Dynamo action in stellar radiative layers

Ludovic Petitdemange

CNRS, LERMA, Observatoire de Paris

Workshop, Sierre
4th of september, 2023

Context

Angular momentum in the radiative zone of stars

Figure: Left: Rotation profile at constant latitude in the sun [Brown et al. 1989]. Right: Numerical simulation for the radiative zone of the sun, with and without magnetic field, compared to observations [Eggenberger et al. 2005]

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants (Deheuvels 2014)

Fig. 10. Best rotation profiles obtained by applying the RLS method with a smoothness condition on the rotation profile on the entire star (solid blue lines) or only in the radiative interior while the convective envelope is assumed to rotate as a solid body (long-dashed red lines). The dotted lines indicate the 1σ error bars for both types of inversions.

Deheuvels et al 2014

Observations correspond qualitatively to what is expected by the conservation of AM: spin-up of the core results from its contraction....i.e. emergence of differential rotation in radiative zones.

Ceillier et al 2013

The core rotation rate is 200 times lower than predicted by 1D models of stellar evolution (Zahn 1992 formalism).

Conclusion: need for an additional efficient physical mechanism (a missing transport process) or better understanding turbulence in stably-stratified rotating spherical shells (radiative zones).

Evolution of the rotation profile for late evolutionary phases

Rotation profile in subgiants:

Need for an efficient transport of angular momentum

Fig. 3. Rotation profile of the selected model at the end of the evolutionary track (solid line). The two dashed lines correspond to the core and the surface rotation rates derived by Deheuvels et al. (2012).

Mosser et al 2012

Ceillier et al 2013.
Stellar evolution models predict strong shear layers at different life phases that are not observed by asteroseismology.

Massive and intermediate-mass stars

- Strong dipolar fields would result from initial conditions (Fossil fields).
- A MHD instability (MRI?) could explain the observed magnetic desert.
- Vega-like fields could result from dynamo action? in which layers? In this case, what is the dynamo mechanism?
Copyright: S.Cnudde

Lignières et al 2014

A simple numerical model for radiative zones with the main physical ingredients

Set up

- A Boussinesq fluid in a rotating spherical shell with
\star constant kinematic viscosity v
\star constant thermal diffusivity k
\star constant magnetic diffusivity η
- The rotation rates of the spheres are maintained (Spherical Couette Flow).

Boundary conditions

- fixed temperature ΔT
- no-slip for the flow
- conducting inner core and insulating outer sphere

Systematic parameter studies (anelastic models)

Six control parameters

Number	Symbol			Sun
Rayleigh number	$R a$	$\frac{\alpha g \Delta T L^{3}}{v K}$	$\leq 10^{13}$	10^{30}
mag Prandtl	$P m$	v / η	$0.2 \leq P m \leq 25$	10^{-4}
Prandtl	$P r$	v / κ	0.1	10^{-6}
Ekman	E	$v /\left(\Omega L^{2}\right)$	$10^{-4} \geq E \geq 10^{-7}$	10^{-15}
aspect ratio	χ	r_{i} / r_{0}	0.35	

The relevant parameter in rotating stably-stratified spherical shells seems to be $Q=\operatorname{Pr}\left(\frac{N}{\Omega_{0}}\right)^{2}=E^{2} R a$

Results obtained by using the PaRoDy code.

Stably-Stratification affects the geometry of the angular velocity

Parameter study with $\operatorname{Pr}=0.05$

$Q=\operatorname{Pr}\left(\frac{N}{\Omega_{0}}\right)^{2}=E^{2}$ Ra where N : Buoyancy frequency
Philidet et al 2019 GAFD

Stabilizing effects of stratification on the shear instability Roc

Reynolds number $R e=\frac{\Delta \Omega r_{i} r_{e}}{v}$;
$E=10^{-5}, \operatorname{Pr}=0.1$

Evolution of the critical Reynolds number Re_{C} (or Rossby
number $R O_{c}$) as a function of stratification (the Rayleigh
number $R a$). When $R e$ exceeds $R e_{C}$ (red upwards triangles), non-axisymmetric modes are maintained over time.

Petitdemange et al submitted to A\& A

$$
Q=\operatorname{Pr}\left(\frac{N}{\Omega_{0}}\right)^{2}=E^{2} R a
$$

This behaviour corresponds to $R i<1 / 4$ (Richardson number).

