Test results of a real-size RPC for 3rd and 4th stations of Muon Chamber of the Compressed Baryonic Matter Experiment at FAIR, Germany.

Dr. Rajesh Ganai On behalf of MuCh-RPC team

Department of Physics, University of Calcutta, Kolkata, India.

rajesh.ganai.physics@gmail.com r.ganai@gsi.de rajeshganai@cern.ch

XVI Workshop on Resistive Plate Chambers and Related Detectors September 26-30, 2022 CERN. Switzerland.

September 26, 2022

Dr. Rajesh Ganai On behalf of MuCh-RPC te

RPC for CBM-MuCh @ RPC-2022

Overview

Motivation

- 2 Detector details
- **3** Test set-up at GIF++
- Test results
 - Current
 - Beam spot
 - Time correlation
 - Efficiency
 - Digi rate
- Summary
- 6 Outlook

Motivation - CBM experiment

 The Compressed Baryonic Matter (CBM) is an upcoming (under construction) experiment in the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany.

Figure 1: Schematic layout of the CBM experiment.

- Various detector systems:
 - Micro-Vertex Detector (MVD).
 - Silicon Tracking System (STS).
 - Ring Imaging Cherenkov detector (RICH).
 - Muon Chambers (MuCh).
 - Transition Radiation Detector (TRD).
 - Time-of-Flight Detector (ToF).

• MuCh will be the muon detection system of the CBM experiment.

Motivation - Muon Chamber (MuCh)

- The total absorber of MuCh will be sliced with muon-detectors placed in between them.
- It will facilitate momentum dependent track identification, improving the efficiency of detection of low momentum muons.

Figure 2: Schematic layout of the CBM-MuCh.

- MuCh will have 4 different stations to house detectors for muon detection.
- Each station will house 3 detector layers.
- Station-1 and Station-2 \longrightarrow Gas Electron Multipliers (GEMs).
- Station-3 and Station-4 \rightarrow Resistive Plate Chambers (RPCs).

Motivation - The Problem

Figure 3: Digi density for 3rd station ofFigure 4: Digi density for 4th station ofCBM-MuCh.CBM-MuCh.

 The numbers on the Y-axis when multiplied with the interaction rate (~10 MHz) gives the expected particle rate on the detectors.

• 3^{rd} station $\longrightarrow \sim 30 \text{ kHz/cm}^2$. • 4^{th} station $\longrightarrow \sim 10 \text{ kHz/cm}^2$.

 Aim → To test a real size RPC for it's various properties including muon detection efficiency in presence of very intense γ source as a background.

< □ > < □ > < □ > < □ > < □ > < □ >

Detector

One real size detector was developed, clubbed with specially designed PCB, integrated with MuCh-XYTER, tested rigorously in local laboratory with cosmic rays and then tested at GIF++, Cern, Switzerland.

- Shape: Trapezoidal.
- Segmentation: 20°.
- Each electrode thickness: 1.2 mm.
- Bulk resistivity of electrodes: \sim (3×10⁹ 1×10¹⁰) Ωcm.
- Gas gap thickness: 2 mm.

Figure 5: Detector dimensions (mm).

The real sized PCB

Figure 6: Schematic design of readout PCB.

- The PCB is of 1181 mm in length, and 2.4 mm thick.
- The trapezoidal shaped signal pickup PCB contains trapezoidal pads of progressive dimensions.
- There are 46 rows and 10 columns of pads ⇒ 460 pads in total.
- Each column segmentation $\longrightarrow 2^{\circ}$.
- The size of the smallest trapezoidal pad is \sim (1.01 cm \times 1.01 cm).
- The size of the largest trapezoidal pad is \sim (5.0 cm \times 5.0 cm).
- The dimensions of all the pads in each row are exactly the same.

The real sized PCB (contd.)

Figure 7: Actual image of the read-out PCB.

- In the back side of the PCB there are total 04 numbers of connectors with 1.27 mm pitch have been placed for insertion of FEE boards.
- Each pad is connected via a 10 nF capacitor to the respective channel of the FEE connector.
- The PCB has been outlined with the through holes for screwing at the board edge in order to attach it to the detector firmly for efficient charge collection.
- Electronics and DAQ chain:
 → MuCh-XYTER based.
- Self-triggered electronics.

Experimental set-up at GIF++

- GIF++ is located on the H4 beamline which provides high-energy muon beam ($\leq 150 \text{ GeV/c}$) in EHN1 North Area of CERN.
- It houses Cs-137 gamma source.
- Our RPC detector was tested in GIF++ during November-2021 beamtime.
- The RPC was positoned at ~84 cm away from the Cs-137 source house in the upstream region.

Figure 8: Experimental facility site at *GIF*++[1].

Figure 9: The RPC box in the upstream region.

Dr. Rajesh Ganai On behalf of MuCh-RPC te

RPC for CBM-MuCh @ RPC-2022

Photon flux

- Strength of the Cs-137 source $\longrightarrow \sim 14$ TBq (as of 2014).
- There are different attenuation filters to vary the photon flux.
- The incident photon flux at our detector at it's psition with different attenuation factors has been tabulated in Table 1.

