually) localized properties of the solar interior
$>$ From splittings to internal rotation profile:

- Inversions (see talk on Wednesday by J. Bétrisey)
- Several methods:
- Least Squares (LS) fitting

Approximate the unknown function $\Omega(r)$
in terms of a chosen set of basis functions $\varphi_{k}(r): \Omega(r) \approx \bar{\Omega}(r)=\Sigma x_{k} \varphi_{k}(r)$.

Choose coefficients x_{k} to minimize

$$
\sum_{i}\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}
$$

For simplicity, we shall use single subscript " i "
in place of " n

This can be written as a matrix equation: minimize $|A \underline{x}-\underline{b}|^{2}$.

The solution of this is

$$
\underline{x}=\left(A^{\top} A\right)^{-1} A^{\top} \underline{b} .
$$

Unfortunately, unless we choose a highly restrictive representation for $\bar{\Omega}$, the matrix A is usually ill-conditioned in helioseismic inversions and so the LS solution \underline{x} and hence $\bar{\Omega}$ also are dominated by data noise and thus useless.
$>$ From splittings to internal rotation profile:

- Inversions (see talk on Wednesday by J. Bétrisey)
- Several methods:
- Least Squares (LS) fitting

Approximate the unknown function $\Omega(r)$
in terms of a chosen set of basis functions $\varphi_{k}(r): \Omega(r) \approx \bar{\Omega}(r)=\Sigma x_{k} \varphi_{k}(r)$.

Choose coefficients x_{k} to minimize

$$
\sum_{i}\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}
$$

For simplicity, we shall use single subscript " i "
in place of " n

Aim of inversion: to make inferences about (usually) localized properties of the solar interior

Regularized Least Squares (RLS) fitting

Regularized Least-Squares (RLS, fitting

We can get better-behaved solutions out of LS by adding a "regularization term" to the minimization: e.g. to minimize
$\sum\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}+\lambda^{2} \int \bar{\Omega}^{2} d r$
${ }^{\text {or }} \sum\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}+\lambda^{2} \int\left(d^{2} \bar{\Omega} / d r^{2}\right)^{2} d r$
This can again be written as a matrix equation: minimize $|A \underline{x}-\underline{b}|^{2}+\Lambda^{2}|L \underline{x}|^{2}$. The solution is $\underline{x}=\left(A^{\top} A+\Lambda^{2} L^{\top} L\right)^{-1} A^{\top} \underline{b}$

Example of averaging kernels for a RLS inversion

- From splittings to internal rotation profile:
- Inversions (see talk on Wednesday by J. Bétrisey)

Backus and Gilbert, 1968, 1970]

Aim of inversion: to make inferences about (usually) localized properties of the solar interior

- Several methods:
- Regularized Least Squares (RLS) fitting

Optimally Localized Averages (OLA)

Regularized Least-Squares (RLS,

 fittingWe can get better-behaved solutions out of LS by adding a "regularization term" to the minimization: e.g. to minimize
$\sum_{\text {or }}\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}+\lambda^{2} \int \bar{\Omega}^{2} d r$
or
$\sum\left(\frac{d_{i}-\int K_{i} \bar{\Omega} d r}{\sigma_{i}}\right)^{2}+\lambda^{2} \int\left(d^{2} \bar{\Omega} / d r^{2}\right)^{2} d r$
This can again be written as a matrix equation: minimize $|A \underline{x}-\underline{b}|^{2}+\Lambda^{2}|L \underline{x}|^{2}$. The solution is $\underline{x}=\left(A^{\top} A+\Lambda^{2} L^{\top} L\right)^{-1} A^{\top} \underline{b}$

$$
d_{i}=\int K_{i}(r) \Omega(r) d r+\epsilon_{i} \quad i=1, \ldots, M
$$

Idea: for each radial location r_{0}, try to find a linear combination of the kernels that is localized there.

$$
\mathcal{K}\left(r, r_{0}\right)=\sum_{i=1}^{M} c_{i}\left(r_{0}\right) K_{i}(r)
$$

If successful, then the same linear combination of the data is a localized average of the rotation rate near $r=r_{0}$:

$$
\begin{aligned}
\bar{\Omega}\left(r_{0}\right) \equiv \sum c_{i} d_{i} & =\int\left(\sum c_{i} K_{i}\right) \Omega d r+\sum c_{i} \epsilon_{i} \\
& =\int \mathcal{K} \Omega d r+\sum c_{i} \epsilon_{i}
\end{aligned}
$$

Neutrinos:

- Another way to extract information of the solar interior
- Depends on the thermodynamical conditions of the core

- And the nuclear reactions

Variability of solar neutrino flux

- Time scales of weeks (GALLEX-GNO and SAGE)
- If neutrinos have nonzero magnetic moment:
- Their flux could be modulated by inhomogeneous magnetic fields
- Time scales of solar rotation
- Comparison with SoHO/MDI data:
- Common peaks in the L-S periodogram in the CZ
- Resonance statistics:
- Degree of resonance of oscillations in the neutrino flux and the solar rotation as a function of radius and latitude
- The modulation is occurring in the convection zone, near the equator

II-MEASURING ROTATION: NEUTRINOS

> Neutrinos:

- Another way to extract information of the solar interior
- Depends on the thermodynamic conditions of the core
- And the nuclear reactions
$>$ Variability of solar neutrino flux
- Time scales of weeks (Super-Kamiokande)
- Two main stable peaks at 38.71 and 28.97 days
$>$ Variability found in nuclear-decay experiments
- Found in different laboratories in the world
- Modulations at around solar rotation rate found

Rotational modulations due to an influence of the solar internal magnetic field by the RSFP (Resonant Spin-Flavour Precession) process.