Magnetic field topology depends on the level of stratification (Ra)

stars: $E_{\text {mag,toro }}>0.8 E_{\text {mag }}$; circles: dipolar dynamos

When stratification is low, results are similar to Unstratified dipolar dynamos (Guervilly \& Cardin 2010).

Different magnetic topologies in simulated dynamos with $E=10^{-5}$

Dipolar fields: regardless the initial magnetic field with $Q=0.001$ ($R a=10^{7}$) ; a bistable regime exists with $Q=0.01\left(R a=10^{8}\right)$.

Hemispherical dyn

Typical axisymmetric sections for dynamo solutions obtained with different levels of stratification.

Petitdemange et al submitted to A\&
A.

Strong toroidal fields generated when $Q=\operatorname{Pr}\left(N / \Omega_{0}\right)^{2}=E^{2} R a=0.1$ ($R a=10^{9}$)

Petitdemange et al submitted to A\& A.

Tayler-Spruit dynamos: Secondary growth

Timeseries of the magnetic energy (measured by the Elsasser number $\left.\Lambda=\frac{1}{V} \int B^{2} / \rho_{0} \mu_{0} \Omega \eta\right)$ for $E=10^{-5}, N / \Omega=1.24, P_{r}=0.1, R o=0.78$ and varying $P m=[0.35 ; 0.42 ; 0.5 ; 1]$, in resistive timescales. [Petitdemange et al. 2023].

Tayler instability with cylindrical coordinates (s, ϕ, z)

Instability conditions (Spruit 1999)

$$
\begin{array}{r}
s \frac{d}{d s}\left(\frac{V_{A}^{2}}{s^{2}}\right)>0 \text { for } m=0 \\
\frac{1}{s^{3}} \frac{d}{d s}\left(s^{2} V_{A}^{2}\right)>\frac{m^{2} V_{A}^{2}}{s^{2}} \text { for } m>0
\end{array}
$$

 of $V_{A}=B_{\phi} / \sqrt{\mu \rho}$.
Stabilizing effects: rotation, diffusion and stratification. Using heuristic arguments:

$$
\begin{array}{r}
\frac{\omega_{A 0}}{\Omega}>\left(\frac{N}{\Omega}\right)^{1 / 2}\left(\frac{\eta}{r^{2} \Omega}\right)^{1 / 4} \quad \kappa=0(3) \\
\frac{\omega_{A 1}}{\Omega}>\left(\frac{N}{\Omega}\right)^{1 / 2}\left(\frac{\kappa}{r^{2} \Omega}\right)^{1 / 4}\left(\frac{\eta}{\kappa}\right)^{1 / 2} \tag{4}
\end{array}
$$

$n=1$ (kink)

and spherical symmetry (shellular) $\omega_{A}=V_{A} / r$.

Tayler-Spruit dynamo: theory (in short), Spruit 2002

Spruit's predictions are based on analytical approximations. Their robustness have to be confirmed by numerical and/or experimental studies. One of them is the existence of an effective resistivity η_{e} resulting from the Tayler instability.

$$
\begin{equation*}
\eta_{e 0}=r^{2} \Omega\left(\frac{\omega_{A}}{\Omega}\right)^{4}\left(\frac{\Omega}{N}\right)^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{e 1}=r^{2} \Omega\left(\frac{\omega_{A}}{\Omega}\right)^{2}\left(\frac{\Omega}{N}\right)^{1 / 2}\left(\frac{\kappa}{r^{2} N}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\omega_{A 0}}{\Omega}=q \frac{\Omega}{N} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\omega_{A 1}}{\Omega}=q^{1 / 2}\left(\frac{\Omega}{N}\right)^{1 / 8}\left(\frac{\kappa}{r^{2} N}\right)^{1 /} \tag{array}
\end{equation*}
$$

with $q=r \partial_{r} \Omega / \Omega$

Mean-field concept

Decomposition into a mean part and a fluctuating part:

$$
\mathbf{v}=\overline{\mathbf{V}}+\mathbf{v}^{\prime} \quad \mathbf{B}=\overline{\mathbf{B}}+\mathbf{B}^{\prime} .
$$

Under some assumptions:
$\frac{\partial \overline{\mathbf{B}}}{\partial t}=\nabla \times(\xi+\overline{\mathbf{v}} \times \overline{\mathbf{B}}-\eta \nabla \times \overline{\mathbf{B}})$
$\nabla \times(\overline{\mathbf{v}} \times \overline{\mathbf{B}})=(\overline{\mathbf{B}} \cdot \nabla) \overline{\mathbf{v}}-(\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{B}}$
ω-effec: stretching of field by shear.

