

Simple sources and preprocessor

Outline

1. Simple source definition

- Definition of simple beams
 - Beam parameters
 - Beam visualisation
 - Beam rotation
- Volumetric sources
- Further possibilities

2. The FLUKA preprocessor

1. Simple sources

BEAM & BEAMPOS cards | Visualisation | Volumetric sources

Required cards

• In the *Basic input & Flair introduction* lecture we already saw two cards related to defining a beam in FLUKA, namely the **BEAM** and **BEAMPOS** cards:

```
BEAM
                           Beam: Momentum ▼
                                                                               Part: ▼
                                                       Δφ: Flat ▼
    ∆p: Flat ▼
                             Δp:
                                                                                Δφ:
Shape(X): Rectangular ▼
                                                 Shape(Y): Rectangular ▼
                             Δx:
                                                                                Δy:
BEAMPOS
                               X:
                                                        у:
                                                                              Type: POSITIVE ▼
                            COSX:
                                                     cosy:
```

The BEAM card

```
** BEAMBeam: Momentum \checkmarkp:Part: \checkmark\Delta p: Flat \checkmark\Delta p:\Delta \phi: Flat \checkmark\Delta \phi:Shape(X): Rectangular \checkmark\Delta x:Shape(Y): Rectangular \checkmark\Delta y:
```

- The **BEAM** card allows to specify the following parameters:
 - Particle type
 - Momentum or kinetic energy
 - Momentum distribution
 - Angular distribution
 - Shape in the X-Y plane

The BEAM card: particle type

BEAM Beam: Momentum ▼
 p:
 Part: ▼

 Δp: Flat ▼
 Δp:
 Δφ: Flat ▼
 Δφ:

 Shape(X): Rectangular ▼
 Δx:
 Shape(Y): Rectangular ▼
 Δy:

Select particle type from the dropdown menu

Default particle: PROTON

Non-standard particles:

- **HEAVYION**: Ion beams heavier than ⁴He Requires a **HI-PROPE** card.
- **ISOTOPE**: Radioactive isotope sources Requires the **HI-PROPE** and **RADDECAY** cards. See the *Activation* lecture

The BEAM card: momentum/energy definition

Select Momentum or Energy from the dropdown menu

Enter the **value** in the input field next to it

Default value: 200 [GeV/c]

Note: In the case of advanced sources, setting the momentum slightly higher than the maximum momentum used in those sources is **crucial**, since this value is used to initialise the cross section data tables.

(See the Source routine and Advanced sources lectures)

The BEAM card: momentum and angular distributions

BEAM	Beam: Momentum ▼	p:	Part: ▼	
∆p: Flat ▼	Δр:	Δφ: Flat ▼	Δφ:	
Shape(X): Rectangular ▼	Δx:	Shape(Y): Rectangular ▼	Δy:	

Momentum distribution types:

- Flat: Full width of a rectangular momentum distribution centred at beam momentum [GeV/c]
- Gaussian: FWHM of a Gaussian momentum distribution [GeV/c]

IMPORTANT: This is always momentum distribution, even if **Energy** was selected

Angular distribution types:

- Flat: Full width of a rectangular angular distribution centred at the beam axis [mrad]
- Isotropic: Isotropic distribution
- Gaussian: FWHM of a Gaussian angular distribution centred at the beam axis [mrad]

The BEAM card: beam shape in the X-Y plane

* BEAM	Beam: Momentum ▼	p:	Part: ▼	
∆p: Flat ▼	Δp:	Δφ: Flat ▼	Δφ:	
Shape(X): Rectangular ▼	Δx:	Shape(Y): Rectangular ▼	Δy:	

Distribution type:

- Rectangular: Full beam width in x/y direction centred at the beam axis [cm]
- Gaussian: FWHM of a Gaussian distribution in x/y direction centred at the beam axis [cm]

Default.
$$\Delta x = 0.0$$
, $\Delta y = \Delta x$

- Annular distribution can be selected in the dropdown menu of Shape(X)
 - Rmin and Rmax are the radii of the distribution
 - The beam particle position is uniformly sampled on the x-y plane between Rmin and Rmax
 - For circular beam use Rmin = 0.0

The BEAMPOS card: beam position and direction

BEAMPOS

Position:

The beam position is defined with its **x**, **y** and **z** coordinates [cm]

Default: Origin of the coordinate system

Direction:

The beam axis is defined via direction cosines with respect to the x and y axes

The third direction cosine (cosz) is automatically calculated by FLUKA

Note that this is not enough for an unequivocal direction definition; the sign of **cosz** has to be provided as well. Select **POSITIVE** or **NEGATIVE** from the *Type* dropdown

Default: Positive z direction

Default beam

- What happens if the BEAM and BEAMPOS cards are not filled in or are missing?
- FLUKA will use the built-in default (note: may change in the future):
 - Protons at 200 GeV/c momentum
 - Pencil beam: No divergence, zero radius
 - Starting from the origin of the coordinate system
 - Directed along the positive z axis
- This is almost never what you want!
- Always complete the relevant information in the BEAM and BEAMPOS card
- It is good practice to confirm what source you have defined by checking the FLUKA output (see the Standard output lecture)