	Attenuation factor	Photon flux (MHz/cm ²)	
$\ $	22	2.72	
$\ $	46	1.36	
	100	0.69	

Table 1: Photon flux incident on RPC at different attenuation factor.

• The values were calculated by *Lagrangian extrapolation* of the simulated photon current values mentioned in the reference[2].

Trigger schematics

- Coincidence signals from three different scintillators were used:
 - Paddle scintillator -1 and 2 (At the begining and end of the hall).
 - CBM scintillator $\longrightarrow \sim$ (45 mm \times 50 mm) positioned behind the second paddle scintillator.

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

Test parameters

Data recording conditions

- Different photon rates incident on the detector.
- Different applied high voltage to the detector.
- Different signal threshold (will discuss only at one threshold here).
- Different position of the beam hitting the detector (will discuss only at one such position here).

Gas

Mixture components & ratio:

 $R134a: i - Butane: SF_6:: 95.2\%: 4.5\%: 0.3\%$ (by volume)

- Humidity in gas: $\longrightarrow 40\%$.
- Flow rate: $\longrightarrow 5 \ell/hr$.

Electronics

- Signal threshold: $\longrightarrow \sim 15$ fC.
- MuCh-XYTER based electronics and DAQ chain (Self-triggered).

Test results

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

September 26, 2022 13

Figure 11: A quick I-V characteristics of the detector.

• The breakdown voltage is just above 8000 V.

Current

Figure 12: Current variation as a function of high voltage at different γ -intensities.

- γ -intensities \longrightarrow 0 MHz/cm², 0.69 MHz/cm², 1.36 MHz/cm², and 2.72 MHz/cm².
- The current increased with an increase in the photon rate falling on the detector.

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

Beam spot @ 9600 V (Beam - ON and Source - OFF)

Figure 13: *Hit distribution of the pads throughout the whole detector.*

Figure 14: *Hit distribution of the pads in and around the beam spot region.*

- The detector has been positioned in such a way the beam hit around the middle region.
- The approximate pad dimension \rightarrow 23 mm \times 23 mm.
- The most intense region of the muon beam has an area of \sim (92.6 mm \times 92.6 mm)

Time correlation studies

• The timing information of the hits have been measured w.r.t to the trigger time.

17 / 37

Figure 16: Time correlation spectra at different applied voltages in absence of photon flux.

• Things to keep in mind: Self-triggered electronics and low threshold enviornment.

 Observation: As the high voltage is increased from 8600 V to 9600 V, the tail peak becomes more and more dominant.

Time correlation studies - Comparison at different $\gamma\text{-rates}$

• Applied voltage to the RPC \longrightarrow 9600 V.

Figure 17: Time correlation spectra at different photon flux.

• Observation: As the photon rate falling on the detector is increased the grass-level of the time correlation spectra also increases.

Efficiency studies

- Observation: No significant change in the efficiency values.
- For further efficiency calculations, the hit(s) lying within the "Main peak" have been considered.

Efficiency studies- Comparison at different voltages

Figure 20: Efficiency variation as a function of voltage at different photon flux.

Observations:

- In absence of background photons, muon detection efficiency increased with increase in the high voltage.
- A similar trend was observed at different other photon rates.
- A plateau ~95% efficiency was obtained in absence of the photon flux from 9400 V.

Efficiency studies- Comparison at different γ -rates

Figure 21: Efficiency variation as a function of incident photon flux.

Observations:

- The muon detection efficiency of the detector at any particular voltage, reduced in presence of photon background.
- The RPC has shown muon detection efficiency of > 90% at applied voltage of 9600 V in presence of ~ 2.72MHz/cm² photon flux.

Hits per unit area per unit time studies - Digi rate studies

- There were 4 numbers of Front-end Electronics Boards (FEBs) connected with the PCB to read each and every pads.
- Each FEB has <u>128 channels</u> connected to <u>128 pads</u> individually via a 10 nF capacitor.
- Being self triggered electronics, the FEB-channels of MuCh-XYTER records all signals (data) which crosses the set threshold value.
- We coin a term called **"digi"** which is essentially signal recorded by the electronics and DAQ chain.
- Each digi refers to one corresponding signal crossing the implemented threshold level and are being recorded afterwards.
- The hit distribution pattern in all the 128 channels in each of the 4 FEBs at a operational voltage of 9600 V when photons were falling on the RPC at a rate of 2.72 MHz/cm² have been shown in the next slide.

FEB channels hits @ 9600 V with 2.72 MHz/cm² γ -rate

24 / 37

Digi rate studies - Area calculation

- To calculate the digi rate, an area consisting of 16 pads lying well within the centre of the beamspot has been considered.
- The effective area is $\longrightarrow \sim 84.64 \text{ cm}^2$.

Figure 23: Selected area or pads for digi rate calculation.

