

Celeritas performance

Amanda Lund

Computational Science Division Argonne National Laboratory

HSF Detector Simulation on GPU Community Meeting May 3–6, 2022

Celeritas core team:

Philippe Canal, Stefano Tognini, Tom Evans, Soon Yun Jun, Guilherme Lima, Amanda Lund, Vincent Pascuzzi, Paul Romano

Performance metrics

- Figure of Merit (FOM) based on computation per unit energy (e.g. PFLOP / kWh)
 - Assumes perfect scalability of multicore
 - Does not account for theoretical peak FLOP rate
 - Requires a GPU/CPU performance equivalence of ~70
- Two use cases
 - Access to an existing GPU-accelerated system: **160 GPU core equivalence** (current MC performance achieved in ECP ExaSMR effort on Summit)
 - Justification to replace CPU with GPU system: 2x (for same power consumption)

Hardware

- Focus on server-level hardware used in datacenters and DOE machines
- Performance results on Summit (OLCF)

System Specs	Summit Supercomputer
Peak system performance	200 PF
Number of nodes	4608
Node	2 IBM POWER9 CPUs 6 NVIDIA Tesla V100 GPUs
Memory per node	512 GB DDR4 + 96 GB HBM2
On-node interconnect	NVIDIA NVLink
System interconnect	Mellanox dual-port EDR IB (25 Gb/s)
Power consumption	13 MW

Summit node architecture

Summit User Guide – OLCF User Documentation <u>https://docs.olcf.ornl.gov/systems/summit_user_guide.html</u>

Benchmark problem

- TestEm3 simplified calorimeter
 - 50 alternating layers of PbWO₄ and IAr
 - 10,000 10 GeV electron primaries
- Equivalent configurations of Celeritas/Geant4/AdePT
 - No magnetic field
 - Disabled multiple scattering, energy loss fluctuations, Rayleigh scattering
 - Excludes initialization time
- No spline interpolation in Celeritas
 - ~3% performance penalty for Geant4 with spline
 - Compensate by using 8× cross section grid points: <2% slower

Initial performance results

- Per-node performance
- 1–2 batches of 6 simultaneous runs on Summit
 - CPU: multithreaded with 7 cores
 - GPU: one CPU core per GPU
- 40× faster with GPUs
 - Apples-to-apples: Celeritas CPU vs GPU
 - Similar order-of-magnitude improvement irrespective of code
 - 280 CPU core to GPU equivalence

Wall time per primary (ms)

	geo	arch	mean	σ
Geant4 10.7.1	Geant4	CPU	2.9	0.1170
AdePT 68508ef7 (sethrj/adept/summit, 2 May 2022)	VecGeom	GPU	0.0850	0.0005
Celeritas	ODANOE	CPU	2.09	0.0192
8d83ebab (29 Apr 2022) VecGeom	GPU	0.046	0.0012	
	VacCaam	CPU	1.95	0.0352
	GPU	0.0627	0.0004	

Number of primaries per run

Geant4	Geant4	CPU	1E+04
AdePT	VecGeom	GPU	1E+05
Celeritas VecGeom	CPU	1E+03	
	URANGE	GPU	1E+05
		CPU	1E+03
	vecGeom	GPU	1E+05

ENERGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

Detailed timing

extend_from_primaries	Copy primaries to device, create track initializers
while Tracks are alive do	
initialize_tracks	Create new tracks in empty slots
pre_step	Sample mean free path, calculate step limits
along_step	Propagation, slowing down
boundary	Cross a geometry boundary
discrete_select	Discrete model selection
launch_models	Launch interaction kernels for applicable models
extend_from_secondaries	Create track initializers from secondaries
end while	

Performance analysis

- NVIDIA Tesla V100 (Summit)
 - Peak theoretical performance: 7.8 TFLOP/s (double-precision)
 - Peak theoretical bandwidth: 900 GB/s
- Bandwidth use and FLOP/s vary across kernels
- All well below peak theoretical capability of V100
- Memory latency bound

Caveats

- Single element per material
- Hardwired for no magnetic field
- Different PRNGs (Celeritas uses XORWOW, Geant4 uses MixMax)
- Non-optimal algorithm and data structures for CPU parallelism
- No optimization work performed yet
- Simulation results are reproducible, but have arbitrary track IDs
- Experimental workflows may need to batch multiple events together to achieve peak GPU performance

Stepping behavior (memory)

- Tracks: particles in flight
- Initializers: queued secondaries
- Memory capacity limits both

Stepping behavior (time)

- Distribution of particles and energies changes per step
- Some physics are faster than others

Performance optimizations — profiling still preliminary

X Preallocate one secondary per track

- Saw ~13% speedup in Klein-Nishina demo-interactor...
- but ~8% slowdown in transport loop!
- Partition rather than mask threads
- Sort track initializers by energy, particle type...
- Optimize kernel size

