

Gravity waves in the Sun: generation, detection, and transport

Charly Pinçon

Workshop "Future of solar modeling", Sierre 2023

1

Gravity waves in general

Subsonic (incompressible) waves: buoyancy as the restoring force

$$k_r^2 = k_h^2 \left(\frac{N^2}{\omega^2} - 1\right) \begin{cases} \text{If } k_r^2 < 0 \Rightarrow \text{Evanescent} \\ \text{If } k_r^2 > 0 \Rightarrow \text{Propagation} \\ N^2 = \frac{g \,\delta}{C_P} \frac{ds}{dr} \\ = \text{stratification level} \end{cases}$$

Credit: Pierrick Verwilghen

Credit : Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC

$$k_r^2 = k_h^2 \left(\frac{N^2}{\omega^2} - 1\right)$$

- Propagation regions:
 - between 0 < r < 0.7 R_{sun} for 0 < ν < 400 μHz
 - $0 < \nu < 200 \mu$ Hz: evanesecent in the surface convective zone
 - 200 < ν < 400 μHz : coupling with surface acoustic modes = "Mixed modes"

$$k_r^2 = k_h^2 \left(\frac{N^2}{\omega^2} - 1\right)$$

- Propagation regions:
 - between 0 < r < 0.7 R_{sun} for 0 < ν < 400 μHz
 - $0 < v < 200 \mu$ Hz: evanesecent in the surface convective zone
 - 200 < ν < 400 μHz : coupling with surface acoustic modes = "Mixed modes"

- Generated by the surface convection motions
- \checkmark Energy propagating in inclined planes for given I and m

 \checkmark Spiraling around the stellar center \rightarrow pattern depends on the wave frequency

Damping in the radiative region (only...)

- IGW induces local excess/deficiency of thermal internal energy
 - Radiative diffusion tends to smooth out these thermal gradients.

Damping in the radiative region (only...)

- IGW induces local excess/deficiency of thermal internal energy
 - Radiative diffusion tends to smooth out these thermal gradients.

Damping in the radiative region (only...)

- IGW induces local excess/deficiency of thermal internal energy
 - Radiative diffusion tends to smooth out these thermal gradients.

- Two questions:
 - Deposit of energy in the medium \rightarrow transport efficiency ?
 - Finite amplitude -> detectability (question of g-modes) ?
 - \rightarrow Need to know the wave amplitude ...

IGW generation in numerical simulations of the Sun

→ Discrepancies: toward realistic setup and spectral studies.

IGW generation in numerical simulations of the Sun

Alvan+2014,2015

- → Spherical geometry geometry, realistic thermal structure
- \rightarrow Gaussian at low frequency / Power law at high frequency
- → Still enhanced thermal diffusivity, question of the thermal relaxation...

IGW generation in numerical simulations of the Sun

Overall, numerical simulations are good guides, but still not realistic enough (cf. simu Re ~ 10^5 / stars Re ~ 10^{12})

→ Need for complementary semianalytical estimates !

1- Excitation by turbulent Reynold stress

Several excitation models, but a general mechanism/expression

- Pressure matching at the rad/conv interface (Press 1981, Garcia-Lopez+1991, Zahn+1997)
- Reynold forcing through the convective bulk (Kumar 1999, Lecoanet 2013)

1- Excitation by turbulent Reynold stress

Several excitation models, but a general mechanism/expression

- Pressure matching at the rad/conv interface (Press 1981, Garcia-Lopez+1991, Zahn+1997)

- Reynold forcing through the convective bulk (Kumar 1999, Lecoanet 2013)

Driving = Ram pressure exerted by an ensemble of incoherent plumes (Pinçon+2016)

- Momentum equation: $\rho \partial_t^2 \boldsymbol{\xi} + \boldsymbol{\nabla} p' \rho' \boldsymbol{g} + \rho \boldsymbol{\nabla} \psi' = -\boldsymbol{\nabla} \cdot (\rho \boldsymbol{\mathcal{V}}_p \otimes \boldsymbol{\mathcal{V}}_p)$ Radial plume velocity $\boldsymbol{\mathcal{V}}_p$ $(\boldsymbol{r}, t) = f\left(\frac{t}{\tau_p}\right) \boldsymbol{\mathcal{V}}_r(r) e^{-S_h^2/2b^2} \boldsymbol{e}_r$

- No heat exchange during the excitation (adiabatic approximation)
 - \rightarrow Ram pressure dominates on the plume lifetime.
- Excitation assumed stationary, ergodic and uniform horizontally
 - \rightarrow Statistical approach: semi-analytical approximation of the wave energy flux.