Digi rate variation w.r.t $\gamma\text{-flux}$ and detector voltage

Figure 24: Variation of digi rate as a function of incident photon flux at different applied high voltages. The photo in the inset shows the variation during source OFF condition.

Observations:

- At any particular voltage the digi rate increases as the number of incident photon increases.
- At any particular photon flux the digi rate increases as the applied voltage increases.
- Maximum digi rate of ~ 24.56kHz/cm², @ 9600 V with γ-flux of ~ 2.72MHz/cm².

Digi rate studies - Efficiency variation with γ -flux

Figure 25: Variation of muon detection efficiency of RPC as a function of digi rate.

Observations:

- At any particular voltage, the efficiency dropped as the digi-rate increases.
- The drop in the efficiency is very significant in lower voltage values.
- At 9600 V the detector has retained an efficiency >90% at a digi-rate of ~ 24.56kHz/cm².

Summary

- A real-size single gas RPC along with paded structure read-out PCB (different from standard stip read-out technique) and dedicated self triggered electronics chain has been developed for its application in 3rd and 4th stations of MuCh detector set-up of the CBM experiment.
- The detector has been successfully tested for its muon detection efficiency in absence and presence of intense photon flux at GIF++ facility in CERN, Switzerland with an idea to study its performance and determine the optimum operating voltage at a high photon environment.
- The detector has shown muon detection efficiency of > 95% in absence of photon flux and > 90% in presence of $\sim 2.72 MHz/cm^2$ photon flux as background at an operating voltage of 9600 V with a threshold of \sim 15 fC.
- One can effectively infer that the developed real-size RPC can work successfully with a charged particle detection efficiency of >90% even at harsh photon environment.

Outlook and Acknowledgement

Outlook

- It has to be tested for high particle rate handling capability as well as its long term performance.
- The detector is currently installed at mCBM experiment at GSI, Germany.

Acknowledgement

- We sincerely acknowledge M. Jaekel, G. Pezzullo, A. Dubey, C. Ghosh, J. Kumar (VECC) and other colleagues of GIF++ for their constant support and help throughout the testing period.
- RG acknowledges Dr. D. S. Kothari Fellowship scheme (award letter number F.4-2/2006 (BSR)/PH/18-19/0113 dated 16/10/2019) by University Grants Commission, New Delhi, India.
- RG would like to thank Prof. Amlan Chakraborty for his constant support during the CERN visit.

References

https://ep-news.web.cern.ch/content/gamma-irradiation-facility-gif-during-and-beyond-run-3

D. Pfeiffer et., al, The radiation field in the Gamma Irradiation Facility GIF++ at CERN, Nuclear Inst. and Methods in Physics Research, A 866 (2017) 91-103.

THANK YOU

Back up slides

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

September 26, 2022 31 /

ADC vs Time

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

Spill structure - Beam ON, source OFF

FEB mapping on PCB

Dr. Rajesh Ganai On behalf of MuCh-RPC te RPC for CBM-MuCh @ RPC-2022

э

Example of an event

Activit	ies 🖬 T	Terminal 🕶						Mon 15:3	3			e) (b •
daq@debian: -/cbmroot.trunk/macro/beamtime/mcbm2018											×		
File D	dit View	Search 1	Terminal.	Tabs Help									
daqQ	þdeblar: -	-/cbmroot_	tran ×	daqQeb	lebian: =/c	bmroottru	in ×	daq@d	leblan: -/cbmr	oot_trun ×	daq@debiarc =/cbmroot_trun	× n	
visual	isation	of CR055	5 talk d	ata of Al	l Cluste	rs Start	s from	here					
4 4 6	336	44553	5366.	4.5									
			188	191	198	193							
			281	289		282							
			211 231	288	325	206							
			- 21	235	237	***							
Centro size o 15050 (,Y=(3 (,Y=(4 (,Y=(5 (,Y=(6	(1 is (if cross (19) AD (19) AD (19) AD (19) AD (19) AD	4.21) talk 01 Doss C=3 Time C=10 Time C=9 Time C=3 Time	16 521.25 540 540 515	ata of Al ata ###	l Cluste	rs Ends	here						
X,Y=(3 X,Y=(4	1,20) AD 1,20) AD X,Y=(C=10 Time C=16 Time 6,20) ADC	r=561.87 r=568.12 r=17 Tim	5 5 e=561.875									
X,Y=(3 X,Y=(6	,21) AD ,21) AD (X,Y=(C=11 Tine C=19 Tine 4,21) AD	2=561.87 2=568.12 (=31 Tim	5 e=565									
X,Y=(3 X,Y=(4 X,Y=(5 X,Y=(6	,22) A0 ,22) A0 ,22) A0 ,22) A0	C=4 Time- C=9 Time- C=9 Time- C=2 Time-	518.125 540 536.875 515					_					
X,Y=(5	X,Y=(,23) ND	4,23) ADC C=1 Time:	-1 Time -490	-493.125									
Multip [INF0]	le clus	ter size	loop 1 Even	1 nt Start-									

æ

First hit with maximum ADC in an event