- Detection of doublets and triplet separated by 1 year
- Could be due to misalignments internal rotation axes with respect to the normal to the ecliptic
universitė

niver
> Some key periods of time:
- 1960s: Before seismology
- Measurement of the oblatness of the Sun that could be caused by a fast internal rotation but
- Controversy raised
[Dicke 1964, Dicke and Goldenberg 1967]
- E.g. could be explained by dififerential rotation
- SCLERA found a much smaller oblatness and some temporal variation
[Hill and Stebbins 1975, Hill 1974]
- Temporal variations confirmed with SoHO/MDI observations (higher at maximum activity)
- But the temporal variations could be removed by a magnetic term [Fivian+ 2008]
> Some key periods of time:
- 1960s: Before seismology
- Measure of the oblatness of the Sun that could be caused by a fast internal rotation but
- SCLERA found a much smaller oblatness and some temporal variation
- 1980s: With Seismology
- First measurements of global splitings
- But the values given were too high and not confirmed, ruled out later by the large width of the modes
- And from SCLERA
- First results on rotation nearly solar equator
- Small variation with r but slower in the RZ [Brown 1985, Duvall Jrt 1986]
- Dependence of splitings with m

- First constraints on latitudinal rotation

- >1990s
- BiSON + IRIS + IPHIR + SoHO/(GOLF, MDI, VIRGO) + LOW-I + SDO/HMI

universite PARIS-SACLAY
$>$ Medium degree modes (up to I ~200)
Cycle 23: 12.6 years

$>$ Medium degree modes (up to I ~200)
- Need to use the longest time series (SNR follows sqri(T))
- But posible biases due to magnetic activity
- Depending on current uncertainties
- GONG 25 years
- Compared to other sets of data
- MDI \& HMI
- In general, differences are
- ~< 10%

solution Iterative method, local 1st derivative

> Visible in modern inversions

NEAR-SURFACE SHEAR

- Not visible at higher latitudes towards the poles
- Similar results independently of
- Instruments
- And techniques:
- Global vs Local seismology
- Quasiperiodic Global-Scale Oscillations
- Large scale shear variations
- Both zonal and meridional flows
- Reverses with a period of a solar rotation
- Small scales anomalies around active regions
- Support solar origin

$>$ Late 80s: Presence of shear layer [Brown+1989, Dziembowskit 1989]
- Modes of I~20
- lower turning points at this depth but with poor resolution in the inversion ($1-10 \%$ in the radial direction)
- General consensus stablishes the centroid of the shear layer right below the base of the CZ
- The thickness is $\sim 0.05 R_{\odot}$
- With some possible change with latitude
- Possible variations with time
- But still controversial

Reference	$\boldsymbol{r} / \boldsymbol{R}_{\odot}$	$\boldsymbol{\sigma}_{\boldsymbol{r}} / \boldsymbol{R}_{\odot}$	$\boldsymbol{\Gamma} / \boldsymbol{R}_{\odot}$	$\boldsymbol{\sigma}_{\boldsymbol{\Gamma}} / \boldsymbol{R}_{\odot}$	Project [Howe 2009]
Kosovichev (1996)	0.692	0.005	0.09	0.04	BBSO
Wilson et al. (1996a)	0.68	0.01	0.12	-	BBSO
Basu (1997)	0.705	0.0027	0.0480	0.0127	GONG
Antia et al. (1998)	0.6947	0.0035	0.033	0.0069	GONG
Corbard et al. (1998a)	0.695	0.005	0.05	0.03	LOWL
Corbard et al. (1999)	0.691	0.004	0.01	0.03	LOWL
Charbonneau et al. (1999)	0.693	0.002	0.039	0.002	LOWL
Elliott and Gough (1999)	0.697	0.002	0.019	0.001	MDI
Basu and Antia (2003)	0.6916	0.0019	0.0162	0.0032	MDI, GONG

VARIATIONS: TORSIONAL OSCILLATIONS

$>$ Is a pattern of migrating bands faster/slower than average zonal (i.e., parallel to the equator) flow associated with the equatorward drift of the activity belts during the solar cycle.

2dRLS inversion residuals of GONG, MDI, and HMI rotational splitting data, at a target depth of $0.99 R_{\odot}$

VARIATIONS: TORSIONAL OSCILLATIONS

> Is a pattern of migrating bands faster/slower than average zonal (i.e., parallel to the equator) flow associated with the equatorward drift of the activity belts during the solar cycle.

