

# EXPLORING THE PERFORMANCE LIMITS OF THE NEW GENERATION OF ATLAS RPCS

<u>G. AIELLI \*</u> AND G.PROTO, ROMA TOR VERGATA FOR THE ATLAS MUON SPECTROMETER SYSTEM

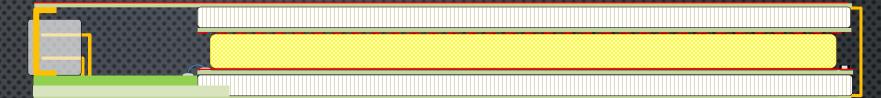


\*GIULIO.AIELLI@CERN.CH

### THE ATLAS RPC UPGRADE CONCEPT

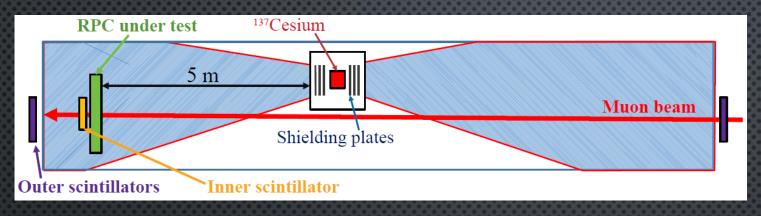
MAXIMUM TRACK SELECTION PERFORMANCE WITH A MINIMAL SET OF DETECTORS

- MAXIMUM SINGLE DETECTOR PERFORMANCE
  - FRONT END THRESHOLD SENSITIVITY
  - Gas gap width
  - GASEOUS TARGET DENSITY
  - DRIFT VELOCITY
- MINIMUM NUMBER OF INDEPENDENT DETECTORS
  - FARADAY CAGE NOISE IMMUNITY
  - HIGHLY INDEPENDENT SINGLETS
- LOW COMPLEXITY AND RELIABILITY
  - THINNER (LIGHTER) ELECTRODES
  - LIGHT AND RIGID STRIP PANELS (THIN PAPER HONEYCOMB CORE)
  - Embedded HV and gas connection points


BIS78 RPCs designed for the ATLAS upgrade:

- Gas gap 1mm
- FE threshold 1-4 fC
- 3 independent singlets providing 3D+t particle localization

# SINGLET STRUCTURE


#### A SINGLET IS MADE OF

- A RPC GAS GAP
- Two readout strip panels
  - STRIP PCB FACING THE GAP
  - Low  $\varepsilon_R$  dielectric filler
  - REFERENCE GROUND PLANE
  - FRONT END ELECTRONICS
  - MATCHING RESISTORS
- GROUND REFERENCE
- A SINGLET IS A INDEPENDENT FARADAY CAGE INSENSITIVE TO THE EXTERNAL WORLD
- A number of singlets can be boxed freely and interleaved with other materials



