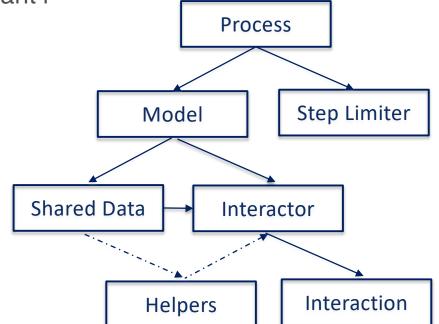


Celeritas Physics Perspectives

Soon Yung Jun for the Celeritas core team HSF Detector Simulation on GPU Community Meeting May 3-6, 2022

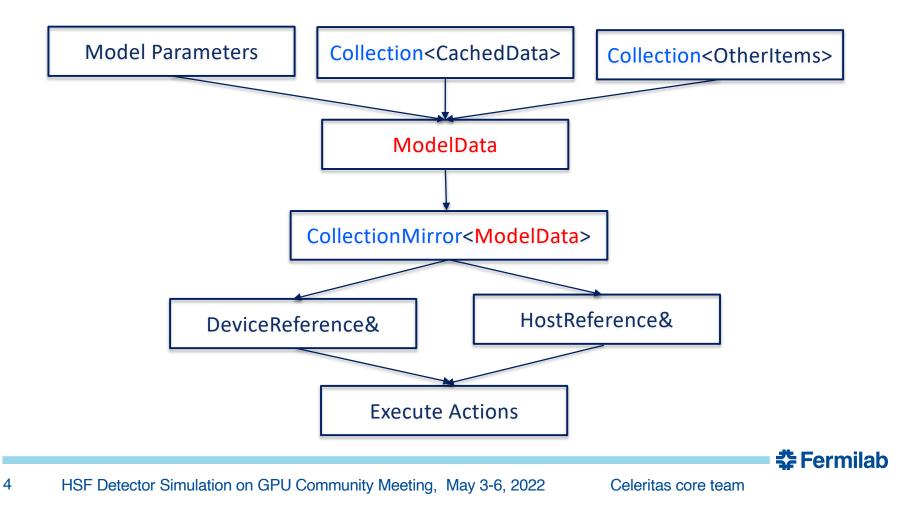
Celeritas Physics: Available Processes

- Celeritas physics models are based on Geant4 10.6 or 10.7 and significantly restructured, but functionally equivalent to Geant4.
- Most processes rely on imported data from Geant4 (interaction xsecs, range and energy loss tables) - ImportProcessAdapter
- Currently available processes and models:


Particle	Process	Model(s)	Status
	photon conversion	Bethe-Heitler	implemented
γ	Compton Scattering	Klein-Nishina	verified
	photoelectric effect	Livermore	implemented
	Rayleigh scattering	Livermore	implemented
	ionization	Moller-Bhabha	implemented
e^{\pm}	${ m bremsstrahlung}$	Seltzer-Berger, relativistic	implemented
	pair annihilation	$\operatorname{EPlusGG}$	implemented
	multiple scattering	Urban	implemented
μ^{\pm}	muon bremsstrahlung	UrbanVI	implemented

Basic Structure of Process and Model Interactor

- (Host only) Process
 - Import process data from Geant4
 - Build model(s)
 - Build step limiter
- (Host only) Model
 - Build shared model data
 - Set applicability
 - Execute (action to kernels)
- (Device/Host) Interactor
 - Final state interaction
- (Device/Host) Helper classes
 - Calculators (diff. cross sections, range, dE/dx, lpm, etc. ...)
 - Samplers (distributions)
 - Utilities

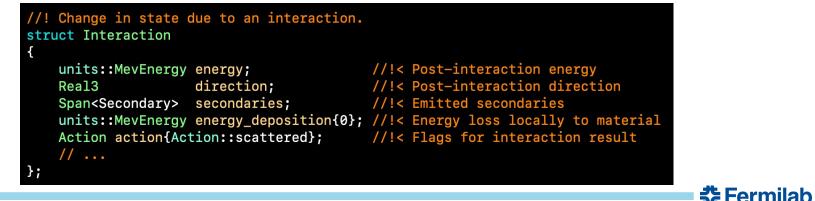


Celeritas core team

🛟 Fermilab

Layout of Physics Model Data

- Rely on celeritas Collection<T, Ownership, Memspace, ItemId<T>>
 - Collection: generic array-like data (T) with ownership and memory type
 - CollectionMirror: helper copying Collection groups to host and device