Beam visualisation

 The easiest way to check whether the beam parameters are set correctly is to visualise the beam

- There are two ways to do this:
 - Use the Geoviewer's BEAM object
 - Use standard FLUKA scorings (See the Scoring lectures) with BEAMPART as particle type
 - USRBIN for particle location and direction
 - USRBDX for energy spectrum (with a closed surface surrounding the source location)

Beam visualisation

 Example 1: 1 GeV Gaussian beam | 0.1 GeV/c FWHM momentum distribution | 0.4 rad flat angular distribution | rotated around the y axis by -30°

- Geoviewer BEAM object:
 - Starting point
 - Direction
 - Angular distribution
 - Beam mean energy
 - Default scale: 1 GeV(/c) = 1 cm
 Can be changed with the scale parameter

Beam visualisation

Beam rotation

• Example 2: R = 0.5 cm cylindrical beam | zero divergence | rotated around y axis by -30°

• Remember: the **BEAM** card sets the X-Y shape of the beam, which is not influenced by the beam direction set in the **BEAMPOS** card... so how can we rotate the beam?

15

Beam rotation

• Input card: **BEAMAXES**

 L BEAMAXES
 cosBxx:
 cosBxy:
 cosBxz:

 cosBzx:
 cosBzy:
 cosBzz:

Defines the beam coordinate system (x', y', z') with respect to the geometry one (x, y, z)

Input fields:

- cosBxx: cosine of the angle between x' and x
- cosBxy: cosine of the angle between x' and y
- cosBxz: cosine of the angle between x' and z
- cosBzx: cosine of the angle between z' and x
- cosBzy: cosine of the angle between z' and y
- cosBzz: cosine of the angle between z' and z

Beam rotation

• Example 2: R = 0.5 cm cylindrical beam | zero divergence | rotated around y axis by -30°

WHAT	Beam axis	Geo axis	Angle [°]	Cos(Angle)
cosBxx	x'	X	30	~0.866
cosBxy	x'	У	90	0
cosBxz	x'	Z	-60	0.5
cosBzx	z'	X	120	-0.5
cosBzy	z'	У	90	0
cosBzz	z'	Z	30	~0.866

F BEAMAXES

cosBxx: 0.86602540378

cosBzx: -0.5

cosBxy: 0.0

cosBzy: 0.0

cosBxz: 0.5

cosBzz: 0.86602540378

Volumetric sources

Volumetric sources can be defined with a second **BEAMPOS** card:

- Available types:
 - Spherical shell (SPHE-VOL)
 - Cylindrical shell (CYLI-VOL)
 - Cartesian shell (CART-VOL)
 - Spherical surface (FLOOD)
- Volumetric sources are centred around the position defined in the first BEAMPOS card
- The location inside the volume is sampled uniformly
- The particle direction and angular distribution set in the first **BEAMPOS** card and the **BEAM** card are still applied
- Warning: The spatial distributions specified in the **BEAM** card will be disregarded

Volumetric sources – Spherical shell

BEAMPOS Rin: Rout: Type: SPHE-VOL ▼

Specifies a spherical shell shaped source

Input fields:

• Rin: Inner radius [cm]

Rout: Outer radius [cm]

Volumetric sources – Cylindrical shell

BEAMPOS

Rin: Hin: Rout:

Type: CYLI-VOL ▼

Specifies a cylindrical shell shaped source around the **z** axis of the geometry

Input fields:

• Rin: Inner radius [cm]

Rout: Outer radius [cm]

• Hin: Inner height [cm]

Hout: Outer height [cm]

Note: The reference coordinate system can be changed with the **BEAMAXES** card

Volumetric sources - Cartesian shell

BEAMPOS

Xin: Yin:

Zin:

Xout:

Yout:

Zout:

Specifies a Cartesian shell shaped source along the axes of the geometry

Input fields:

- Xin & Xout: Inner & outer length of the x-sides
- Yin & Yout: Inner & outer length of the y-sides
- Zin & Zout: Inner & outer length of the z-sides

Note: The reference coordinate system can be changed with the **BEAMAXES** card

Type: CART-VOL ▼

Volumetric sources – Spherical surface source

BEAMPOS

R:

Type: FLOOD ▼

Specifies a spherical surface source in a way that the fluence inside the sphere is **uniform** and **isotropic**

The value of the generated fluence is: $\frac{1}{\pi R^2}$ cm⁻²

Input fields:

R: Radius of the sphere [cm]

Warning: The particle direction and angular distribution set on the first **BEAMPOS** and the **BEAM** card are disregarded