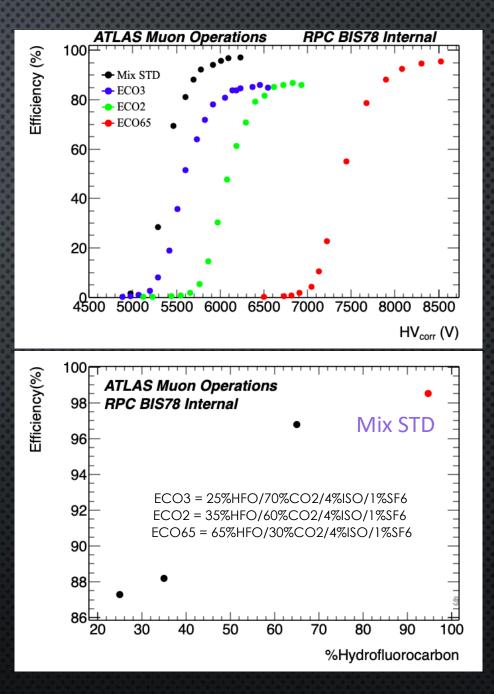


# THE TEST BEAM SETUP AT GIF++



- WE TESTED THE BIS7 MODULE-0 AT GIF++ USING THE H4
  READOUT SYSTEM:
  BIS78 PRODUC
- CHAMBER SIZE **990 x 1820**
- 3 SINGLETS WITH 32 + 64 ORTHOGONAL STRIPS EACH
- TRIGGER USED:
  - EXTERNAL: 3 BEAM SCINTILLATORS
  - INTERNAL: 2 OUT OF 3 MAJORITY
  - RANDOM
  - TRIGGER-LESS

BIS78 production system based on 18 HP-TDC chips customized for the

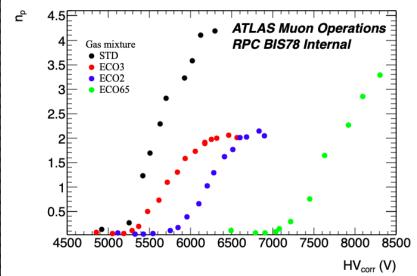

BIS78 SYSTEM

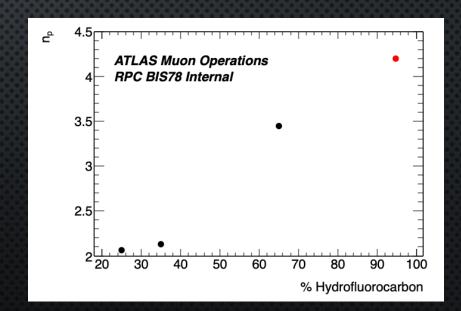
• READOUT PERFORMED BY A DEDICATED FPGA CAPABLE TO IMPLEMENT THE LOCAL 2 OUT OF 3 MAJORITY

#### SINGLE DETECTOR PERFORMANCE – EFFICIENCY VS GAS MIX

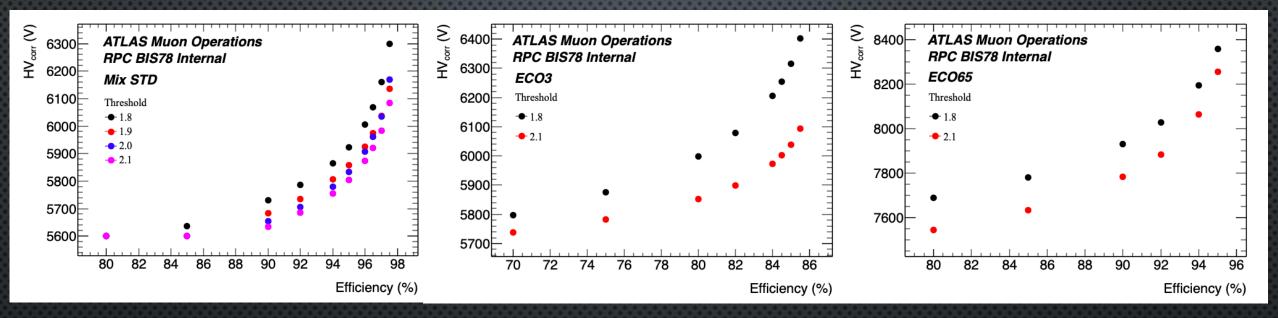
#### EFFICIENCY DEPENDS ON

- PRIMARY IONIZATION ALLOWED BY THE GASEOUS TARGET
  - 1 MM
  - VARIOUS FRACTIONS OF CO2 (LOW DENSITY) WRT.
    FLUORINATED GAS (HIGH DENSITY): STD (0%), ECO65 (30%), ECO2 (60%), ECO3 (70%)
- FRONT END SENSITIVITY → MINIMUM THRESHOLD 1 FC MAX. 4 FC
- Dead areas  $\rightarrow$  2% due to spacers
- The efficiency almost reaches plateau at 65% of HFO (1% difference wrt. STD)
- Same happens in the lowest end: at 25% of HFO the efficiency is about 84% and its variation is at most 1% per 10% variation of HFO fraction
- This sets the interesting range of variation of HFO for 1 mm gas gap