Excitation efficiency

- \rightarrow Froude number ~ reaction of the medium to the plume penetration.
- → In the Sun, $F_R \sim 10^{-3}$

Penetrative convection vs Reynold stress

Turbulent pressure vs Penetrative convection :

Shape : decreasing power laws vs Gaussian Degree at maximum : size of convective eddies > size of plumes at the BCZ Total flux : ~ 0.1 % vs ~ 0.6 % of the solar energy flux

(Note : the total spectra is a weighted sum of both contributions)

Penetrative convection vs Reynold stress

Detectability: the quest of the g-modes.

Resonant gravity modes = potential diagnostic of the solar core:

- Core stratification \Rightarrow complementarity with neutrinos (e.g., Salmon+2021)

⇒ constraints on metallicity, nuclear reactions, electron screening

- Constraint on the angular momentum redistribution (e.g., Eggenberger 2019)

Evanescent, very small amplitudes at the solar surface

- Several claims of detection, but no confirmation (e.g., Brookes+1976, Severnyi+1976, Delache+1983, Thomson+1995, Turck-Chièze+2004, Garcia+2007)

Most recent claim by Fossat+2017,2018

- Search for the signature of g-modes in the p-mode spectrum
- Not reproduced (Schunker2018, Appourchaux 2019)
- p- and g-mode coupling too small (Scherrer 2019, Böning 2019)

Evanescent, very small amplitudes at the solar surface

- Several claims of detection, but no confirmation (e.g., Brookes+1976, Severnyi+1976, Delache+1983, Thomson+1995, Turck-Chièze+2004, Garcia+2007)

Most recent claim by Fossat+2017,2018

- Search for the signature of g-modes in the p-mode spectrum
- Not reproduced (Schunker2018, Appourchaux 2019)
- p- and g-mode coupling too small (Scherrer 2019, Böning 2019)
- Theoretical estimates of the mode amplitudes are thus useful to
 - Guide observational strategies and future instrument design
 - When detected, diagnostics of the excitation and damping mechanisms

Semianalytical estimates

Most recent estimates (see also Goldreich+1977, Gough+1985)

1) $\nu < 100 \mu$ Hz: radiative damping, analytical

- Kumar+1996: Reynold stress, Gaussian eddy-time correlation.
- Belkacem+2011: Reynold stress, Lorentzian eddy-time correlation (simus 3D).
- Pinçon+2021: Penetrative convection, exponential plume time profile

$$f_{\rm E}\left(\frac{t}{\tau_{\rm p}}\right) \equiv e^{-|t|/\tau_p}$$

2) $\nu > 100 \mu$ Hz: mode-convection interaction dominates damping, uncertain ...

Semianalytical estimates

A new estimate for the solar mixed modes

g-modes amplitudes: current status

- Low frequency domain (10 μ Hz < ν < 100 μ Hz) more suited to detect g-modes
- Theoretical uncertainties ~ gap with the detection threshold (e.g., GOLF)
 - \rightarrow Need for improvement in the description of convection.

- A quite "simple" formalism in a first step
 - Internal structure: Spherical (1D), shellular rotation $\Omega(r,\theta) \sim \Omega(r)$ (Zahn 1992)
 - Propagation: Horizontally-averaged radial wave flux
 - Effect of frequency Doppler-shift
 - No Coriolis force/rotation gradient effect
 - Excitation/damping: Available Reynold stress / penetrative convection models
 - Quasi-adiabatic damping (Press 1981)

IGW transport in current stellar models

IGW transport in current stellar models

IGW transport in current stellar models

Transport results from 3 ingredients: Damping + Excitation + Rotation contrast

Transport efficiency : a simple estimate

Get a stellar model...

Assume a given rotation profile...

- assumed smooth here.

- varying amplitude of the rotation contrast :

 $\delta \Omega = \Omega_{core} - \Omega_{BCZ}$

Transport efficiency : a simple estimate

Get a stellar model...

Assume a given rotation profile...

- assumed smooth here.