Bifurcation diagram with $Q=0.1, E=10^{-5}, \operatorname{Pm}=1, \operatorname{Pr}=0.1$

Development and saturation of TS-dynamo in our DNS

Typical axisymmetric sections at a given time

Varying the level of stratification (Ra or Q) with $E=10^{-5}$.
$Q=0.1$

$Q=1$

Petitdemange et al submitted to A\& A

Initial conditions for The Tayler-Spruit dynamo

Routes to the Tayler-Spruit dynamo

Initial conditions for The Tayler-Spruit dynamo

Routes to the Tayler-Spruit dynamo

$R o=0.57$: no primary instability

Tayler-Spruit dynamos can be obtained when the toroidal field strength is sufficiently high. The primary instability is not necessary!

Field strength

Petitdemange et al submitted to A\& A

Angular momentum transport

The magnetic torque $G_{\text {mag }}$ as a function of the spherical radius r is

$$
\begin{equation*}
G_{\text {mag }}=\iint r^{3} \sin ^{2} \theta V_{A r} V_{A \phi} d \theta d \phi=\left\langle 4 \pi r^{3} \sin ^{2} \theta V_{A r} V_{A \phi}\right\rangle \tag{9}
\end{equation*}
$$

where \mathbf{V}_{A} is the Alfvèn speed. The angular momentum conservation is

$$
\begin{gather*}
\frac{\partial\left\langle u_{\phi} r \sin \theta\right\rangle}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2}\left\langle\left(u_{r} u_{\phi}-V_{A r} V_{A \phi}\right) \sin \theta r+v r^{2} \sin ^{2} \theta \frac{\partial \Omega}{\partial r}+\Omega_{0} r^{2} \sin ^{2} \theta u_{r}\right\rangle=0 \\
\frac{\partial\left\langle u_{\phi} r \sin \theta\right\rangle}{\partial t}+\nabla \cdot \mathbf{F}=0 \tag{10}
\end{gather*}
$$

From Spruit's theory:

$$
\begin{gather*}
S_{0} \approx \frac{B_{r 0} B_{\phi 0}}{4 \pi}=\rho \Omega^{2} r^{2} q^{3}\left(\frac{\Omega}{N}\right)^{4} \quad \kappa=0 \tag{12}\\
S_{1} \approx \frac{B_{r 1} B_{\phi 1}}{4 \pi}=\rho \Omega^{2} r^{2} q\left(\frac{\Omega}{N}\right)^{1 / 2}\left(\frac{\kappa}{r^{2} N}\right)^{1 / 2} \quad \kappa \neq 0 \tag{13}
\end{gather*}
$$

Radial distribution of anular momentum fluxes

$$
P m=0.35
$$

$$
P m=1
$$

The measured shear rate $q=k U_{0} / \Omega$ where $k=N \sqrt{\mu \rho} / B_{\phi}=2 \pi / \lambda_{\text {Ta }}$ is the radial wavenumber for the Tayler instability.

Spruit's prediction for the magnetic torque $G_{m a g}$

Spruit's prediction: $B_{r} B_{\phi} / \mu=\rho r^{2} \Omega^{2} q^{3}\left(\frac{\Omega}{N}\right)^{4}$ corresponds to our results when $q \sim k U_{0} / \Omega \Rightarrow B_{r} B_{\phi} / \mu \propto \rho\left(U_{0} \Omega\right)^{3 / 2} / N$.

$$
\begin{equation*}
G \text { mag }=\mathscr{N}=\beta r_{i}^{5 / 2} \frac{\left(U_{0} \Omega\right)^{3 / 2}}{N v^{2}} \text { Dimensionless torque } \tag{14}
\end{equation*}
$$

$\beta \sim 0.1$ is an adjustable parameter.

Conclusion

- Tayler-Spruit (TS) dynamo seems to be now supported by Direct Numerical Simulations.
- Subcritical behaviour: hidden magnetic fields trigger MHD turbulence that transport angular momentum.
- Stratification enables the development of TS dynamos in DNS.
- In progress:
- Exploring different parameter regimes.
- Determining the transport coefficients and the dynamo properties.
- Considering a more realistic model for the radiative zone.
- Link with observations...
- The Tayler-Spruit dynamo at different evolutionary phases...