#### MAXIMUM SINGLE DETECTOR PERFORMANCE – EFFECTIVE PRIMARY CLUSTERS

THE INTRINSIC INEFFICIENCY (DEPURATED BY ACCEPTANCE AND DEAD AREAS) CAN PROVIDE THE NUMBER OF EFFECTIVE PRIMARY CLUSTERS THROUGH THE P(0) FUNCTION:


 $< np >= ln(\frac{1}{1-\epsilon})$ 

- "EFFECTIVE" MEANS A PRIMARY CLUSTER CAPABLE TO DELIVER A SIGNAL ABOVE THE THRESHOLD
- The number of effective clusters depends on both the electric field and the FE threshold





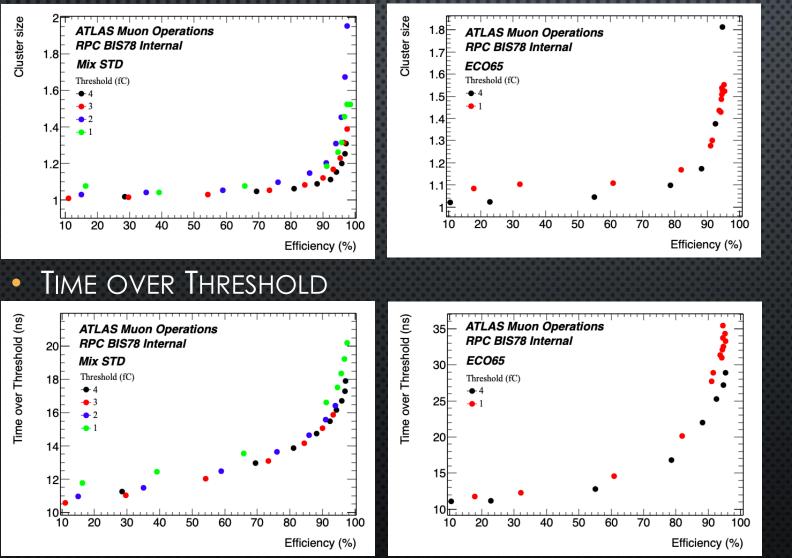
### MAXIMUM SINGLE DETECTOR PERFORMANCE – FE ELECTRONICS SENSITIVITY



The New FE electronics is based on a very performing set of amplifier-discriminator with having a minimum operable threshold of just 1 fC (5 x RMS noise of 1200 electrons)

- THRESHOLD SETTING = 2.2V-VTH
- VTH = 1.8V →4 FC
- VTH = 2.1 → 1 FC

The variation of working point is of the order of a few 100<sup>th</sup> of volts changing the Vth accordingly


### CHARGE PER COUNT AND AGEING IMPACT

AGEING IMPACT

- THE BIS78 FRONT END ALLOWED TO LOWER THE CHARGE PER COUNT FROM
  30 PC PER PHOTON COUNT TO 6 PC
- This result was obtained with a conservative threshold setting of 4
  FC
- AN EARLY TEST (L. PIZZIMENTO RPC2018) SHOWN THAT FORCING THE SETUP WITH A MUCH LOWER THRESHOLD, OF 1 FC, ONE CAN ACHIEVE 3 PC/COUNT.
- THE BIS78 MODULE ZERO ALLOW TO OPERATE NORMALLY WITH SUCH THRESHOLD VALUE AS WILL BE SHOWN
- This implies that the same RPC technology can extend by an order of magnitude the certified ageing features:
- 10 YEARS@100 Hz/cm<sup>2</sup> → 1kHz/cm<sup>2</sup>