- varying amplitude of the rotation contrast :

 $\delta \Omega = \Omega_{core} - \Omega_{BCZ}$

... and compute (at a given time)

$$T_L \sim \frac{\rho r^2 \Omega}{-\nabla . (F_{J,w})}$$

Transport efficiency : a simple estimate

Get a stellar model...

Assume a given rotation profile...

... and compute (at a given time)

Local timescale on

which IGW can

modify the rotation

- assumed smooth here.

- varying amplitude of the rotation contrast :

 $\delta \Omega = \Omega_{core} - \Omega_{BCZ}$

- Criterion : IGW are efficient if $T_L < Evolution/contraction timescale.$

In the Sun,

 \Rightarrow IGW can efficiently slow down the core if $\delta \Omega > \delta \Omega_{th}$ (~ 0.1µHz in the Sun)

IGW-driven regulation in subgiant stars ?

→ Low-frequency IGW can slow down subgiants...
...but still insufficient for Red Giants.

- Talon+2005, Charbonnel+2005, Mathis+2013
 - \rightarrow Account for shear turbulence + meridional circulation + IGW.
 - \rightarrow Can somehow explain the "flat" solar rotation profile.

- Talon+2005, Charbonnel+2005, Mathis+2013
 - \rightarrow Account for shear turbulence + meridional circulation + IGW.
 - \rightarrow Can somehow explain the "flat" solar rotation profile.
 - → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).

- Talon+2005, Charbonnel+2005, Mathis+2013
 - \rightarrow Account for shear turbulence + meridional circulation + IGW.
 - \rightarrow Can somehow explain the "flat" solar rotation profile.
 - → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).

- Talon+2005, Charbonnel+2005, Mathis+2013
 - \rightarrow Account for shear turbulence + meridional circulation + IGW.
 - \rightarrow Can somehow explain the "flat" solar rotation profile.
 - → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).

- Talon+2005, Charbonnel+2005, Mathis+2013
 - \rightarrow Account for shear turbulence + meridional circulation + IGW.
 - \rightarrow Can somehow explain the "flat" solar rotation profile.
 - → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).

Going beyond this simple picture

And more to tackle ...

- → Non-adiabatic effects (in progress)
- \rightarrow Non-linear waves, turbulence in radiative zones
- \rightarrow Effect of Coriolis acc.
- → Transport of chemical elements (e.g., Stokes drift, wave breaking, ...)

Gravity waves in the Sun and in stars:

- Invoked for more than 30 years (e.g., Schatzmann 1993).
- Available "simple" prescriptions, a few evolutionary computations.

Potential probing of the solar core: the quest of g-modes

- No robust detection, low-frequency range more suited for a future detection.
- Need improvements in the description of convection to be more realistic.

r Transport of AM and chemical elements:

- Very promising (solar an subgiant rotation, Li abundance)
- But still need to go beyond the current approximations.
- Using complementarity between semianalytical developments and simulations.

Effect of the Coriolis force at very low frequencies

Previous excitation/propagation wave models neglect the Coriolis force

- $\omega \preceq \Omega \Rightarrow$ this approximation fails (even for slow rotators)

Local Dispersion relation (e.g., Gerkema 2005):

$$k_z^2 = k_\perp^2 \left[\frac{N^2 - \omega^2}{\omega^2 - f^2} + \left(\frac{\omega \tilde{f_s}}{\omega^2 - f^2} \right)^2 \right]$$
 Coriolis parameters

New behaviors : - Propagative inertial waves in convective regions - Evanescent sub-inertial waves in radiative regions

Impact on the excitation ?

Traditional approximation fails at these frequencies (e.g., Eckart 1960, Mathis 2014)...

⇒ Complex GLOBAL 2D problem since no more separable in the radial and latitudinal coordinates

... BUT stil analytically tractable in the non-traditional LOCAL f-plane !

(e.g., Mathis 2014, Augustson 2020)

⇒ How the Coriolis force influence the wave excitation by penetrative plumes ? (Note : Local approach valid only for horizontal wavelength much smaller than the radius)

Preliminary results for a Sun

⇒Depending on the latitude and frequency, the wave flux is increased/decreased.

Preliminary results for a Sun

 \Rightarrow But it also depends on the horizontal direction of propagation !

Preliminary results for a Sun

⇒ But it also depends on the horizontal direction of propagation !

⇒ Complex horizontal dependence : work in progress (with S. Mathis & K. Augustson)