Interfaces for Physics Kernels

- View: interface to properties of an individual object
- List of views associated with physics

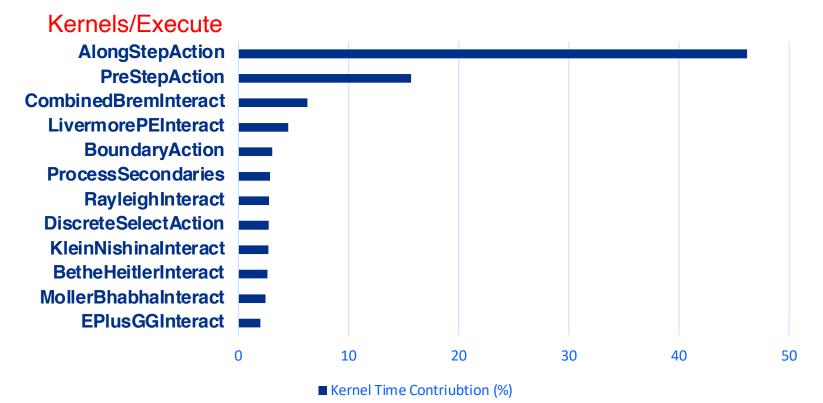
View	Description	
Cutoff View	Particle- and material- dependent cutoff values	
Element/Material View	Properties of element and material	
Material Track View	Material properties of a particle track	
Particle View	Properties of a particle	
Particle Track View	Physical properties of a particle track	
Physics Track View	interface for data and operations common to models	

• Action output types: result of an interaction as an example

Differences from Geant4

- Units (cgs) and physical constants (SI/CODATA): use of 'Quantity'
- Using celeritas grid data type instead of G4PhysicsVector
- Following physics operations are independent actions (separated from physics processes or models)
 - Range limiter and energy loss calculator
 - MSC step limiter and scattering sampler
 - Propagator and boundary action (a.k.a G4Transportation)
- Variations and specific choices from Geant4 models
 - Seltzer-Berger model uses SB DCS data and rejection methods (i.e., does not use the SB sampling table)
 - UrbanMSC uses the 'UseSafety' stepping algorithm
- Components and models that will be added in this year
 - Spline interpolation and element selector for composite materials

5 Fermilab

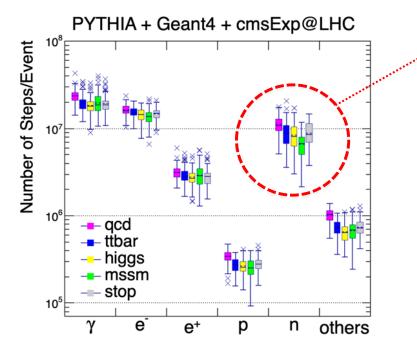

Celeritas core team

WenzelVI MSC (and lepto-/photo-nuclear)

6 HSF Detector Simulation on GPU Community Meeting, May 3-6, 2022

Performance of Physics Kernels

• (Preliminary) Computing performance of physics kernels with SimpleCMS and $H \rightarrow ZZ$ events (from acceleritas, without MSC)



- None of discrete (physics model) interactors is a major contributor

– AlongStepAction: (MSC limiter) + propagator + (MSC sampler) + dE/dx

Physics Perspectives: Next Milestones

- Detail physics verification for each physics model (by energy and material – see the Stefano's talk) and performance optimization, especially for multiple scattering (and energy loss calculation)
- The next major model extension: neutron transport (E < 10 GeV)
 - ~20% of the total number of steps (typical HEP), ~25% of CPU time

8 HSF Detector Simulation on GPU Community Meeting, May 3-6, 2022

Celeritas core team

🛟 Fermilab