# CLUSTER SIZE AND TOT FOR DIFFERENT GASES:

#### CLUSTER SIZE

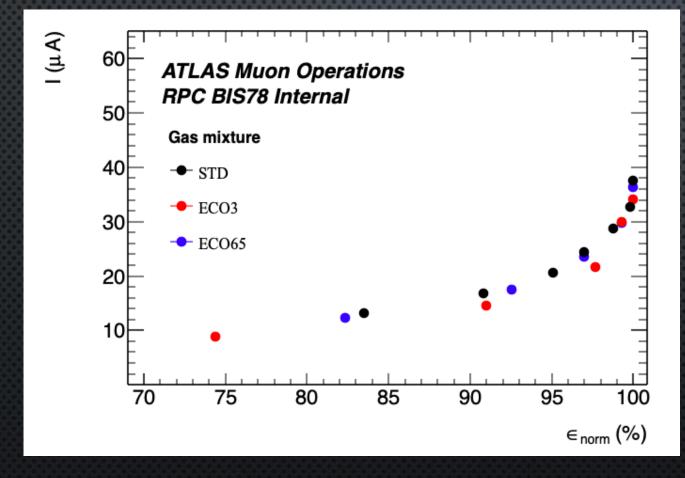


Culster size increases with both increasing applied HV and lowering the discriminator threshold.

In this case a given efficiency is obtained at a lower applied voltage by using a lower threshold. Giving a good CS behavior at the most sensitive threshold

Operation with ecogas at lowest threshold is subject to the effect of larger avalanche events

### MAXIMUM SINGLE DETECTOR PERFORMANCE – CHARGE DISTRIBUTION


The charge distribution comparison between ECO and STD

- STD has an higher shoulder at the lowest distribution end of low efficiency distributions, disappearing at higher field.
- SINCE THEN THE DISTRIBUTIONS RAISING EDGE IS THE SAME INDEPENDENTLY ON GAS
- THE FALLING EDGE FOR ECO IS DUE TO HIGHER CHARGE EVENTS
- THIS CAN BE EXPLAINED BY AN EARLIER SATURATION WITH A FRACTION OF CO2 CREATING HIGHER DENSITY AVALANCHES



Ecogas operation is presently limited by the presence of extra charge per count for MIPS

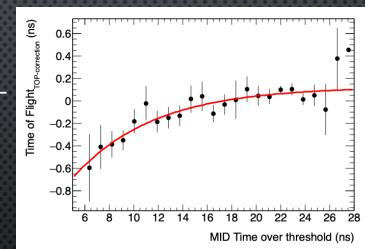
# CURRENT VS WORKING POINT VS GAS MIXTURE