2dRLS inversion residuals of GONG, MDI, and HMI rotational splitting data, at a target depth of $0.99 R_{\odot}$

VARIATIONS: TORSIONAL OSCILLATIONS

$>$ Is a pattern of migrating bands faster/slower than average zonal (i.e., parallel to the equator) flow associated with the equatorward drift of the activity belts during the solar cycle.

2dRLS inversion residuals of GONG, MDI, and HMI rotational splitting data, at a target depth of $0.99 R_{\odot}$

VARIATIONS: TORSIONAL OSCILLATIONS

$>$ Is a pattern of migrating bands faster/slower than average zonal (i.e., parallel to the equator) flow associated with the equatorward drift of the activity belts during the solar cycle.

The agreement is very good in the north hemisphere but not in the south
Why?

VARIATIONS: TORSIONAL OSCILLATIONS

Is a pattern of migrating bands faster/slower than average zonal (i.e., parallel to the equator) flow associated with the equatorward drift of the activity belts during the solar cycle.
$>$ Strong dependence with depth

Also observed with local seismology (ring diagrams)

$>$ Low- + medium-degree modes combined (up to $1<1<200$)

- Improves the result in the radiative zone
- P modes with current uncertainties
- No information below $0.2 \mathrm{R}_{\odot}$
- Only a few g modes are enough

Errors 7.5 and 75 nHz 8 g modes $\{$

> The shalower and deeper regions:

- are limited by the deepest and shallowest turning-point radil of the available modes
> Equator
- Higher sensitivity for sectoral modes $\mathrm{I}=|\mathrm{m}|$
$>$ Rotation axis and poles:
- No sensitivity to rotation on the axis
- Close to the poles, need to improve overall uncertainties to have better localized kernels
$>$ Radiative interior:
- Latitudinal sensitivity of the radiative interior:
- Only $\mathrm{I} \leq 20$ penetrate into the radiative interior ($v \leq 3 \mathrm{mHz}$)
- The latitudinal resolution is quite poor and becomes progressively worse with depth
$>$ Core (below $0.2 \mathrm{R}_{\odot}$)
- Nearly no sensitivity with p modes
- With current uncertainties
- Need of g modes
- Inversions of subgiants and giants with mixed modes

- Allow to obtain the rotation of the core

IV- Stellar Rotation Is the Sun rotation profile representative of other MS stars?

Analysis of 22 main-sequence stars with masses between 1.0 and $1.6 \mathrm{M}_{\odot}$

- Combining seismic analysis of Kepler \& CoRoT

$$
\delta \nu_{n, l} \simeq I_{\mathrm{rad}} f_{\mathrm{rad}}+I_{\mathrm{conv}} f_{\mathrm{conv}} \quad I_{\mathrm{conv}}+I_{\mathrm{rad}}=1
$$

" " " are the integrals of the Kernels

- Assuming

Two zones (CZ \& RZ) rotate uniformly with different rates (about the same axis)

- $f_{\text {conv }}$ is equal to the surface rotation (as in the solar case) $=>f_{\text {conv }}=f_{\text {surf }}$
- Rotational splittings remain nearly constant over the observed ranges of n and

$$
\left\langle f_{\text {rad }}\right\rangle=f_{\text {surf }}+\left\langle I_{\text {rad }}\right\rangle^{-1}\left(f_{\text {seis }}-f_{\text {surf }}\right) .
$$

 before the MS stage of stars
universitė

V-Conclusions

 AndPerspectives
$>$ The internal solar rotation profile

- Is robust from the equator to near the poles and down to $0.2 \mathrm{R}_{\odot}$
$>$ Tachocline
- Need to improve the resolution in this region
- Local seismology \& different vantage points (several satellites (!))
$>$ Need to improve uncertainties
- data
- Longer data sets (in progress)
- Need to be carefull with systematic effects (magnetic activity cycle)
- inversions
- Improving the inversion techniques (in progress)
> The rate of the rotation in the RZ vs CZ (surface)
- seems similar to those found in other stars with Kepler \& CoRoT
$>$ Look for gravity modes
- In current datasets or with new instrumentation
$>$ Comparison \& improvements of 2D \& 3D models

Objective

- To produce the best reference solar rotation inversion

Originally organized by:

- García, Jain, Mathur, \& Thompson (07/2017)
+ Bertello, Hill, \& Tripathy
Coordinated by:
- Theoretical/modeling:
- Thompson/JCD
- Data analysis
- García
- Around 20-30 scientists involved
- Results are slowly coming
- 2024: papers on data analysis and observations
> Tackling some known issues:
- Precision of the kernels
- Uncertainties on the inversions
$>$ Discussions about, e.g.:
- Tachocline
- Solar core
> On the data analysis side
- Solve differences between "fitters" and "codes"
- Compatibility of instruments and techniques
- E.g. merging Sun-as-a-star and imaged instruments

If you want to get involved ... and you have time to work Contact us !!

Cla