Further possibilities

Sometimes the **BEAM**, **BEAMPOS**, and **BEAMAXES** cards are not enough

- Special sources available in FLUKA
 - Colliding beams
 - Synchrotron radiation
 - Cosmic rays
 - Multiple beam spots
 - USRBIN source

(See the *Advanced sources* lecture)

Program your own custom sources

(See the *Source routine* lecture)

2. The FLUKA preprocessor

The FLUKA preprocessor

- A limited, "C"-like preprocessor
- Manipulates the input before execution using directives

- 3 type of directives (starting with: #):
 - Definition:

```
#define, #undef
```

Conditional:

```
#if, #elif, #else, #endif
```

Include:

```
#include
```

FLUKA preprocessor - Definition

Directive: #define

- Identifiers without numerical or character value:
 - # #define identifier name
 - Used in conjunction with conditional directives (#if identifier_name ... #endif)
 - identifier_name can be up to 40 character long
- Identifiers with numerical or character value:
 - # #define identifier_name : value
 - The value can be used in any other input card by referencing \$identifier_name and can be up to 40 characters long
 - Can also be used in conjunction with conditional directives

Directive: #undef

- #undef identifier_name ▼
 - Deletes a previously defined identifier

FLUKA preprocessor - Definition

- Identifiers can be defined and referenced anywhere in the input file
- Example:

#define Momentum : 0.1

#define Particle : PROTON

BEAM

∆p: Flat ▼

Shape(X): Rectangular ▼

Beam: Momentum ▼

Δp: Δx: p: \$Momentum Part: \$Particle ▼
Δφ: Flat ▼ Δφ:
Shape(Y): Rectangular ▼ Δy:

- Note: It is possible to redefine an identifier with a second #define directive
 - This is NOT RECOMMENDED
 - If an identifier is redefined, the new value is only applied to cards below
 - The output and error files will contain warning messages

FLUKA preprocessor - Conditional

Directives: #if, #elif, #else, #endif

To include or exclude parts of the input in conjunction with the #define directives

- They work similarly to any programming language
 - Limitation: Cannot compare values, only test if an identifier is defined or not
- Can be nested

Limitation: Maximum of 10 nesting levels can be used

FLUKA preprocessor - Conditional

```
# #define NeutronBeam
. . .
€ #if
        NeutronBeam ▼
    * BEAM
                                                                                Part: NEUTRON ▼
                           Beam: Energy ▼
                                                        E: 0.1
    ∆p: Flat ▼
                                                       Δφ: Flat ▼
                              Δp:
                                                                                 Δφ:
    Shape(X): Rectangular ▼
                                                  Shape(Y): Rectangular ▼
                              Δx:
                                                                                 Δy:

  #else

    * BEAM
                           Beam: Energy ▼
                                                        E: 0.05
                                                                               Part: PHOTON ▼
    ∆p: Flat ▼
                                                       Δφ: Flat ▼
                              Δp:
                                                                                 Δφ:
    Shape(X): Rectangular ▼
                                                  Shape(Y): Rectangular ▼
                              Δx:
                                                                                 Δv:

⇒ #endif

. . .
€ #if
        NeutronBeam ▼
    ASSIGNMA
                            Mat: CONCRETE ▼
                                                      Reg: SHIELD ▼
                                                                             to Reg: ▼
                      Mat(Decay): ▼
                                                                               Field: ▼
                                                      Step:

  #else

    ASSIGNMA
                             Mat: LEAD ▼
                                                      Reg: SHIELD ▼
                                                                             to Reg: ▼
                      Mat(Decay): ▼
                                                                               Field: ▼
                                                      Step:

⇒ #endif
```


FLUKA preprocessor - Conditional

```
# #define NeutronBeam
. . .
€ #if
       NeutronBeam ▼
   # #define Energy
                              : -0.1
   # #define Particle : NEUTRON
   # #define ShieldMa
                         : CONCRETE

  #else

   # #define Energy
                             : -0.05
   # #define Particle
                              : PHOTON
   # #define ShieldMa
                              : LEAD

⇒ #endif

. . .
* BEAM
                                                     E: $Energy
                                                                           Part: $Particle ▼
                         Beam: Energy ▼
                                                    Δφ: Flat ▼
    ∆p: Flat ▼
                                                                            Δφ:
                            Δp:
Shape(X): Rectangular ▼
                                               Shape(Y): Rectangular ▼
                            Δx:
                                                                            Δν:
ASSIGNMA
                           Mat: $ShieldMa ▼
                                                   Reg: SHIELD ▼
                                                                        to Reg: ▼
                                                                          Field: ▼
                     Mat(Decay): ▼
                                                  Step:
```


FLUKA preprocessor - Include

Directive: #include

- #include <path>/filename.inp ▼
 - Includes the specified file to the input
 - Can be nested at multiple levels

- The path can be:
 - Relative to the main input file
 - Absolute
- Use cases:
 - Split large input files into multiple smaller ones
 - · Reuse same input section (beam definition, scoring, etc.) in multiple input files