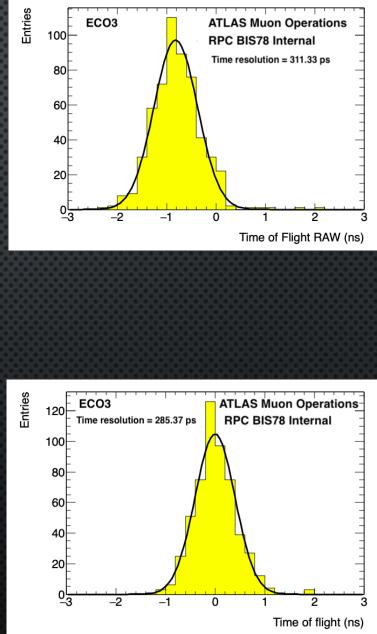


EFFICIENCY TO MIPS NORMALIZED TO THE PLATEAU ASINTHOTIC VALUE PHOTON INDUCED OPERATING CURRENT

OPERATING CURRENT MEASURED OFF SPILL WITH ABS=22 FOR DIFFERENT MIXTURES

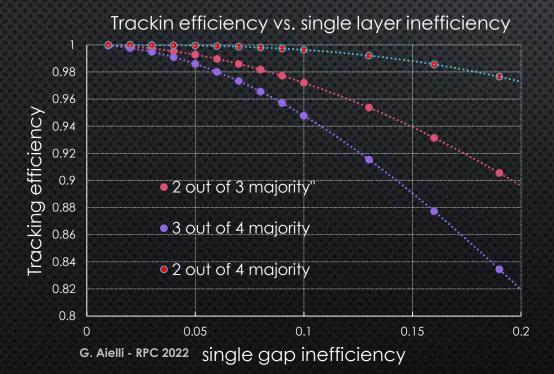
OPERATING CURRENT FROM PHOTONS VS. PERCENTILE OF THE EFFICIENCY CURVE FOR MIPSARE VERY SIMILAR FOR DIFFERENT MIXTURES


G. Aielli - RPC 2022


26/09/2022 11

### MAXIMUM SINGLE DETECTOR PERFORMANCE – TIME RESOLUTION

TIME RESOLUTION


- DEPENDS ON THE GAS GAP WIDTH AND THE DRIFT SPEED OF THE GAS.
- It is spoiled by primary and secondary ionization statistical fluctuations
- THE ELECTRONICS SKEW AND TIME PROPAGATION EFFECT CAN BE CALIBRATED (TIME WALK CORRECTION
- IF THE THRESHOLD IS LOW AND THE DISCRIMINATOR IS FAST, THE PROMPT RESOLUTION IS ALREADY VERY GOOD.





### PERFORMANCE AS A TRACKER

- The trigger and tracking efficiency  $\rightarrow$  combination of the layers
- 1MM SDT MIX 1-E=1.5%
- THE PERFORMANCE OF THE FARADAY CAGE ALLOWS TO MAKE A COMPACT STRUCTURE OF INDEPENDENT ELEMENTS



• THE BIS78 CHAMBER TRIPLET ALLOWS TO LOCALIZE A TRACK ELEMENT WITH THE 2 OUT OF 3 MAJORITY

- The total inefficiency of the tracker is the sum of a constant term due to the dead areas (i.e. 2%) and the statistical inefficiency of the 2/3 which is proportional to the  $(1 \varepsilon)^2$
- AN EFFICIENCY LOSS OF 5% ON A SINGLE GAS GAP (E.G. FOR USING ECOGAS) WOULD RESULT IN LESS THAN 1% OF THE TRIPLET TO BE COMPARED TO THE CONSTANT TERM OF DEAD AREAS
- COMBINED TIME RESOLUTION WOULD BE:

< 160 ps 26/09/2022 13

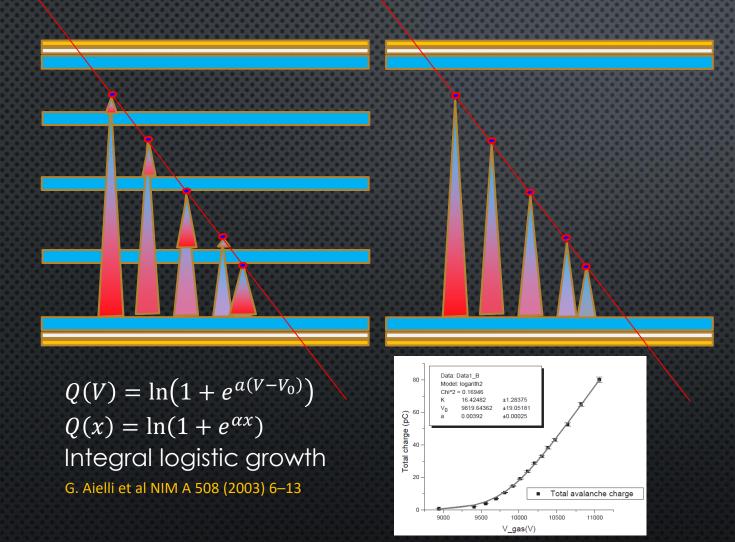
# CONCLUSIONS

- We studied the performance range of the ATLAS upgrade RPCs based on single 1mm gas gap and down to 1 FC FE threshold
- The key role of the FE electronics sensitivity allows to reach as low as 3 pc/count operating charge extending by one order of magnitude the LHC generation RPCs longevity
- The detector faraday cage integration rejection power is crucial to ensure the tight integration of independent singlets
- The combination of high singlet performance and independence ensures to work at high tracking efficiency even with a substancial fraction of CO2 ans a tracking time resolution of the order of 150 ps with ecogas
- ON THE BASE OF THIS STUDY DIFFERENT CONFIGURATIONS CAN BE EXPLORED, TO RESPOND TO NEW EXPERIMENTS REQUIREMENTS.

#### ACKNOWLEDGMENTS

 THE GAS MIXTURES ECO2, ECO3 AND ECO65 HAVE BEEN KINDLY PROVIDED TO ATLAS IN THE FRAMEWORK OF THE ECOGAS@GIF++ COLLABORATION

G. Aielli - RPC 2022


26/09/2022 15

# BACKUP

G. Aielli - RPC 2022

26/09/2022 16

# RESISTIVE PLATE CHAMBERS AT A GLANCE



COMMON FEATURES

- HIGH R ELECTRODES  $\rightarrow$  Spark less
- Uniform electrode  $\rightarrow$  simple
- UNIFORM FIELD  $\rightarrow$  PROMPT SIGNAL
- WORKING AT ATM. PRESSURE
- 0.1 MM 2D LOCALIZATION
- GAS MIXTURE

Feature RPC vs MRPC

- # OF GAPS  $\rightarrow$  1 4 to tens
- ρ(Ω CM) → 5x10<sup>10</sup> 5x10<sup>12</sup>
- Module size  $\rightarrow 2 \text{ m}^2 0.1 \text{ m}^2$
- $Hz/CM^2 \rightarrow 10^4 5x10^2$
- $\sigma_t \rightarrow$  500 PS 50 PS<sub>17</sub>

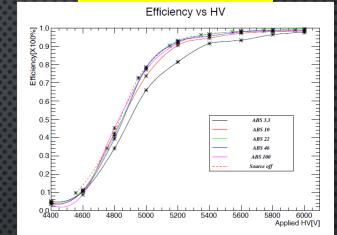
# PRESENT LIMITS – RATE AND LONGEVITY

#### RATE CAPABILITY

- Electrode resistivity is responsible for the proverbial stability of RPCs
- ALSO LIMITS ITS RATE CAPABILITY BECAUSE OF THE VOLTAGE DROP
  - $\Delta V = \langle \mathbf{Q} \rangle \times FREQ. \times \mathbf{R}$

Q is the average charge per count R is the total electrode resistance

- RPC MATERIALS ARE INSENSITIVE TO RADIATION BUT:
  - RADICALS PRODUCED IN THE DISCHARGE AFFECT THE ELECTRODE QUALITY ightarrow NOISE
  - The amount of conduced charge can deplete the carriers affecting


#### LOWERING R IMPROVES RATE CAPABILITY ONLY

- LOWER RESISTIVITY MATERIALS
- THINNER ELECTRODES

ACHIEVING HIGH RATE BY BRUTE FORCE REDUCTION OF R (WITHOUT REDUCING AT THE SAME TIME THE E FIELD) MAY LEAD TO INSTABLE DETECTORS

- REDUCTION OF <Q> IMPROVES RATE CAPABILITY AND LONGEVITY AT THE SAME TIME
  - BY IMPROVING THE S/N ON THE FE ELECTRONICS
  - BY IMPROVING THE SIGNAL COLLECTION EFFICIENCY

Keeping the gas clean is the key to preserve the electrode longevity



State of the art

1mm gap ATLAS upgrade Resistivity  $\rightarrow$  5\*10<sup>10</sup> Noise  $\rightarrow$  4000 e-ABS3.3 at GIF++  $\rightarrow$  ~10 kHz/cm<sup>2</sup>

G. Aielli - RPC 2022

26/09/2022