Characterisation of a innovative RPC prototype with 1mm of gas gap thickness

XVI Workshop on Resistive Plate Chambers and Related Detectors

D. Ramos, G. Pugliese, G. Iaselli, J. Eysermans, K.S. Lee, M. Kang, Y. Jo

September 26-30 @CERN
Outline

Why 1mm gap thickness design?
Detector prototype layout and experimental setup description
Efficiency and muon cluster results
Time resolution measurement
Study with eco-friendly gas mixtures
Why 1mm gas gap thickness?

Avalanche charge ↔ Gas gap thickness

Reducing gap thickness
Smaller avalanche cloud
Lower WP
Smaller CLS ➔ better space resolution
Fast signal ➔ better time resolution and rate capability

FEB capable to operate at lower THR (≈ 50 fC)
Low noise operational conditions

Dayron.Ramos.Lopez@cern.ch
Detector prototype

Gaps manufactured at KODEL

- Gap area: 70x100 cm²
- Gap thickness: 1 mm
- HPL: 1.43 mm thick

Assembly in BARI University

- 1x0.5 m² strip PCB
- 48 strips
- 1 cm pitch
- 4752 cm² active area
- XY read-out

KOrea DEtector Laboratory, Korea University
Detector prototype

Front-end Electronics LYON v2.2

lower charge signal at the same time to keep efficiency high, the new front-end electronics are designed for the new iRPC

FEB is sensitive, has low-noise and high time resolution

The FEB composed of:
- 3 ERNI connectors with 32 channels each
- 6 ASICs PETIROC 2C (top & bottom)
- 3 FPGAs Cyclone V (non rad-hard)
- GBTx/GBT-SCA/VTRx.
Gamma Irradiation Facility (GIF++)

Located at the H4 beam line in EHN1, Prevessin North Area
High gamma radiation Cs-137 source up to 12 TBq
Muon beam 10-450 GeV/c
Gamma flux modulated independently using a system of six attenuation filters

RPC set-up at GIF++

RPC 1mm prototype at 3. m from the source in Trolley 3
2 PMTs as muon trigger
Detector commissioning

Current and noise scan

Source and beam OFF
Current density below 3e-04 μA/cm²
Mean noise \approx 1 Hz/cm²

Detector-beam alignment
Results double gap mode

Muon efficiency, muon clus. size and clus. multiplicity measurements

\[E = \frac{E_{\text{max}}}{1 + e^{-\frac{\lambda}{\nu}(H\nu_{\text{eff}}-H\nu_{50})}} \]

\[WP = \frac{-\log(1/(0.95 - 1))}{\lambda} + H\nu_{50} + 120 \]

THR 7DAC (≈ 35 fC)

CLS ≈ 1.5

WP shift 150 V up to 2 kHz/cm² gamma clus. rate

Dayron.Ramos.Lopez@cern.ch
Time resolution measurements

Single gap prototype

Gas gap 1mm thickness
Gap area 70x100 cm²
32 strips, 1 Kodel FEB
THR: 750 uV (~90 fC)
Strip pitch: 1.27 cm
Time resolution measurements

Tracking system

2D readout detector
Each dimension has 32 strips, pitch x 1.0 and y 2.0 cm, double gap 1.4 mm thickness
Fixed at WP 7.4 kV with muon eff. of 98 and 95 % (Source OFF)
Time resolution measurements

Experimental schema and results

\[\sigma_{1.4\text{mm}} = \frac{\sigma_{\text{RPC2D}_{1.4}} - \sigma_{\text{RPC}_{1.4}}}{\sqrt{2}} \]

\[\sigma_{1.0\text{mm}} = \sqrt{\sigma_{\text{RPC2D}_{1.4}}^2 - \sigma_{\text{RPC}_{1.4}}^2 - \sigma_{1.4\text{mm}}^2} \]

Same FEB for all chamber

Analysis cuts

1D tracking using RPC2D chamber

Single strip triggering

Time resolution

1mm gap and std. gas mixture

331 ps

Peak mean: 47.44 ns

Peak width (\(\sigma\)): 0.68 (0.07) ns

Time res. (\(\sigma_{1.0\text{mm}}\)): 0.331 ns

Kodel2Dy

\(\Delta(T_{\text{BAR}i} - T_{\text{Kode}d2y})\) 224

0 5 10 15 20 25 30 35

Hits / 100 ps

40 45 50 55 60 65 70

Time (ns)

Dayron.Ramos.Lopez@cern.ch

os.Lopez@cern.ch
Fluorinated greenhouse gases (GHGs) with high Global Warming Potential (GWP) have been limited in EU [EU regulation 517/2014]. CERN is committed to reducing its direct greenhouse gas emissions.

Extensive RPC applications (CMS, ATLAS) ➤ higher contribution to GHG consumption.

<table>
<thead>
<tr>
<th>eco-friendly mixtures</th>
<th>R134a</th>
<th>i-C6H10</th>
<th>SF6</th>
<th>HFO</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>95.2</td>
<td>4.5</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ECO3</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>25</td>
<td>69</td>
</tr>
<tr>
<td>ECO2</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>35</td>
<td>60</td>
</tr>
</tbody>
</table>
Eco-friendly gas mixture study

Results single gap

Max eff. $\approx 95\%$ with STD
ECO2 mix more promising with eff 90-79\% till 800 Hz/cm²
WP shift 6.65-6.9 kV for ECO2 and 6.3-6.45 kV for ECO3

Asymmetric sigmoidal \Rightarrow
no charge saturation with HFO-based mixtures
Eco-friendly gas mixture study

Results single gap muon clus. size analysis

smaller CLS with ECO2 mix ($\text{CLS}_{\text{ECO3}} / \text{CLS}_{\text{ECO2}} \approx 1.3$)

➤ better space resolution
Eco-friendly gas mixture study

Results single gap current plots

Similar currents with STD and ECO2
ECO2 and ECO3 at equivalent rate $I_{ECO3}/I_{ECO2} \approx 1.6$

Dayron.Ramos.Lopez@cern.ch
Conclusions and next steps

• Fully performant RPC using 1mm gas gap
• Muon efficiency of 92% at WP with high background radiation on 2.2 kHz/cm2 (ex: required for HL phase of CMS)
• Fast conventional RPC with a time resolution of 331 ps
• ECO2 mixture more suitable but still with low efficiency

Next:
• Aging irradiation campaign and new performance analysis
• Space resolution measurements
• New eco-mixture tests
Thanks!

Acknowledgments
KODEL colleagues
CMS iRPC group
RPC ECOGAS@GIF++ Collaboration